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Abstract: The purpose of this study was to characterize the surface roughness, the microstructure, and
mechanical properties of four prefabricated zirconia pediatric crowns. Ten prefabricated crowns from
four different manufacturers (Cheng Crowns Zirconia), (EZCrowns), (NuSmile ZR), and (Zirconia
Pediatric Crowns) were included in this study. The surface roughness parameters (Sa, Sq, Sz, Sc, and Sv)
of all samples were studied by optical profilometry and then the microstructure was studied by Raman
spectroscopy. Then, all samples were embedded in epoxy resin and after metallographic polishing,
the Martens hardness (HM), indentation modulus (EIT), elastic index (ηIT), Vickers hardness (HV),
and fracture toughness (KIC) were identified by the Instrumented Indentation Testing (IIT). All data
were statistically analyzed by a one-way ANOVA and a Tukey multiple comparison test at α = 0.05.
Only the tetragonal phase of zirconia for all materials tested was identified after Raman analysis.
However, statistically significant differences were found among the surface roughness parameters,
HV and KIC, while no differences were allocated for HM, EIT, and ηIT. Although the materials tested
shared a similar microstructure, significant differences in surface roughness parameters HV and KIC

were identified and, thus, differences in their clinical performance were anticipated.
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1. Introduction

Early Childhood Caries (ECC) represents the most prevalent childhood chronic disease [1,2] and
is one of the leading causes of premature deciduous tooth loss [3]. The debilitating effects of tooth
decay with regards to masticatory and speech function, as well as the deterioration of arch dimension
stability, aesthetics, and quality of life, emphasizes the importance of effective treatment [4]. Besides
the common restorative materials, like composite resins and amalgam, prefabricated pediatric crowns
represent one treatment modality for extensive-multiface deciduous tooth carious lesions that cannot
be treated with the former solutions [5].

Pediatric crowns should be able to withstand masticatory forces, show biocompatibility, facilitate
oral hygiene [6], present high bonding strength, and not cause damage to the antagonist teeth.
In addition, a high demand of aesthetics has been demonstrated to be one of the most critical
issue in pediatric patients [7] and this has led manufacturers and clinicians to partially replace
stainless steel crowns (SSC) by the recently introduced aesthetic ceramic ones [8]. Zirconia pediatric
crowns (ZC) are considered to be a first choice in deciduous tooth restoration, which combines high
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strength, superior biocompatibility [8–10], improved wear resistance, and color stability, in contrast
to the polycarbonate and composite or epoxy resin and thermoplastic pre-veneered stainless steel
crowns [11–13]. The adoption of prefabricated zirconia crowns is considered to be a promising
alternative in the restoration of primary teeth, combining clinically acceptable restorations [14,15] and
fulfilling aesthetics demands [15]. A recently published clinical study has found out that zirconia
crowns provide better gingival health and less plaque accumulation, compared to SSC ones [16].

However, the implementation of prefabricated zirconia crowns is not free of limitations and
drawbacks. The latter might require a greater amount of tooth reduction [17,18], whereas, their
increased hardness might lead to tooth wear of the antagonist teeth [13]. Finally, bond strength
and surface alteration still constitutes a challenge [19,20]. Furthermore, Zirconia is a polymorphic
material which requires the presence of stabilizers, like yttrium and magnesium oxide, to prevent
tetragonal/cubic phases to swing to the monoclinic one at room temperature, characterized by inferior
mechanical properties [21]. Even small deviations of the amount, as well as the type of phase stabilizer,
might have definite effects on phase consistency-crystal structure and consequently on mechanical,
thermal, and electrical properties [21,22]. In addition, manufacturing processes might further affect
the material structure and surface characteristics by introducing cracks, modulating roughness, and
determining the grain size [22], which in turn influence crown compressive strength, fracture toughness,
hardness, aesthetics, plaque retention, and bonding strength. Consequently, zirconia-made pediatric
crowns differing in chemical synthesis-microstructure and production method parameters might show
a wide range of mechanical properties and inevitably an altered clinical behavior. Recently published
studies identified differences in microleakage [23] surface roughness parameters [24], and fracture
resistance [25] among different brands of prefabricated zirconia crowns.

Therefore, the aim of this study was to compare the surface roughness, microstructure, and
mechanical properties of zirconia-made pediatric crowns from four different manufacturers. The null
hypothesis set was that all materials share equal surface roughness characteristic, microstructure, and
mechanical properties.

2. Materials and Methods

2.1. Materials

Forty prefabricated molar crowns from four different manufacturers were included in this study.
The brand names, the manufacturer, and the code of materials tested are presented in Table 1.

