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Abstract: The swelling of a poly (methyl methacrylate) in supercritical carbon dioxide was studied
by means of full atomistic classical molecular dynamics simulation. In order to characterize the
polymer swelling, we calculated various properties related to the density, structure, and dynamics
of polymer chains as a function of the simulation time, temperature, and pressure. In addition, we
compared the properties of the macromolecular chains in supercritical CO2 with the properties of the
corresponding bulk system at the same temperature and atmospheric pressure. It was shown that
diffusion of CO2 molecules into the polymer led to a significant increase in the chain mobility and
distances between them. Analysis of diffusion coefficients of CO2 molecules inside and outside the
poly(methyl methacrylate) sample has shown that carbon dioxide actively interacts with the functional
groups of poly (methyl methacrylate). Joint analysis of the radial distribution functions obtained
from classical molecular dynamics and of the averaging interatomic distances from Car-Parrinello
molecular dynamics allows us to make a conclusion about the possibility of formation of weak
hydrogen bonds between the carbon dioxide oxygen atom and the hydrogen atoms of the polymer
methyl groups.
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1. Introduction

In recent years, much attention has been paid to the study of polymer-supercritical fluid systems.
This is eloquently echoed by a large number of reviews devoted to the use of supercritical carbon
dioxide (sc-CO2) as a solvent for the physical processing of polymeric materials [1,2], as well as in
polymer modification, formation of polymer composites, polymer blending, microcellular foaming,
polymerization [3], particle formation [4], and applications of sc-CO2 in the fabrication of polymer
systems for drug delivery [5]. Being a non-toxic and environmentally friendly solvent, supercritical
CO2 can replace toxic organic compounds in a number of chemical processes [6–8], which is of great
interest to the pharmaceutical industry, for example, when creating prolonged dosage forms of drugs
by polymer doping [2,9]. The process of polymer impregnation is based on plasticization: when
treated in a supercritical solvent, the polymer adsorbs it, which leads to an increase in the mobility of
the segments and chains, and an increase in the average distance between the polymer monomers,
thereby facilitating the penetration of various additives into the polymer and desorption of undesirable
impurities [10,11]. It has been shown previously that CO2 is a good plasticizer for amorphous polymers
like poly (methyl methacrylate) (PMMA) [12,13]. PMMA/CO2 systems were investigated by means
of different experimental techniques in a wide range of conditions [14–24]. In particular, sorption
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and swelling of different polymers including PMMA in the presence of sub- and supercritical carbon
dioxide have been measured at pressures up to 30 MPa at 308.2 and 323.2 K in reference [15]. Handa
Y.P. and coauthors have studied glass transition in the system PMMA/compressed gas as a function of
the gas pressure using high-pressure calorimetric measurements [16]. Sorption of CO2 in PMMA at
308−573 K and concurrent dilation of the polymer at 308–358 K over a pressure range up to 5 MPa
were studied in reference [18]. Nikitin L.N. and colleges have performed the study of sorption by
poly (methyl methacrylate) and poly (butyl methacrylate) in sc-CO2 conditions using technique of
direct optical observation [19]. In reference [20], a purely gravimetric approach based on the use of
a magnetic suspension balance was proposed to simultaneously measure swelling and sorption of
supercritical fluids in PMMA in a commercially available setup. Pantoula M. and coauthors used
the quartz crystal microbalance and the mass-loss analysis to investigate the sorption of sc-CO2 onto
PMMA and polystyrene [21], and used the magnetic suspension balance and the optical determination
of the volume change to study the swelling process of this polymers [22] under pressures up to 40 MPa
and temperatures T = 308–405 K. The authors of reference [25] have experimentally investigated the
behavior of PMMA–based systems not only in pure sc-CO2, but also in sc-CO2 modified by acetone,
ethanol, and methylene chloride. They have found that processing PMMA-based polymers with
pure sc-CO2 leads to polymer swelling, and addition of a liquid cosolvent to CO2 enhances polymer
dissolution. However, selection of a cosolvent and its concentration is crucial for optimizing solubility.
In particular, the polymer solubility in CO2 acetone, as a function of cosolvent concentration, reaches a
maximum at about 15 wt % of the cosolvent, while for CO2-ethanol, the solubility is low and practically
not affected by the increase in the cosolvent percentage. In reference [26], the swelling of poly (methyl
methacrylate) and poly (butyl methacrylate) bulk samples in supercritical carbon dioxide was studied
in situ. The kinetics of swelling, the diffusion coefficients of CO2 in the polymers were calculated, the
effects of temperature and pressure on the obtained values were analyzed and it was concluded that
the degree of PMMA swelling at a fixed exposure temperature (311 K) increased as the pressure grew
and showed a nonmonotonic dependence on the temperature.

