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Abstract: To investigate Lamb waves in thin films made of functionally graded viscoelastic material,
we deduce the governing equation with respect to the displacement component and solve these
partial differential equations with complex variable coefficients based on a power series method.
To solve the transcendental equations in the form of a series with complex coefficients, we propose
and optimize the minimum module approximation (MMA) method. The power series solution agrees
well with the exact analytical solution when the material varies along its thickness following the same
exponential function. When material parameters vary with thickness with the same function, the effect
of the gradient properties on the wave velocity is limited and that on the wave structure is obvious.
The influence of the gradient parameter on the dispersion property and the damping coefficient are
discussed. The results should provide nondestructive evaluation for viscoelastic material and the
MMA method is suggested for obtaining numerical results of the asymptotic solution for attenuated
waves, including waves in viscoelastic structures, piezoelectric semiconductor structures, and so on.

Keywords: Lamb wave; functionally graded viscoelastic material; minimum module approximation
method; damping coefficient

1. Introduction

Lamb waves, which are a type of plain strain wave in a thin film or a plate with a traction-free
boundary, are widely used in nondestructive evaluation. Early research reported on Lamb waves
focused on isotropic elastic plates [1]. Since then, scientists have directed more attention to Lamb waves
in plates made of various materials, including viscoelastic materials [2], functionally graded materials
(FGMs) [3], piezoelectric materials [4], and piezoelectric–piezomagnetic materials [5]. To detect material
properties or damage to the structures, much research has been focused on guided waves in composite
structures based on numerical and experimental methods [6,7].

FGMs were proposed by scientists as a kind of thermal-protection material in the 1990s [8].
In FGM structures, the material parameters are not constant and vary along one direction continuously.
With the development of material technology, the FGM technique has been used not only for
common elastic material but also for some smart materials, including piezoelectric [9,10] and
piezoelectric–piezomagnetic materials [11]. To evaluate the mechanical properties of FGM structures,
researchers have investigated various elastic waves in FGM structures, such as Lamb waves, horizontal
shear (SH) waves [12], Love waves [13], and Rayleigh waves [14].

To address wave propagation problems in heterogeneous media, both numerical and analytical
methods are employed for solving the wave-governing differential equations with variable coefficients.
The main idea of numerical methods is to divide the functionally graded material into multilayer
models and to simplify each sublayer as a homogenous layer [15–18]. Scientists have also proposed
some analytical solutions for wave propagation problems in different heterogeneous structures. These
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methods include exact analytical expressions for material parameters following the same exponential
function [19], the Wentzel–Kramers–Brillouin (WKB) method for large-wave-number [20] or cutoff

problems [21,22], and the special function method for material parameters following some special
function [23]. In recent decades, researchers suggested that these equations can be solved by using a
power series method [11,24] and a Legendre polynomial method [25,26], which are fit for solving the
wave propagation problem in heterogeneous structures in arbitrary cases in which material parameters
vary continuously and slowly. The form of the dispersion equations based on these two methods
contains series items. Therefore, these dispersion equations should be solved numerically.

It is found that not only elastic materials but also viscoelastic materials in nature have gradient
properties. For example, when a material undergoes subsurface aging or subsurface damage, the
elastic modulus varies along the thickness of the damaged subsurface region and mechanical gradient
characteristics appear [27]. This should also occur for viscoelastic materials. For the wave propagation
problem in viscoelastic structures, Lu et al. [28] found that the attenuation of Lamb waves increases
with the increase of the thickness of the viscoelastic layer and that the mode is transformed as well.
Compared with the propagation characteristics of Love waves in an elastic medium, the energy of Love
waves in a Kelvin–Voigt viscoelastic medium is obviously attenuated, as shown by Zhang et al. [29].
SH waves have one displacement component. Yu et al. [30] deduced the dispersion equations for SH
waves in orthotropic viscoelastic hollow cylinders. There are few studies on the propagation of Lamb
waves with two displacement components in viscoelastic complex structures, and most of them use
the Legendre polynomial method [31].