Table 1. Brand name, manufacturer, and code of all materials tested (n = 10).

Brand Name Manufacturer Code

Cheng Crowns Zirconia Cheng Crowns Exton, PA, USA CCZ
EZCrowns Sprig Suite L Loomis, CA, USA EZC

NuSmile ZR NuSmile, Houston, TX, USA NUS
Zirconia Pediatric Crowns Kinder Krowns, St Louis Park,

MN, USA
ZPC

2.2. Optical Profilometry

The surface analyses were done with optical profilometry. The surface roughness of each group
(IE, SB, AE, and SBAE) was examined at 5 regions per specimen with an optical interferometric
profiler (Wyko NT1100; Veeco, Tucson, Ariz) operated under the following conditions: Mirau 20-times
objective lens, vertical scanning mode, 15-µm vertical scan length, 231.1 × 303.8 µm analysis area and
tilt corrections with 0.1-nm (z-axis) and 0.2-µm (x-axis and y-axis) resolutions. The surface roughness
parameters measured were the amplitude parameters Sa (arithmetic mean deviation), Sq (root mean
square roughness), and Sz (the maximum height of the surface), and two functional parameters Sc
(core void volume) and Sv (surface void volume). The former indicated the volume (e.g., of a fluid
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filling the core) that the surface would support for 10%–80% of the bearing ratio and the latter from
80% to 100% of the bearing ratio.

2.3. Raman Microscopy

After optical profilometry, one Raman spectrum was acquired from the occlusal region of all tested
crowns. The crowns were placed on the stage of a microscope (LEICA BME, Leica microsystems Ltd.,
Heerbrugg, Switzerland) and the region of interest were determined by employing optical lens at 10×
nominal magnification. The Raman probe was attached to the microscope employing a special device
(MicroViewer-785, Raman Microscope Adaptor, TSI Inc, Shoreview, MN, USA). The spectra were
acquired with EZ Raman-I, (High sensitivity portable Raman analyzer, TSI Inc, Shoreview, MN, USA)
equipped with a Laser (Soliton, Laser Und Messtechnik, Gliching, Germany) operating at 450 mW
output power, emitted wavelength 785 nm, and nominal resolution 4.5–6.5 cm−1.

2.4. Instrumented Indentation Testing (IIT) and Fracture Toughness

All crowns were embedded in the epoxy resin and subjected to metallographic grinding under
continuous water cooling, until the circumferential of cervical region was exposed completely. Then,
the samples were polished with 6, 3, and 1 µm diamond pastes (DP, Struers, Bellarup, Denmark).
Both grinding and polishing were carried out in a grinding/polishing machine (Dap V, Struers). Then,
the mechanical properties of all groups were identified by employing instrumented indentation testing
(IIT), according to ISO 14577-2002 [26].

The mechanical properties tested were Martens Hardness (HM), indentation modulus (EIT), elastic
index (ηIT), Vickers Hardness (HV), and fracture toughness (KIC). The first three properties were
determined according the formulas provided by the ISO 14577-2002. HV and KIC were determined by
measuring the diagonal of impression and the cracks, with the coupled optical measuring microscope
at 20× nominal magnification. The optical microscope was mounted in a displacement unit designed
to allow lenses and loading unit to exchange positions, and thus, specimen did not need to be relocated
for optical measurements. HV was calculated directly by the software, while KIC was calculated
according to the Lankford formula [27]:

KIC = 0.0782×
(
HV × a0.5

)
× (

E
HV

)
0.4
× (

c
a
)
−1.56

where HV is Vickers Hardness (GPa), E stands for Young’s modulus (GPa), a is the half diagonal length
of the indentation (m), and c is the crack length from the center of the indentation to the crack tip (m).

2.5. Statistical Analysis

The results of surface roughness parameters (Sa, Sq, Sz, Sc, and Sv) and the mechanical properties
(HM, EIT, ηIT, HV and KIC) were statistically analyzed by one-way ANOVA, by employing the brand
as the discriminating variable. The significant differences among groups were identified by the Tukey
multiple comparison test at α = 0.05. The normality and homoscedasticity of all data were initially
checked by the Kolmogorov–Smirnov test and the equal test variance, respectively.