Along with experimental studies, simulation approaches are useful and powerful tools for
investigating systems containing a polymer at the molecular level. Van der Vegt et al. using molecular
dynamics (MD) simulations have made calculations of the sorption thermodynamics of CO2 in a model
glassy polymeric membrane [27] and studied the temperature dependence of carbon dioxide transport
in an amorphous polyethylene melt [28]. CO2 sorption and swelling in glassy matrices of atactic
polystyrene obtained by coarse-graining, equilibration, and reverse-mapping were simulated over the
temperatures ranging from 308 to 405 K at pressures of up to 30 MPa [29]. Combining experimental
and computational techniques, Zhang et al [30] studied CO2-induced plasticization in a polyimide
membrane. They discussed the effect of the CO2 interactions with the ether groups on the mobility
of polyimide chains, calculated the glass transition temperature of the polyimide at different CO2

content values in the polymer matrix. In reference [31], the molecular dynamics simulation was used
to investigate the adsorption of PMMA and polyvinyl acetate on anα-quartz surface and to understand
the interactions between the quartz surface and the polymers. An interesting study of P. Xue et al. [32]
focused on the study of the mechanism of a supercritical CO2 thickener using MD simulations. The
authors examined poly (vinyl acetate-covinyl ether) used as a thickener and showed that adding
the polymer reduced the diffusion of supercritical CO2 indicating an interaction between the solvent
molecules and the polymer functional groups. In particular, it was found that the ester group had
better ability to bind a CO2 molecule than the ether group.

Although experimental studies of the PMMA swelling process in sc-CO2 have already been
reported, this phenomenon has not yet been investigated at the microscopic level. To the best of our
knowledge, PMMA swelling in sc-CO2 has never been studied in detail at the molecular level using
MD simulations. It should be noted that the time and length scales of MD simulations are limited to a
few nanoseconds and nanometers, and therefore it is not possible to achieve the same system size or
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observation time as in the experiment. Nevertheless, we can estimate the structural and dynamical
changes of the polymer matrix at the molecular level at the very beginning of the swelling process.

We present here a molecular dynamics study of two types of systems: an atactic PMMA in bulk at
atmospheric pressure in the temperature interval 273 K–533 K, and PMMA in sc-CO2 at temperatures
of 333 K and 353 K and pressures 10–25 MPa. We have also calculated and discussed the structural and
dynamic characteristics including polymer density, specific volume, coefficient of thermal expansion,
glass transition temperature, mean squared displacement, radial distribution functions, gyration radius
of the chain, and end-to-end distance.

2. Computational Details

Figure 1 illustrates the monomer unit of PMMA. The polymer chain was built from 100 monomers;
then 27 chains were used to construct a three-dimensional structure with an initial density of
1000.0 kg/m3 by Materials Studio [33]. As is well known, force field selection is determinant of the
accuracy of simulation results of a specific system. In this study, for MD simulations of PMMA in
bulk and in sc-CO2, the OPLSAA (Optimized Potentials for Liquid Simulations All Atom) force field
was used [34,35]. Validation of this force field by comparing the PMMA structure and dynamics with
neutron experiments was carried out by C. Chen and co-authors [36]. It was shown that the simulation
model provides a fair description of real PMMA samples. The Lennard-Jones (LJ) and partial atomic
charge parameters of the OPLSAA force field used for PMMA are given in Table 1. For carbon dioxide,
we used the model developed by Z. Zhang and Z. Duan [37]. As for cross site-site interactions, we
applied the geometric mean mixing rule for both LJ parameters. The temperature and pressure were
controlled by a Nose’-Hoover thermostat [38,39] and a Parrinello-Rahman barostat [40], respectively.
The leap-frog integrator was adopted to integrate the equations of motion [41]. The cutoff radius was set
of 1.5 nm for all interactions. For the long-range electrostatic interactions, a particle mesh Ewald [42,43]
with a grid spacing of 0.25 nm and an interpolation order of four was used. The constraints were
implemented using the LINCS algorithm [44]. The time step was 1 fs for all the simulations. In order
to gain a homogenous sample of PMMA, the polymer was equilibrated in accordance with the heating
and cooling scheme as the one used in a few previous studies [45,46]. All the MD simulations were
conducted using GPU-accelerated GROMACS v5.0.7 [47]. Processes of energy minimization, canonical
ensemble (NVT, 0.5 ns), and isothermal–isobaric (NPT, 5 ns) ensemble were applied to the PMMA
sample at 533 K and 0.1 MPa. After that, the sample was subjected to cooling (for t = 0.5 ns) starting
from 533 K and ending at 273 K in ∆T = 10–20 K steps. The equilibrium configurations are performed
in NPT ensemble with a pressure of 0.1 MPa and temperature of 273K–533K with 10K–20K steps.
At the end of this stage, the densities of the samples and the coefficient of thermal expansion were
calculated and compared with the experimental ones [48,49].
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Table 1. Energy parameters and partial atomic charges for used potential model of poly (methyl
methacrylate) (PMMA).