The dispersion equations for wave propagation in a viscoelastic material comprise a set of complex
coefficient transcendental equations. To solve the transcendental equations with complex variables,
Qian et al. [32] comprehensively analyzed the applicability of the parabolic Newton iteration method,
the binary dichotomy method, and the modulus value convergence method. However, when the
power series method is employed to solve the wave propagation problem in a functionally graded
viscoelastic material (FGVM) structure, the dispersion equation, which is a transcendental equation
with complex numbers in series form, is difficult to solve based on the above numerical simulation
method. For example, the Newton iteration method requires that the solution be in the form of a
display function rather than a series, while the binary dichotomy method and the modulus value
convergence method might lead to the existence of spurious solutions.

In this study, we investigate the dispersion and attenuation characteristics of Lamb wave
propagation in a thin film made of FGVM, which follows the Kelvin–Voigt model [33]. The governing
equations with a displacement function are deduced and the power series asymptotic solution is
obtained by using the power series method. Because the series has no explicit expression for the
function, we propose the minimum module approximation (MMA) method for solving the complex
coefficient dispersion equation. The detailed process of the MMA method, the existence analysis of
its solution, and its optimization are given. The reliability of the power series solution is verified by
comparison with the exact analytical solution for Lamb wave propagation in a functionally graded
viscoelastic film. The dispersion and attenuation characteristics of Lamb wave propagation under
different gradient parameters are discussed, and the damping coefficients are analyzed. Conclusions
based on these results can provide a theoretical basis for nonhomogeneous viscoelastic structure
nondestructive testing.

2. Basic Equation for Lamb Waves in FGVM Film

Consider Lamb waves propagating in an isotropic functionally graded viscoelastic film along the
x direction, as shown in Figure 1. The thickness of the film is h. The z direction is along the thickness
direction. Let u, v, and w represent the displacement in the x, y, and z directions, respectively. For
Lamb waves propagating is this structure, the displacement should satisfy:

u = u(x, z, t), v = 0, w = w(x, z, t) (1)
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Figure 1. Functionally graded viscoelastic film and coordinate system. 
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Figure 1. Functionally graded viscoelastic film and coordinate system.

If we let subscripts 1, 2, and 3 represent x, y, and z, respectively, then the stress tensor σi j,
i, j = 1− 3, can be divided into two parts: the deviation stress σi j and the spherical stress tensor σm,
where σm = σkk/3, k = 1− 3, and the repeated index in the subscript implies summation with respect
to that index.

In the Kelvin model, the constitutive equation can be expressed as:

σi j = 2GSi j + 2η
∂Si j

∂t
, σm = σkk/3 = KSkk (2)

where i, j, k, l = 1 − 3, Skl is the strain tensor, η represents the viscosity coefficient, G is the shear
modulus, and K is the bulk modulus.

Equation (2) can be rewritten as:

σi j = ci jklSkl + ci jkl
∂Skl
∂t

(3)

where ci jkl and ci jkl are components of the elastic tensor and viscosity tensor, respectively. In an FGVM,
both these elastic parameters as well as the mass density ρ are not constants but are functions of z.

The motion equations have the following form:

∂σx

∂x
+
∂σxz

∂z
= ρ

∂2u
∂t2 ,

∂σxz

∂x
+
∂σz

∂z
= ρ

∂2w
∂t2 (4)

The relation between the strain and the displacement deduced from Equation (1) is:

εx =
∂u
∂x

, εz =
∂w
∂z

, γxz =
∂u
∂z

+
∂w
∂x

, εy = γxy = γyz = 0 (5)

By using index reduction, the original fourth-order elastic parameters can be rewritten to
second-order elastic parameters. By substituting Equation (5) into the constitutive Equation (3), we
obtain the following component forms of the stress:

σx = c11
∂u
∂x + c13

∂w
∂z + c11

∂2u
∂x∂t + c13

∂2w
∂z∂t
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)
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(6)

where the parameters in isotropic materials satisfy c11 − c13 = 2c44 and c11 − c13 = 2c44.
Substitution of Equation (6) into Equation (4) leads to the following governing equations with

respect to the displacement components:
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∂2u
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∂3u
∂x2∂t + c13

