

Electrophoretic Deposition of WS₂ Flakes on Nanoholes Arrays—Role of Used Suspension Medium

Dario Mosconi¹, Giorgia Giovannini², Nicolò Maccaferri³, Michele Serri⁴, Stefano Agnoli¹ and Denis Garoli^{4,*}

- ¹ Dipartimento di Chimica, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
- ² EMPA Federal Swiss research Institute, 9014 St. Gallen, Switzerland
- ³ Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
- ⁴ Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- * Correspondence: denis.garoli@iit.it;

Detailed XPS Analysis

Commercial 2H-WS₂ (before exfoliation)

Commercial WS₂ from Sigma-Aldrich was analyzed in order to get the reference for hexagonal 2Hphase BE and FWHM values, both for W 4f and S 2p lines. Moreover, since the surface oxidation due to air exposure generates WO₃, the values for this species was used as reference too.

Figure S1. W 4f (left) and S 2p (right) core levels of commercial WS2.

 $\label{eq:stable_stab$

W 4f			S 2p		
Species	BE (eV)	% at.	Species	BE (eV)	% at.
$2H-WS_2$	32.3	93.8	$2H-WS_2$	162.1	92.1
WO ₃	35.7	6.2	SOx	168.8	7.9

Pristine 1T-WS₂

Figure S2. W 4f (left) and S 2p (right) core levels of Pristine 1T-WS₂.

W 4f			S 2p			
Species	BE (eV)	% at.	Species	BE (eV)	% at.	
1T-WS ₂	31.5	74.2	1T-WS ₂	161.4	82.8	
$2H-WS_2$	32.3	15.5	$2H-WS_2$	162.1	17.2	
$W^V S_x O_y$	34.9	5.0	SOx	-	-	
WO ₃	35.7	5.3				

Figure S3. W 4f (left) and S 2p (right) core levels of 1T-WS₂ deposited from B-1.

Table S3. Multipeak analysis of W 4f and S 2p photoemission lines for 1T-WS₂ deposited from B-1.

W 4f			S 2p			
Species	BE (eV)	% at.	Species	BE (eV)	% at.	
$1T$ -WS $_2$	31.5	69.2	1T-WS ₂	161.5	80.8	
$2H-WS_2$	32.3	16.3	2H-WS ₂	162.1	19.2	
$W^V S_x O_y$	34.8	9.2	SOx	-	-	
WO ₃	35.7	5.3				

1T-WS₂ deposited from MES 10 mM - pH 3

The presence of SO_x in S 2p line can be associated with adsorbed MES molecules.

Figure S4. W 4f (left) and S 2p (right) core levels of 1T-WS₂ deposited from MES 10 mM - pH 3.

Table S4. Multipeak analysis of W 4f and S 2p photoemission lines for 1T-WS₂ deposited from MES 10 mM - pH 3.

W 4f			S 2p		
Species	BE (eV)	% at.	Species	BE (eV)	% at.
1T-WS ₂	31.6	19.2	$1T$ -WS $_2$	161.5	64.1
$2H-WS_2$	32.4	7.4	$2H-WS_2$	162.1	24.6
$W^{v}S_{x}O_{y}$	34.8	65.3	SOx	168.4	11.3
WO ₃	35.7	8.1			

 $1T\text{-}WS_2$ deposited from MES 10 mM – pH 5

Figure S5. W 4f (left) and S 2p (right) core levels of 1T-WS₂ deposited from MES 10 mM - pH 5.

Table S5. Multipeak analysis of W 4f and S 2p photoemission lines for 1T-WS2 deposited from MES10 mM - pH 5.

W 4f			S 2p		
Species	BE (eV)	% at.	Species	BE (eV)	% at.
1T-WS ₂	31.6	54.7	1T-WS ₂	161.6	77.3
2H-WS ₂	32.4	10.6	2H-WS₂	162.1	15.0
$W^{V}S_{x}O_{y}$	34.7	22.7	SO _x	167.2	7.7
WO3	35.7	12.0			

$1T\text{-}WS_2$ deposited from MES 10 mM - pH 7

Figure S6. W 4f (left) and S 2p (right) core levels of 1T-WS₂ deposited from MES 10 mM - pH 7.