Atom σ, nm ε, kJ mol−1 q, e.c.

C1 0.350 0.28 −0.09
C2 0.350 0.28 0.00
C3 0.350 0.28 −0.135
C4 0.375 0.44 0.51
C5 0.350 0.28 0.16
O1 0.300 0.71 −0.33
O2 0.296 0.88 −0.43

H1, H2 0.250 0.13 0.045
H3, H4, H5 0.250 0.13 0.045
H6, H7, H8 0.242 0.06 0.03

In order to investigate the PMMA swelling process, the samples of the polymer equilibrated at
333 K, 353 K, and 0.1 MPa were placed in the center of a cubic cell with periodic boundary conditions
and “embedded” by previously equilibrated sc-CO2 (85086 molecules) at certain thermodynamic
parameters (Table 2). The production run simulations were performed for 10 ns with a time step of 1 fs.
The data were collected for analysis every 0.1 ps.

Table 2. Stated parameters of the simulated systems: Temperature T, Pressure P, experimental Density
of CO2 ρ(CO2)EXP [50], total Density of the systems at the end of simulation ρMD, and size of cubic
cell L.

System T, K P, MPa ρ(CO2) EXP., kg/m3 ρMD, kg/m3 L, nm

1

333

10 290.81 913.99 19.4
2 15 605.60 924.57 19.3
3 20 724.63 933.42 19.3
4 25 787.28 942.28 19.2
5

353

10 221.93 856.48 19.8
6 15 428.15 870.73 19.7
7 20 594.85 888.32 19.6
8 25 686.98 904.38 19.4

In addition to the classical molecular dynamics, a Car-Parrinello (CPMD) simulation of a small
PMMA fragment (consisting of 3 monomer units) in sc-CO2has been carried out at T = 333 K and
ρ = 725 kg/m3 in the CPMD-3.13.2 [51] program package. The total Car-Parrinello dynamical system
consists of two adiabatically decoupled subsystems: the cold electronic degrees of freedom and
the nuclear degrees of freedom at the relevant physical temperature. The computations have been
performed using the gradient-corrected BLYP functional [52,53]. The orbitals of the valence electrons
were expanded in a plane wave basis set to a 25 Ry cutoff. The interaction between the core and
the valence electrons was described by the ultrasoft pseudopotential in the Vanderbilt form [54].
The Brillouin zone was sampled at the Γ–point only. The fictitious electronic mass and integration step
were set up to 600 a.u. and 5 a.u., respectively. The initial configuration consisting of a PMMA fragment
surrounded by 58 CO2 molecules was simulated by the classical molecular dynamics. The obtained
classical trajectory was then equilibrated for 10 ps by means of the CPMD simulation. The production
run length was 10 ps; the statistics were gathered every 1.2 fs. The simulation was performed in the
NVT ensemble with a Nose–Hoover chain thermostat [38,39].

3. Results and Discussion

3.1. Bulk PMMA

In order to demonstrate that the force field and simulation parameters were chosen correctly,
the polymer physical properties must be realistically represented in the simulation. As it was mentioned
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in the previous section, the densities of the samples and the coefficient of thermal expansion were
calculated and compared with the experimental ones. The results with the theoretical and experimental
values, available in the literature [48,49], are reported in Table 3. The densities and coefficients of
thermal expansion, obtained for PMMA at different temperatures by means of MD simulations, are in
good agreement with the experimental ones.

Table 3. Comparison of properties (density ρ and coefficient of thermal expansion β) at atmospheric
pressure in the temperature range 273 – 533 K obtained by using MD and experimentally.