∂3w
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)
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)
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dz
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dz
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2w
∂t2

(7)
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Lamb waves propagating in a functionally graded viscoelastic film must satisfy not only the
governing equations but also the traction-free conditions of the film, which are expressed as:

σz(x, 0) = 0, σxz(x, 0) = 0, σz(x, h) = 0, σxz(x, h) = 0 (8)

3. Power Series Solution

The solutions of the governing equations can be expressed as:

u = U(z) exp[ik(x− ct)], w = −iW(z) exp[ik(x− ct)] (9)

where i is the imaginary unit, k and c are the wave number and wave velocity, respectively, and U(z)
and W(z) are the unknown amplitudes of the displacement.

Substitution of Equation (9) into Equation (7) leads to:

ĉ44U′′ + ĉ′44U′ +
(
ρΩ2

− ĉ11k2
)
U + k(ĉ11 − ĉ44)W′ + ĉ′44kW = 0

ĉ11W′′ + ĉ′11W′ +
(
ρΩ2

− ĉ44k2
)
W − k(ĉ11 − ĉ44)U′ −

(
ĉ′11 − 2ĉ′44

)
kU = 0

(10)

where ĉ44 = c44 − iΩc44, ĉ11 = c11 − iΩc11, Ω = ck is the frequency, and the prime symbol (′) represents
differentiation with respect to thickness z. Both ĉ44 and ĉ11 are functions of z and Ω. Suppose that the
material parameters vary along the thickness direction slowly, so that, for a certain Ω, the material
parameters of the isotropic FGVM film can be expressed as follows:

ĉ11 = f1
( z

h

)
, ĉ44 = f2

( z
h

)
, ρ = f3

( z
h

)
(11)

Suppose that the material parameters can be expressed in the power series form:

fi
( z

h

)
=
∞∑

n=0

a〈i〉n

( z
h

)n
(i = 1, 2, 3) (12)

Therefore, the solutions of Equation (10) can also be expressed in a power series form as:

U(z) =
∞∑

n=0

sn

( z
h

)n
, W(z) =

∞∑
n=0

tn

( z
h

)n
(13)

By substituting Equations (11)–(13) into Equation (10) and equating the coefficient of (z/h)n to zero,
the following recursive equations can be obtained:

n∑
l=0

(l + 2)(l + 1)a〈2〉n−lsl+2+
n∑

l=0
(n− l + 1)(l + 1)a〈2〉n−l+1sl+1 + (kh)2 n∑

l=0

(
a〈3〉n−lc

2
− a〈1〉n−l

)
sl

+(kh)
n∑

l=0
(l + 1)

(
a〈1〉n−l − a〈2〉n−l

)
tl+1 + (kh)

n∑
l=0

(n− l + 1)a〈2〉n−l+1tl = 0
n∑

l=0
(l + 2)(l + 1)a〈1〉n−ltl+2+

n∑
l=0

(n− l + 1)(l + 1)a〈1〉n−l+1tl+1 + (kh)2 n∑
l=0

(
a〈3〉n−lc

2
− a〈2〉n−l

)
tl

−(kh)
n∑

l=0
(l + 1)

(
a〈1〉n−l − a〈2〉n−l

)
sl+1 − (kh)

n∑
l=0

(n− l + 1)
(
a〈1〉n−l+1 − 2a〈2〉n−l+1

)
sl = 0

(14)

where s0, s1, t0, and t1 are undetermined coefficients. For l ≥ 2, all of the sl and tl are linear functions of
s0, s1, t0, and t1.