3. Results

3.1. Optical Profilometry

Figure 1 demonstrates representative 3D profilometric images from the occlusal surfaces of all
materials tested. All surfaces illustrated the presence of parallel striations. The results for surface
roughness parameters and statistical outcome are presented in Table 2. For all amplitude parameters
(Sa, Sq, Sz) the CCZ showed significantly higher values, compared to EZC. For both functional
parameters (Sc and Sv), the CCZ depicted significant differences compared to EZC and ZPC.
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NUS 1.7 (0.5)ab 2.2(0.7)ab 11.3(2.6)ab 2.2 (0.7)ab 265 (50)ab 

ZPC 1.6 (1.0)ab 1.9 (1.2)ab 9.6(6.2)ab 1.7 (0.8)b 188 (53)b 

Same superscripts connect mean values without statistical significant differences. 
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Figure 2 demonstrates the representative Raman spectra from all tested materials. All materials 
showed identical Raman spectra. The characteristic peaks at 145, 260, 321, 465, 608, and 642 belonged 
to the tetragonal zirconia phase. 

Figure 1. Representative 3D-optical profilometric images from all tested groups: (A) CCZ, (B) EZC, (C)
NUS, and (D) ZPC. All surfaces demonstrate parallel striations and machining tracks. Please note the
differences in scales.

Table 2. Mean values and standard deviations in parentheses along with the statistical outcome of all
tested groups.

Group Sa (µm) Sq (µm) Sz (µm) Sc (µm3/µm2) Sv (nm3/nm2)

CCZ 2.7 (0.7) a 3.4 (1.0) a 18.7 (6.5) a 3.1 (0.6) a 563 (184) a

EZC 1.1 (0.2) b 1.4 (0.3) b 8.2 (1.4) b 1.3 (0.1) b 265 (62) b

NUS 1.7 (0.5) ab 2.2 (0.7) ab 11.3 (2.6) ab 2.2 (0.7) ab 265 (50) ab

ZPC 1.6 (1.0) ab 1.9 (1.2) ab 9.6 (6.2) ab 1.7 (0.8) b 188 (53) b

Same superscripts connect mean values without statistical significant differences.

3.2. Raman Microscopy

Figure 2 demonstrates the representative Raman spectra from all tested materials. All materials
showed identical Raman spectra. The characteristic peaks at 145, 260, 321, 465, 608, and 642 belonged
to the tetragonal zirconia phase.Materials 2019, 12, x FOR PEER REVIEW 5 of 9 
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3.3. Instrumented Indentation Testing (IIT) and Fracture Toughness

In Figure 3, representative force indentation depth curves of the loading/unloading cycle from
all tested materials are depicted. Table 3 demonstrates the mechanical properties (HM, EIT, ηIT, HV,
and KIC) of the tested materials. Significant differences were allocated only for HV and KIC with NUS
and ZNP showing significantly lower HV compared to the other two materials and EZC demonstrating
significantly lower KIC, compared to the rest of the materials.
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Figure 3. (A) Representative force indentation depth curves of the loading/unloading cycle from all
tested materials. (B) Representative image of the Vickers impression from the surface of all tested
materials. All cracks originated from the four corners of the Vickers impression. a—the half diagonal;
and c—the distance from the center of the impression to the tip of the crack (bar: 50 µm).

Table 3. Mean values and standard deviations (in parentheses) of the tested mechanical properties.

Material HM (N/mm2) EIT (GPa) nIT (%) HV5 KIC (MPa m1/2)

CCZ 6653 (635) a 123.1 (15.7) a 52.0 (4.5) a 1365 (20) a 6.1 (0.3) a

EZC 6390 (584) a 118.1 (12.4) a 54.4 (1.6) a 1347 (12) a 4.7 (0.3) b

NUS 6142 (430) a 114.3 (13.9) a 54.9 (5.3) a 1305 (18) b 8.0 (1.8) a

ZPC 6318 (402) a 114.2 (13.7) a 53.3 (2.9) a 1325 (14) b 6.0 (0.5) a

Same superscripts connects mean values without statistical significant differences (p > 0.05).

4. Discussion

Based on the results of this study the null hypothesis was rejected, as significant differences were
identified among zirconia crowns in surface roughness parameters and the tested mechanical properties.

Contrary to Ra, which is measured over a line, Sa is a two dimensional measurement and thus
the results of surface roughness parameters are not directly comparable with previously published
data, especially among surfaces with varying textures such as zirconia crowns with oriented parallel
striations. [24,28]. All crowns tested demonstrated these patterns (Figure 1) of oriented parallel striations,
which should be appended to milling of crowns from prefabricated zirconia blocks. The significantly
lower amplitude parameters (Sa, Sq, Sz) of EZC compared to CCZ might be appended to different
milling parameters during the manufacturing process. Generally, higher roughness increases the
enamel wear of opposite teeth and, thus, smoother surfaces are desirable [29]. In addition, EZC showed
the lowest core (Sc) and surface void (Sv) volume parameters, compared to CCZ, denoting that it is
less vulnerable to integuments retention and thus more resistance to discoloration during intraoral
ageing. However, clinical data are required to verify this approach.