T, K ρ, kg/m3 ρexp, kg/m3 β, 10−4 1/K βexp, 10−4 1/K

273 1174 ± 2 1175 [48] 1.62
293 1170 ± 2 1170 [48] 2.13
303 1167 ± 2 2.29
313 1164 ± 2 1.67 1.80 [49]
333 1161 ± 2 1160 [48] 2.28 2.10 [49]
353 1154 ± 2 1155 [48] 3.01 2.40 [49]
363 1150 ± 3 2.12
373 1149 ± 3 1150 [48] 2.43 2.70 [49]
383 1145 ± 3 3.92
393 1140 ± 3 1140 [48] 3.34 5.50 [49]
403 1137 ± 3 3.58
413 1131 ± 3 1128 [48] 3.24 5.80 [49]
423 1129 ± 5 2.53
433 1125 ± 3 1126 [49] 4.07 6.10 [49]
453 1114 ± 4 1112 [49] 5.26 6.40 [49]
473 1101 ± 4 1097 [49] 5.63 6.70 [49]
493 1088 ± 5 1082 [49] 5.33 7.00 [49]
513 1076 ± 5 1067 [49] 5.77 7.20 [49]
533 1061 ± 5 1052 [49] 6.36 7.50 [49]

Glass transition temperature (Tg) is a unique property of polymers. Below Tg, polymers behave
like glass that is hard and brittle, and above Tg, polymers act like rubber that is soft and viscous [55,56].
Although polymers possess two completely different states below or above Tg, glass transition is
a second order phase transition, so that many first order properties, for example, volume, change
gradually when the temperature increases. Therefore, Tg can be derived from fitting the intercept of the
two linear trend lines at a low and a high temperature, respectively. There are several ways to estimate
Tg from MD simulations. In particular, in reference [57] Tg was determined through tracing the
variations in the macroscopic (thermal conductivity, volume, thermal expansion and Young’s modulus)
and microscopic properties (radial distribution functions, mean squared displacement, non-bonded
energy) of the polymer during temperature cooling scans. The authors [57] found that the density
and volume method was less time consuming in determining the Tg than the thermal conductivity
and Young’s modulus method. Therefore, we calculated the specific volume, i.e., the inverse density,
at each temperature during the cooling process. The temperature dependence of the specific volume of
the bulk PMMA is shown in Figure 2.

The temperature gradient of specific volume has a discontinuity at Tg, therefore, the intersection
between the lines obtained as interpolation of specific volume values below and above Tg is the
estimation of the glass transition temperature. We used this method to obtain the simulated glass
transition temperature of the polymer (Tg = 417 K). The glass transition temperature value obtained
from the simulation was found to be a little higher than the corresponding experimental values
(*Tg = 378 K [58], Tg = 363–387 [59]). These deviations could be caused by the extremely fast cooling
rate of the MD simulation (≈109 K/s) relative to the real experiment (≈0.3 K/s) [59]. Moreover, as it was
mentioned in reference [57], the Tg obtained from MD simulations, is dependent on the polymerization
degree, i.e., the higher the polymerization degree is, the higher the glass transition temperature is
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(Tg = 450 K and Tg = 381 K for polymerization degree of PMMA 100 and 10, respectively, at a cooling
rate 20 K/ns).
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the intermolecular interactions become weaker and, as a result, the mobility and flexibility of the chains
increase. In order to examine the mobility of PMMA during the glass transition process, the mean
squared displacement (MSD) was calculated. The MSD curves were calculated by the relation:

MSD(t) =
〈∣∣∣∣→r i(t) −

→
r i(t = 0)

∣∣∣∣2〉 (1)

where ri(t) is the position vector of atom i at time t; the symbol < . . . > denotes the average for all the
atoms as well as for all the time origins.

The steeper slope of MSD indicates higher mobility of the polymer chain. As one can see in
Figure 3, the slopes of MSD above Tg are much higher than those below Tg, showing higher mobility
of the polymer chains above the glass transition temperature (namely 417 K).
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In reference [57] the same behavior of temperature dependence of MSD curves of PMMA is
observed. Namely, the MSD curves remain constant with variation in temperature below 470 K and
MSD values notably increased with temperatures raised above 470 K. The difference between our
results and data presented in reference [57] is probably due to a small number of PMMA molecules
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in the MD cell (only 3) which was simulated by M. Mohammadi and coauthors compared with our
simulation box containing 27 molecules.