To simplify calculating the relation between sl, tl and s0, s1, t0, t1, let:(
s0 j, s1 j, t0 j, t1 j

)
= I (15)
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where j = 1–4 and I is a 4 × 4 unit matrix. Therefore, the solution of Equation (10) can be rewritten as:

U(z) =
4∑

j=1

C j

∞∑
n=0

snj

( z
h

)n
, W(z) =

4∑
j=1

C j

∞∑
n=0

tnj

( z
h

)n
(16)

where the constants Cj (j = 1–4) are to be determined. For n = 0 and 1, snj and tnj are defined by
expression (15); for other values of n, snj, and tnj can be determined by solving Equation (14).

By substituting (16) into the boundary conditions, we then obtain the following linear algebraic
equations for determining constants Cj (j = 1–4):

−

(
ĉ0

11 − 2ĉ0
44

)
khxC1 + ĉ0

11C4 = 0
ĉ0

44C2 + khĉ0
44C3 = 0

4∑
j=1

{
∞∑

n=0

[
−kh

(
ĉh

11 − 2ĉh
44

)
snj + ĉh

11(n + 1)t(n+1) j

]}
C j = 0

4∑
j=1

{
∞∑

n=0

[
ĉh

44(n + 1)s(n+1) j + ĉh
44khtnj

]}
C j = 0

(17)

The sufficient and necessary condition for the existence of a nontrivial solution is that the
determinant of the coefficient matrix must vanish. Therefore, for the dispersion relation for Lamb
waves, there exists: ∣∣∣Ti j

∣∣∣ = 0 (18)

where

T11 = −kh
(
ĉ0

11 − 2ĉ0
44

)
, T14 = ĉ0

11, T22 = 1, T23 = kh,

T3 j =
∞∑

n=0

[
−kh

(
ĉh

11 − 2ĉh
44

)
snj + ĉh

11(n + 1)t(n+1) j

]
, T4 j =

∞∑
n=0

[
(n + 1)s(n+1) j + khtnj

]
where j = 1–4, and other items of Tij equal zero. The superscripts 0 and h represent the material
parameters at the bottom and upper surfaces, respectively.

Owing to the existence of the complex relation, Equation (18) is a complex coefficient transcendental
equation. In this paper, we suppose that k and the wavelength λ are both real numbers. The wave
velocity c contains both real and imaginary parts. The real part of the wave velocity represents the
phase velocity, and the imaginary part is related to the attenuation characteristic of the wave.

4. MMA Method and Optimization

4.1. MMA Method

For solving an equation with a complex variable, we should obtain a solution for which both the
real part and the imaginary part of the equation should be zero. Consider the complex equation:

f (z) = 0⇒ f (x, y) = 0, (19)

where x and y are the real and imaginary parts, respectively, of the complex variable z, and f, which is a
function of z, is also complex. We suppose z = a + ib is the solution of Equation (19). It should satisfy
the conditions:

Re[ f (a, b)] = 0 and Im[ f (a, b)] = 0, (20)

where Re[ f (x, y)] and Im[ f (x, y)] represent the real and imaginary parts of the function f (x, y).
Let

G(x, y) =
{
Mod[ f (x, y)]

}2 =
{
Re[ f (x, y)]

}2 +
{
Im[ f (x, y)]

}2, (21)
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where Mod[ f (x, y)] is the module of the function f (x, y) and the square of the module is expressed by
the function G(x, y).

Suppose that the solution of Equation (19) exists and is unique in the region (x0, x0),
(
y0, y0

)
.

The model in Figure 2 is used to illustrate the solution steps. The first loop step is shown in Figure 2a:
We divide the solution region into n × n grids, obtaining (n + 1)2 nodes in total, and calculate the
module of each node by using Equation (21) and find the node (a1, b1) satisfying:

G(a1, b1) = min
{
G(x0, y0), G(x0 + i∆x0, y0 + j∆y0)

}
(i, j = 1, . . . , n). (22)

where

∆x0 =
x0 − x0

n
, ∆y0 =

y0 − y0

n
.
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For the second loop step, based on n, we obtain the four points (a1−∆x0,b1−y0), (a1+∆x0,b1−y0),
(a1+∆x0,b1+y0), and (a1−∆x0,b1+y0), remesh the square determined by the four points as the vertices
into n × n grids once again, and also calculate the module of each node to find the minimum.