Zirconia appears in three different crystallographic structures—the cubic (c), the tetragonal (t),
and the monoclinic phase (m). Although the (t) phase is stable above 1170 ◦C, it can be stabilized
at room temperature by the addition of 2~3% mole Yttrium oxide (Y2O3). The stabilization of (t)
phase at room temperatures, combines an array of favorable mechanical properties with a bending
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strength above 1000 MPa and a fracture toughness of about 6 MPa m1/2 [30], and it is commonly known
as the Yttria-stabilized Tetragonal Zirconia Polycrystal (Y-TZP). Raman spectroscopy is extensively
used in Y-TZP Zirconia characterization as (t) and (m) phases can be easily distinguished. All tested
materials showed identical spectra (Figure 2) with only the characteristic peaks of the (t) phase being
presented [31]. This strengthened the assumption that the tested zirconia crowns were made of typical
Y-TZP dental zirconia. In addition, as the monoclinic phase was not identified, it implied that the
materials used were not destabilized by the manufacturing or storage processes [32]. Although the
presence of the (c) phase was not expected in Y-TZP, its presence was hardly distinguished in the
Raman analysis, due to the fact that (t) and (c) share overlapping characteristic peaks [31].

No statistically significant differences were identified among the tested materials after IIT, denoting
that all materials shared equal HM, elastic modulus, and elastic index. There is no data for HM in
dental literature and thus no comparison could be made with previously published data. On the
contrary, the elastic modulus (EIT) was found to almost half the nominal value of zirconia (210 GPa) [33].
This inconsistency was a known complication in IIT, when non-stress-free sample were investigated.
It is well-known that samples with tensile residual stresses showed decreased elastic modulus, while
those with residual compressive stresses demonstrated a higher modulus [34]. Therefore, it might be
concluded that pediatric crowns are delivered with an unknown extent of residual stresses, which are
probably induced during the manufacturing processes. Elastic index is indicative of the brittleness of
the materials tested and according to the results, no differences were identified among the materials
tested for this property. Although both expressions of hardness (HM and HV) showed the same
classification of materials tested, only in Vickers was a significant difference noted, and this might
be assigned to the residual stresses which affect the elastic rebound around indentation, after force
removal. It is noteworthy that HM was automatically calculated by maximum force and penetration
depth during testing, while HV was evaluated after force removal and the final diagonal size and, thus,
effect such as creep, elastic rebound, perception of operator, and others also interfered [35]. However,
the measurement of HV was essential in this experiment for the evaluation of KIC. Vickers Hardness
were found to be close to previously published data 1367–1368 [36], and 1344–1379 [33] for Y-TZP
dental zirconia.

The most important clinical implication of HV is the wear imposed on the antagonist teeth as it is
considered that higher hardness of restorative materials results in more enamel wear [37]. The clinical
implications of these findings are two-fold. First, dentists should consider that primary teeth are more
prone to wear than permanent dentition and secondly that a permanent teeth might undergo extensive
wear from an antagonist temporarily restored by prefabricated pediatric zirconia crown. However the
enamel loss of primary teeth due to wear from a zirconia crown has not been reported yet and, therefore,
no clinical guidelines could be derived at this point. Therefore, based on the aforementioned approach,
NUS and ZPC with lower HV values were expected to perform better clinically. The estimation of KIC

with indentation methods has a long record with different approaches and mathematical formulas.
Although these formulas are divided on the basis of the Palmqvist or median cracks, a recent study has
pointed out that the Lankford formula which is used in both crack systems, yield values that are quite
similar to the values for Y-TZP zirconia found in literature, which was the rational for selecting the
Lankford formula in this study. [33]. Fracture toughness is indicative of the resistance of materials
to crack propagation and, thus, the clinical implication is that materials with lower KIC might be
more prone to cracking and chipping, especially at the thinner cervical regions of prefabricate zirconia
crowns. In a recent study, crowns made of zirconia were found to be more prone to fracture, compared
to those made by metallic alloys [38]. Therefore, EZC with significantly lower KIC might be more
vulnerable to crack initiation and propagation under in-service conditions.
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5. Conclusions

Raman, Vickers, and fracture toughness results showed that pediatric zirconia crowns are made of
Y-TZP zirconia. However, that prefabricated zirconia crowns showed significant differences in surface
roughness parameters, HV and KIC, and thus differences in their clinical performance are anticipated.
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