In order to understand how the structural behavior of the polymer samples depends on
temperature, we calculated the radius of gyration (Rg), which is one of the most important quantities
in conformational statistics of polymer chains [60–62]. The radius of gyration was calculated by the
following Equation:

Rg =


∑
i
‖ri‖

2mi∑
i

mi


1/2

(2)

where mi is the mass of site i and ri is the position of site i relative to the center of mass of the molecule.
As can be seen from Figure 4, there is an abrupt change in the slope of Rg as a function of temperature
around 417 K. Thus, at temperatures above 417 K, significant changes in the structure of the polymer
are observed, i.e., the polymer transitions from a glassy state to a highly elastic state. It should be
noted that the Tg value obtained from the temperature dependence of the specific volume of the bulk
PMMA coincides with the value obtained from Rg(T).
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3.2. PMMA in sc-CO2

The first stage of dissolution of any polymer is its swelling. Swelling is the process of absorption
of a low molecular weight solvent by a polymer, accompanied by an increase in the mass and volume
of the polymer and a change in the conformation of its macromolecules. Because the PMMA solubility
is negligible in sc-CO2 (it is less than 0.001 percentile weight of the extracted amount per unit mass of
CO2 at 333 K and 20 MPa) [25], the dissolution process stops at the stage of swelling, and, thus, one can
discuss limited swelling of PMMA in supercritical carbon dioxide. PMMA swelling in sc-CO2leads to
an increase in the end-to-end distance Rete and radius of gyration Rg (Figure 5) in comparison with the
bulk PMMA where Rete and Rg fluctuate around a constant value during the entire simulation time.
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sc-CO2 at pressures of 10-25 MPa and in the bulk at 0.1 MPa during the first 5 ns of the simulation.

In order to investigate the mobility of PMMA segments, we calculated the self-diffusion coefficients
of the PMMA from the slope of the MSD according to the Einstein’s relation [63] as follows:

D =
1
6

lim
t→∞

dMSD
dt

(3)

As Table 4 shows, the PMMA swelling in CO2 changes the mobility of the chains. The self-diffusion
coefficient of the polymer in the supercritical solvent is three orders of magnitude higher than in
the bulk.

Table 4. Self-diffusion coefficients of PMMA in bulk and in sc-CO2.

System T, K P, MPa D, 10−5 cm2/s

Bulk PMMA

333

0.1 0.0004 ± 0.0001

PMMA in sc-CO2

10 0.89 ± 0.09
15 0.75 ± 0.04
20 0.75 ± 0.04
25 0.68 ± 0.10

Bulk PMMA

353

0.1 0.0005 ± 0.0002

PMMA in sc-CO2

10 1.07 ± 0.11
15 0.91 ± 0.12
20 0.85 ± 0.12
25 0.78 ± 0.15

PMMA in sc-CO2 has comparatively higher mobility, and thus requires a lower temperature
compared with the bulk PMMA to obtain the same segment mobility. The increase in mobility of the
polymer molecules after adding CO2 can be understood as a plasticization effect due to the increased
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space between the chain segments. Figure 6 illustrates the swelling process of PMMA in sc-CO2 at 333
K and 25 MPa. The snapshots have been made by using the visualization program VMD [64].

1 

 

 
(a) 

  
(b) (c) 

  
(d) (e) 

 Figure 6. Snapshots of PMMA in sc-CO2 (green) at 333 K and 25 MPa: 0 ns (a,b), 2 ns (c), 5 ns (d)
and 10 ns (e). The solvent molecules have been deleted from figures (b–e) for clarity to highlight
polymer swelling.

We have calculated the density of CO2 and PMMA in x, y, and z directions for each nanosecond
(Figure 7).

Figure 7a shows dependences ρx(r), ρy(r), and ρz(r) after 2, 3, 4, 5, and 10 ns. Figure 7b,c show
the density profiles of PMMA versus time during polymer swelling in sc-CO2. As we can see, in the
first four nanoseconds after the beginning of the simulation, more dramatic changes in the PMMA
structure are observed. The CO2 molecules gradually diffuse into the polymer and the difference in the
solvent density at the edges of the box (i.e., outside the polymer) and closer to the center of the box
(i.e., in the area where the polymer is located) decreases. The density profiles of PMMA become wider
and lower (Figure 7b,c), meaning the polymer adsorbs the solvent molecules and swells.