For the Nth loop step (Figure 2b), we repeat the above step, obtaining:

G(aN, bN) = min
{
G(xN−1, yN−1), G(xN−1 + i∆xN−1, yN−1 + j∆yN−1)

}
(i, j = 1, . . . , n) (23)

where (aN, bN) is the node with the minimum module after N time steps. The approximate solution of
Equation (19) z = aN + ibN, can then be obtained.

4.2. Optimization of the MMA Method

The MMA method can be applied to solve equations with complex variables. To optimize the
method, the following function q is introduced:

q =
( 4

n2

) 1
(n+1)2 (24)

where q represents the average percentage of solution area reduction with each calculation and n2 and
(n + 1)2 are the number of grids and nodes of the solution region, respectively.

To optimize the MMA method, we should find the n value needed to satisfy that q reaches its
minimum. In other words, ln q should also be the minimum. Therefore, n should satisfy:

d ln q
dn

= 0 (25)
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The solution of Equation (25) is n = 3.77. Because the number of grids needs to satisfy the condition
of positive integers, we take the approximate solution at n = 4.

In practical numerical analysis, we always predict with a certain level of uncertainly the region
over which the equation with complex variables has a solution. If, in the first step, (a1, b1) lies on
the boundary of the region, (x0, x0),

(
y0, y0

)
, the solution might not lie in the region. In this case, n

should be selected to be a larger number to certify the existence of the solution. However, a spurious
solution might exist if the calculation region is too large. Normally, the solutions of these problems
are always irrational. This means that we can find the solution as the module infinites approaches
zero. We should check for the convergence of solution by testing the ratio of the module reduction in
several continuous steps. For example, we can calculate the ratio of the module for every three loops
and judge the convergence to avoid a spurious solution.

It is worth noting that, if the minimum modulus is located at the boundary in the first calculation,
there might be no solution in the computational domain. If the minimum modulus is not at the
boundary after mesh refinement, the solution exists in the computational domain. Otherwise, the
computational domain needs to be enlarged and recalculated. To verify the existence of the solution
and avoid a spurious solution, we suggest that n should be selected as 6–8 in the first loop step in
practical calculations.

5. Numerical Results and Discussion

5.1. Comparison with the Exact Analytical Results

To verify the validity of the power series method, the exact analytic solution and the asymptotic
solution of the power series are compared when all material parameters vary with the same exponential
function. The exact analytical solution can be obtained for waves propagating in the special FGVM
thin film. The governing equations can be simplified to ordinary differential equations with constant
coefficients, and the analytical solution can be obtained directly.

We suppose that the material parameters follow:

λ = λ0ep(z/h), µ = µ0ep(z/h), η = ξµ = ξµ0ep(z/h), ρ = ρ0ep(z/h) (26)

where λ0, µ0, and ρ0 are material parameters of the film lower surface at z = 0, η is the viscosity
coefficient, ξ is a constant and is selected as 10−5, and p represents the gradient parameter. The
analytical solution in this condition can be selected as a reference for the solution of the power series
reported in this paper.

The material parameters used in this paper can be deduced as:

ĉ11 =
(
λ0 + 2µ0 −

4
3 iΩξµ0

)
ep(z/h) = β1ep(z/h)

ĉ44 = (µ0 − iΩξµ0)ep(z/h) = β2ep(z/h)

ρ = ρ0ep(z/h) = β3ep(z/h)
(27)

The displacement amplitude can also be expressed in an exponential function form as:

Ue(z) = Aeα(z/h) , We(z) = Beα(z/h) (28)

By substitution of Equation (28) into Equation (10) the homogeneous linear equations for the
undetermined coefficients A and B can be deduced as:[

