

Supplementary Materials



## Organic Solvent-Free Olefins and Alcohols (ep)oxidation Using Recoverable Catalysts Based on [PM<sub>12</sub>O<sub>40</sub>]<sup>3-</sup> (M= Mo or W) Ionically Grafted on Amino Functionalized Silica Nanobeads

Yun Wang <sup>1,2</sup>, Florence Gayet <sup>1,3</sup>, Pascal Guillo <sup>1,2</sup> and Dominique Agustin <sup>1,2,\*</sup>



Figure S1. Powder X-ray diffraction diagrams of SiO<sub>2</sub> (blue), SiO<sub>2</sub>@PW (orange) and SiO<sub>2</sub>@PMo (grey) particles.



**Figure S2.** Comparison of Powder X-ray diffractions of (**a**) H<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub> (orange) and **SiO<sub>2</sub>@PMo** (blue) and (**b**) H<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> (orange) and **SiO<sub>2</sub>@PW** (blue). The intensities of **SiO<sub>2</sub>@PMo** and **SiO<sub>2</sub>@PW** were magnified 10 times.



Figure S3. From up to down: Relevant IR vibration zones for SiO<sub>2</sub>, SiO<sub>2</sub>@NH<sub>2</sub>, SiO<sub>2</sub>@PW, SiO<sub>2</sub>@PMo.



Figure S4. Difference spectra (SiO<sub>2</sub>@NH<sub>2</sub>-SiO<sub>2</sub>) on specific ranges (in blue). The spectrum of APTES is indicated in orange.

|                                                           | SiO <sub>2</sub> | SiO2@NH2    | SiO2@PW     | SiO2@PMo    |  |  |  |
|-----------------------------------------------------------|------------------|-------------|-------------|-------------|--|--|--|
| <sup>1</sup> H MAS                                        |                  |             |             |             |  |  |  |
|                                                           | 3.4-             | 0.9         | 0.8         | 0.8         |  |  |  |
|                                                           | 5.8-             | 1.2         | 3.3         | 3.4         |  |  |  |
|                                                           |                  | 2.2         | 4.0         | 4.0         |  |  |  |
|                                                           |                  | 3.6         | 6.5         | 6.8         |  |  |  |
|                                                           |                  | 5.1         |             |             |  |  |  |
| <sup>13</sup> C CP MAS                                    |                  |             |             |             |  |  |  |
| CH <sub>2</sub> O                                         |                  | 60.4        | 59.9        | 59.9        |  |  |  |
| CH <sub>2</sub> O                                         |                  | 58.2        | 58.2        | 58.2        |  |  |  |
| CH <sub>2</sub> N                                         |                  | 50.9        | 50.8        | 50.9 (      |  |  |  |
| CH <sub>2</sub> N                                         |                  | 42.3        | 42.8        | 42.9        |  |  |  |
| CH <sub>2</sub>                                           |                  | 21.5        | 20.6        | 20.7        |  |  |  |
| CH <sub>3</sub>                                           |                  | 16.5        | 16.6        | 16.6        |  |  |  |
| CH <sub>2</sub> Si                                        |                  | 9.6         | 9.2         | 8.8         |  |  |  |
| <sup>29</sup> Si CP-MAS (deconvolution is in parenthesis) |                  |             |             |             |  |  |  |
| T2                                                        |                  | -62.1       | -58.3       | -58.6       |  |  |  |
| T3                                                        |                  | -67.7       | -67.9       | -68.2       |  |  |  |
| Q2                                                        | -93.3 (7)        | -92.8 (6)   | -93.0 (7)   | -93.0 (7)   |  |  |  |
| Q3                                                        | -101.9 (49)      | -102.0 (57) | -102.1 (67) | -102.1 (66) |  |  |  |
| Q4                                                        | -111.8 (44)      | -111.5 (37) | -111.7 (26) | -111.7 (27) |  |  |  |
| <sup>29</sup> Si MAS (deconvolution is in parenthesis)    |                  |             |             |             |  |  |  |
| Q2                                                        | -93.5 (4)        | -92.4 (7)   | -92.6 (9)   | -92.8 (9)   |  |  |  |
| Q3                                                        | -101.9 (32)      | -101.8 (37) | -101.9 (33) | -101.9 (27) |  |  |  |

| Q4                                                             | -111.8 (64) | -111.6 (56) | -111.7 (58)   | -111.6 (64)    |  |
|----------------------------------------------------------------|-------------|-------------|---------------|----------------|--|
| <sup>31</sup> P CP MAS (value of free POMs are in parenthesis) |             |             |               |                |  |
|                                                                |             |             | -12.8         | -1.5           |  |
|                                                                |             |             | (-15.8)       | (-4.3,-5.0)    |  |
| <sup>31</sup> P MAS (value of free POMs are in parenthesis)    |             |             |               |                |  |
|                                                                |             |             | -13.4         | -1.5,-4.7,-6.7 |  |
|                                                                |             |             | (-15.4,-15.8) | (-4.3)         |  |



Figure S5. <sup>13</sup>C MAS NMR spectra of SiO<sub>2</sub>@PW (up), SiO<sub>2</sub>@PMo (middle) and SiO<sub>2</sub>@NH<sub>2</sub> (down).



 $Figure \ S6. \ {}^{29}\!Si \ MAS \ NMR \ spectra \ of \ SiO_2 \ (a) \ SiO_2 @NH_2 \ (b), \ SiO_2 @PW \ (c) \ and \ SiO_2 @PMo \ (d).$ 



Materials 2019, 12, x; doi: FOR PEER REVIEW

www.mdpi.com/journal/materials



**Figure S7.** Evolution of CO ( $\triangle$ ) and COE ( $\blacktriangle$ ) with **SiO**<sub>2</sub>@**PW** (Run 1 (**a**), Run 2 (**b**) and Run 3 (**c**)) and **SiO**<sub>2</sub>@**PMo** (Run 1 (**d**), Run 2 (**e**) and Run 3 (**f**))



**Figure S8.** Evolution of CHO ( $\triangle$ ), CHD (×), CHol ( $\square$ ) and CHone (•) with **SiO**<sub>2</sub>@**PW** (Run 1 (**a**), Run 2 (**b**) and Run 3 (**c**)) and **SiO**<sub>2</sub>@**PMo** (Run 1 (**d**), Run 2 (**e**) and Run 3 (**f**))





**Figure S9.** (a) Evolution of *trans*-LO ( $\triangle$ ), *cis*-LO CHD ( $\blacktriangle$ ), eq-LD ( $\bigcirc$ ), ax-LD ( $\bigcirc$ ), C<sup>ol</sup> ( $\diamondsuit$ ) and C<sup>one</sup> ( $\blacklozenge$ ) with **SiO**<sub>2</sub>@**PW** (Run 1 (a), Run 2 (b) and Run 3 (c)) and **SiO**<sub>2</sub>@**PMo** (Run 1 (d), Run 2 (e) and Run 3 (f))



**Figure S10.** Conversion of CY<sup>ol</sup> ( $\Box$ ) and formation of CYone ( $\triangle$ ) with **SiO**<sub>2</sub>@**PW** (Run 1 (**a**), Run 2 (**b**) and Run 3 (**c**)) and **SiO**<sub>2</sub>@**PMo** (Run 1 (**d**), Run 2 (**e**) and Run 3 (**f**))