The ability of polymers to swell is characterized by the degree of swelling (α), which is defined as
the amount of solvent absorbed by the polymer, per unit mass or volume of the polymer:

α =
m−m0

m0
=

(m0 + mads) −m0

m0
=

mads
m0

(4)

α =
V −V0

V0
(5)
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where m0 and V0 are the mass and volume of the original polymer, respectively; m and V are,
respectively, the mass and volume of the swollen polymer, and mads is the mass of the solvent adsorbed
by the polymer. We try to estimate the degree of PMMA swelling by using the first method, namely,
focusing on the mass. The calculation was carried out as follows: the mass of carbon dioxide molecules,
located at a distance of 0.5 nm from any PMMA atom was calculated at the initial time (m0(CO2)) and
every ns (mt(CO2)). Then we found the change in the mass of carbon dioxide near PMMA, compared to
the initial value: mads(CO2) = mt(CO2)–m0(CO2), i.e., the mass of the solvent adsorbed by the polymer,
and then used Equation (4).Materials 2019, 12, x FOR PEER REVIEW 10 of 18 
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Figure 7. Time dependences of CO2 density in simulation boxes in x, y, and z directions at 333 K and
25 MPa (a), PMMA densities in x, y, and z directions at the beginning and at the end of the simulation
at P = 10–25 MPa and 333 K (b), 353 K (c).

Limited swelling occurs over a long time and is determined by the rate of diffusion of the solvent
molecules into the polymer. In the simplest case, the swelling process proceeds as a first-order reaction,
therefore the swelling rate is equal to:

dα
dt

= k(αmax − α) (6)

where k is the swelling rate constant, αmax is the maximum degree of swelling.
Thus, the swelling kinetics Equation has the following form:

αt = αmax(1− e−kt) (7)

Using Equation (7), the degree of PMMA swelling obtained from MD by means of Equation (4)
was described as a function of time (Figure 8). The standard deviation was about 0.99. Table 5 shows
the coefficients of the swelling equation for all of the systems.
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Table 5. The rate (αmax - the maximum degree of swelling, k - the swelling rate constant) of swelling
from Equation (7) for all thermodynamic points. The numbers after ± denote the standard deviation.

T, K P, MPa αmax k

333

10 1.27 ± 0.02 0.28 ± 0.01
15 1.39 ± 0.05 0.21 ± 0.02
20 1.23 ± 0.04 0.27 ± 0.02
25 1.23 ± 0.02 0.33 ± 0.02

353

10 1.15 ± 0.02 0.42 ± 0.03
15 1.13 ± 0.01 0.42 ± 0.01
20 1.13 ± 0.01 0.47 ± 0.02
25 1.23 ± 0.01 0.47 ± 0.02

Certainly, the maximum degree of PMMA swelling in sc-CO2obtained from MD simulations is
significantly different from the experimental results. For example, in reference [64–66] it has been
shown that the equilibrium degree of swelling of PMMA in sc-CO2 can be as high as 20 wt %, and
the authors of reference [26] obtained a volume degree of PMMA swelling of 32 ± 6% at 323K and
12.5 MPa and 37 ± 5% at 311 K and 12.5 MPa. In the recent work of R. Li et al. [24] the swelling ratio,
which is defined as the ratio of the volume change under isobaric conditions during the swelling with
the initial volume of the polymer sample at ambient temperatures, was found to be 0.8654 at 353 K
and 10 MPa and the highest value of the swelling ratio 1.1910 was achieved at 363 K and 12 MPa.
Such discrepancies between the MD and the experiment are the result of differences in the sample
molecular weight and size: in reference [26] the molecular weight of PMMA was MW = 4098 kDa,
in reference [24] the average molecular weight was 500 kDa, while in the MD simulations it was a few
orders of magnitude lower than in the experiments, MW = 10 kDa. Based on the analysis of the data
presented in Table 5, it can be concluded that temperature has a positive effect on the PMMA swelling
rate, but has a negative effect on the maximum swelling degree of the polymer, which is probably more
highly influenced by the density of the solvent rather than by the temperature or pressure. Based on
experimental study of swelling and impregnation process of PMMA in supercritical CO2, the authors
of reference [67] have concluded that volume expansion of PMMA increases with increase in pressure
and decreases with increases in temperature. Moreover, the effects of pressure and temperature on the
extent of volume increase were directly related to the increase in solvent density.