Table S6. Multipeak analysis of W 4f and S 2p photoemission lines for 1T-WS2 deposited from ME	5
10 mM - pH 7.	

W 4f			S 2p			
Species	BE (eV)	% at.	Species	BE (eV)	% at.	
1T-WS ₂	31.6	57.7	1T-WS ₂	161.5	71.6	
$2H-WS_2$	32.4	10.8	2H-WS ₂	162.1	13.5	
$W^{v}S_{x}O_{y}$	34.8	23.2	SOx	168.0	14.9	
WO ₃	35.7	8.3				

1T-WS₂ deposited from MES 10 mM – pH 8

In this sample the SO_x band is particularly intense: due to basic pH, sulfonic acid is mainly in the deprotonated form, that may favor the adsorption on WS₂ sheets.

Figure S7. W 4f (left) and S 2p (right) core levels of 1T-WS₂ deposited from MES 10 mM – pH 8.

Table S7. Multipeak analysis of W 4f and S 2p photoemission lines for 1T-WS₂ deposited from MES 10 mM – pH 8.

W 4f			S 2p			
Species	BE (eV)	% at.	Species	BE (eV)	% at.	
1T-WS ₂	31.5	45.0	$1T$ -WS $_2$	161.5	59.3	
$2H-WS_2$	32.3	8.3	$2H-WS_2$	162.1	10.9	
$W^{V}S_{x}O_{y}$	34.9	30.6	SOx	168.2	29.8	
WO ₃	35.7	16.1				

1T-WS₂ deposited from PBS 10 mM – pH 7.4

Figure S8. W 4f (left) and S 2p (right) core levels of 1T-WS₂ deposited from PBS 10 mM – pH 7.4.

Table S8. Multipeak analysis of W 4f and S 2p photoemission lines for 1T-WS₂ deposited from PBS 10 mM – pH 7.4.

W 4f			S 2p			
Species	BE (eV)	% at.	Species	BE (eV)	% at.	
1T-WS ₂	31.6	66.9	$1T$ -WS $_2$	161.6	84.3	
$2H-WS_2$	32.4	9.2	$2H-WS_2$	162.1	15.7	
$W^V S_x O_y$	34.9	12.5	SOx	-	-	
WO ₃	35.7	11.4				

1T-WS₂ deposited from PBS 1 mM – pH 7.4

Figure S9. W 4f (left) and S 2p (right) core levels of 1T-WS₂ deposited from PBS 1 mM – pH 7.4.

Table S9. Multipeak analysis of W 4f and S 2p photoemission lines for 1T-WS₂ deposited from PBS 1 mM – pH 7.4.

W 4f			S 2p			
Species	BE (eV)	% at.	Species	BE (eV)	% at.	
1T-WS ₂	31.6	44.1	$1T$ -WS $_2$	161.5	75.7	
2 <i>H</i> -WS ₂	32.4	9.4	$2H-WS_2$	162.1	16.2	
$W^{v}S_{x}O_{y}$	34.8	35.4	SOx	168.0	8.1	
WO ₃	35.7	11.1				

1T-WS₂ deposited from PBS 0.1 mM – pH 7.4

Figure S10. W 4f (left) and S 2p (right) core levels of 1T-WS₂ deposited from PBS 0.1 mM – pH 7.4.

Table S10. Multipeak analysis of W 4f and S 2p photoemission lines for 1T-WS₂ deposited from PBS 0.1 mM – pH 7.4.

W 4f			S 2p		
Species	BE (eV)	% at.	Species	BE (eV)	% at.
$1T-WS_2$	31.6	53.6	$1T$ -WS $_2$	161.5	85.1
$2H-WS_2$	32.4	9.4	$2H-WS_2$	162.1	14.9
$W^{V}S_{x}O_{y}$	34.9	24.5	SOx	-	-
WO ₃	35.7	12.4			