The addition of a PMMA sample to sc-CO2 decreases the diffusion of the CO2 molecules compared
to the pure fluid, which indicates that carbon dioxide actively interacts with the PMMA functional
groups (Table 6). These data clearly show that the diffusion coefficients of the CO2 molecules which are
located inside the PMMA sample near the ester groups are 1.5–2 times lower than the system averaged
diffusion coefficients of the CO2 molecules, and even up to 8 times lower than in bulk supercritical
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carbon dioxide. Among other things, the latter fact demonstrates the polymer thickening ability
in relation to the solvent. One can see that while in the pure supercritical carbon dioxide, the CO2

diffusion coefficients are strongly dependent on the pressure (or, in other words, on the solvent density)
and vary from ≈23 × 10−5 cm2/s to ≈111 × 10−5 cm2/s, in the mixture with the polymer, the diffusion
coefficients values of the solvent molecules vary around one order (10–14) × 10−5 cm2/s. CO2 diffusion
inside PMMA does not almost depend on temperature and pressure and DCO2 values vary from
≈6 × 10−5 cm2/s to ≈7 × 10−5 cm2/s. The latter may indicate that internal structure of PMMA samples
(for example, size of cavities where CO2 molecules are located) is similar. Through analysis of the
movement of optical boundaries and the kinetics of swelling, the diffusion coefficients of CO2 in the
PMMA were calculated by Gallyamov M. O. and colleagues [26]. For instance, they found that at 311 K
and 15 MPa, the diffusion coefficients of CO2 obtained with using optical technique and from volume
swelling kinetics are equal at (0.20 ± 0.03) × 10−5 cm2/s and (0.07 ± 0.03) × 10−5 cm2/s, respectively.
Taking into account the differences in the temperature and the sample size in the experiment and
our simulations, we can conclude that the diffusion coefficients from MD simulations are consistent
with the experimental data. Gallyamov M. O. and colleagues [26] also noted that as the temperature
increased from 311 K to 338 K, the diffusion coefficient in PMMA increased by 20%–40%. In our case
when the temperature increased from 333 K to 353 K, the diffusion coefficient in PMMA-CO2 system
also increased by 20%–27% depending on the pressure.

Table 6. Diffusion coefficient of CO2 inside PMMA, in the PMMA-CO2 system, and in pure sc-CO2.

T, K P, MPa DCO2 (inside PMMA),
10−5 cm2/s

DCO2 (in PMMA-CO2
system), 10−5 cm2/s

DCO2 (in pure
CO2), 10−5 cm2/s

333 10 7.0 ± 2.1 11.5 ± 0.1 76 ± 3
333 15 6.4 ± 0.6 11.1 ± 0.3 31 ± 2
333 20 6.2 ± 0.2 10.81 ± 0.04 23.5 ± 0.8
333 25 6.4 ± 0.2 10.3 ± 0.1 23 ± 1
353 10 7.2 ± 0.9 14.66 ± 0.01 111 ± 9
353 15 6.8 ± 0.5 13.93 ± 0.07 52 ± 2
353 20 7.2 ± 1.0 13.3 ± 0.2 32.3 ± 0.4
353 25 6.2 ± 0.3 12.4 ± 0.1 26.2 ± 0.7

The radial distribution functions (RDFs) between the PMMA and CO2 atoms were obtained by
averaging over the last 2 ns of the trajectory. Figure 9a illustrates the RDFs g (r) (C1-CCO2, C2-CCO2,
C3-OCO2, C4-CCO2, C4-OCO2, C5-CCO2, C5-OCO2, O1-CCO2, O2-CCO2, H1,2- OCO2, H3,4,5- OCO2, and
H6,7,8- OCO2) for the polymer in sc-CO2 at 333 K and 25 MPa. The RDFs for the other states behave in
the same way and Figure 9b presents only the most pronounced RDFs, namely, C5-OCO2, O2-CCO2,
and H6,7,8- OCO2 for all the thermodynamic points.
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As clearly shown at Figure 9a, in the range of r < 0.5 nm, peaks on the RDFs
carbon(PMMA)-oxygen(CO2)/carbon(CO2) are well distinguished. These peaks determine the
arrangement of solvent molecules around the polymer. The most pronounced and highest peaks on the
RDFs C5-CCO2, C5-OCO2, O2-CCO2, and H6,7,8-OCO2 compared to each other allow us to conclude that
the ester groups of the polymer are more solvated by carbon dioxide than the methyl groups (including
C3, H3, H4, H5 atoms), as well as the carbon and hydrogen atoms of the chain (C1, C2, H1, H2). In the
literature [68], it has been found that there are specific interactions between CO2 and PMMA which
are most probably of a Lewis acid-base nature. However, the strength of such a specific interaction
is very weak. Actually the first peak on the O2-CCO2 RDF from 0.3 to 0.5 nm could be attributed to
electron donor-acceptor (EDA) interactions because the maximum is located around 0.35 nm and is
within the geometric criterion (0.26 ≤ RC–O ≤ 0.43 nm) for EDA interactions used by Xu W. et al. and
Saharay M. et al. [69,70]. For the O1-CCO2 RDF, the first peak is wider and shifted to 0.5 nm and the
small shoulder located in the range 0.3–0.43 nm indicates low probability of O1 atom participation in
the EDA interactions with the CO2 molecules.

For a more accurate description of the intermolecular interaction between CO2 and PMMA,
we carried out an ab initio Car-Parrinello molecular dynamics simulation of a PMMA fragment
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consisting of 3 monomer units surrounded by 58 CO2 molecules. Figure 10 illustrates the mutual
arrangement of two CO2 molecules interacting with the polymer fragment at the end of the simulation.
Visual inspection of the CPMD trajectory shows that such a triple complex existed for ≈120 fs. It is
interesting to note that the main distances between the atoms of PMMA and CO2 are in agreement with
the positions of the peaks on the respective RDFs obtained by classical MD. In Figure 10, one can see
that the carbon dioxide molecules are oriented in such a way that they can interact with the hydrogen
atoms of the PMMA methyl groups. Previously, P. Raveendran and S. L. Wallen [71] investigated
the role of cooperative C-H· · ·O hydrogen bonds (HBs) as a stabilization factor in addition to the
EDA interactions between CO2 and carbonyl group by using ab initio calculations at the second-order
Møller-Plesset (MP2) [72,73] level. Despite the fact that the C-H· · ·O hydrogen bonds (HBs) are very
weak, they may have an important stabilizing effect. Assuming that the interaction between the PMMA
O atoms and the CO2C atoms is the only EDA type, it can be expected that two C=O bond lengths of
CO2 should be identical. However, the asymmetry of the C = O bonds in the CO2 molecules (1.15 Å
and 1.19 Å, 1.17 Å and 1.20 Å for two CO2 molecules, respectively) and, in addition, the shortening of
the C-H bonds participating in the HBs (1.09 Å) compared with “free” C-H (1.14-1.16Å) allow us to
suppose that there is interaction like an HB. Moreover, the distance between C of the methyl groups
and O of CO2 is less than the upper limit (0.4 nm) for C-H· · ·O hydrogen bonding [74]. On the classical
RDFs C5-OCO2, and H6,7,8-OCO2, the peaks are located at 0.35 and 0.28 nm, respectively, which is also
within the geometric criterion of weak C-H· · ·O HB.
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spheres denote the oxygen atoms, the gray ones represent the hydrogen atoms, the cyan ones represent
the carbon atoms).

For PMMA, the research of J. R. Fried and W. Li [75] indicated that there are weak dipole-dipole
interactions between the ester moieties in PMMA. Also, they demonstrated that carbon dioxide is
capable of overcoming the internal interactions of the carbonyl groups. Our findings concerning
specific interactions between CO2 and PMMA confirm that they are responsible for the observed
plasticization of the polymer.

4. Conclusions

The simulations performed on bulk PMMA at atmospheric pressure have been used to validate the
model and the force field employed in the classical molecular dynamics simulations. The simulations
were able to satisfactorily reproduce PMMA’s experimental density, glass transition temperature and
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coefficient of thermal expansion. An equilibrated PMMA sample was then placed in a sc-CO2 medium
in different thermodynamic states. In comparison with bulk PMMA, we observed an increase in the
end-to-end distance and radius of gyration, following PMMA swelling in sc-CO2. Moreover, in the
sc-CO2 medium, the chains mobility and the distance between them were significantly increased. The
kinetics of polymer swelling has also been studied. The results have shown that the PMMA swelling
degree is overestimated compared to the experimental values due to the limitations inherent in MD
simulations, which are related to the size of the polymer sample. Nevertheless, the present calculations
demonstrate that the combined use of the classical and ab initio MD provides a good way to better
understand the intermolecular interactions in the polymer/fluid system. In particular, the PMMA
intermolecular interactions with the solvent molecules are not only of the electron donor-acceptor type
but also weak C-H· · ·O hydrogen bonds. The results of MD indicate that sc-CO2 could be a desirable
swelling agent in the impregnation of PMMA with additives and, therefore, we will make the molecular
mechanism of the diffusion of small organic molecules into the polymer matrix in supercritical media
the subject of further publications.
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