β2α2 + pαβ1 +
(
β3c2
− β1

)
(kh)2

]
A + [kh(β1 − β2)α+ khpβ2]B = 0

[kh(β2 − β1)α+ p(2β2 − β1)]A +
[
β1α2 + pαβ1 +

(
β3c2
− β2

)
(kh)2

]
B = 0

(29)
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Equations (29) comprise a set of linear homogeneous equations with respect to A and B. From
the necessary and sufficient conditions for the existence of a nontrivial solution, we obtain that the
determinant of the coefficient matrix is equal to zero:∣∣∣∣∣∣∣ β2α2 + pαβ1 +

(
β3c2
− β1

)
(kh)2 kh(β1 − β2)α+ khpβ2

kh(β2 − β1)α+ p(2β2 − β1) β1α2 + pαβ1 +
(
β3c2
− β2

)
(kh)2

∣∣∣∣∣∣∣ = 0 (30)

Considering that Equation (30) is a fourth-order equation, we suppose that the solution is α j (j
=1–4). The relation between A and B is derived by calculating Equation (29) as follows:

Bi = fiAi(i = 1–4) (31)

The displacement amplitude solution of Equation (10) can be rewritten as:

U =
4∑

j=1

A jeα j(z/h) W =
4∑

j=1

f jA jeα j(z/h) (32)

Similarly, by considering the boundary conditions, we then obtain the dispersion equation:∣∣∣Ti j
∣∣∣ = 0 (33)

where
T1 j = (β1 − 2β2)k + β1 f jα j, T2 j = α j − k f j

T3 j =
[
(β1 − 2β2)k + β1 f jα j

]
eα jh, T4 j =

(
α j − k f j

)
eα jh( j = 1− 4)

In numerical analysis, the normalized wave velocity ĉ and the dimensionless wave number kh are
applied for describing the wave propagation property. The normalized dimensionless wave velocity
ĉ satisfies:

ĉ = c/csh (34)

where csh =
√

G/ρ, which is the bulk shear wave velocity. The Poisson ratio is a constant and satisfies
ν = 0.25.

To evaluate the accuracy and precision of the power series and MMA methods, the relation between
the normalized wave velocity and the dimensionless wave number for Lamb waves propagating in the
special FGVM thin film is plotted in Figure 3. When p = 0, the FGVM thin film becomes a homogenous
viscoelastic thin film. Figure 3a,b present the real and imaginary parts of the normalized wave velocity,
respectively. It is found that the solution obtained by using the power series method agrees well with
the exact analytical solution.Materials 2018, 11, x FOR PEER REVIEW  9 of 17 
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By checking the results of the change of phase velocity, we find that there exists little difference
between the wave velocity curves for Lamb waves in the homogenous viscoelastic thin film and in the
special FGVM thin film. Normally, the dispersion curves of Lamb waves in homogenous film can be
determined by bulk shear wave velocity and the Poisson ratio. Both the bulk shear wave velocity and
the Poisson ratio in homogenous thin film are same as those in the special FGVM thin film. It can be
used to explain that the dispersion curves of the two cases are almost identical. This implies that we
cannot measure the gradient parameters by variation of the wave velocity

We further study the wave structure of Lamb wave propagation in different viscoelastic thin films.
The normalized displacement amplitude is defined as:

}u = |U|/
∣∣∣U(0)

∣∣∣ · sign
{
Re(U)/Re[U(0)]

}
, }w = |W|/

∣∣∣U(0)
∣∣∣ · sign

{
Re(W)/Re[U(0)]

}
(35)

where U(0), which represents displacement component at z = 0, is selected to be 1 in the numerical
analysis, Re is the real part of the complex number, and the sign function satisfies

sign(x) =

1, x ≥ 0

−1, x < 0
(36)

The normalized displacement amplitude of the first two modes at kh = π and kh = 2π are plotted
in Figure 4. The curves obtained from the exact solution and these obtained by using the power
series method coincide completely. In a homogenous viscoelastic thin film, the wave structure is
symmetric or antisymmetric. However, because of the asymmetric properties of the FGVM thin film,
the displacement amplitudes are not symmetric.
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To further investigate the influence of the gradient property on the displacement, we denote the
ellipticity of particles on lower and upper surfaces as χ0 = |w0/u0| and χh = |wh/uh|, respectively. The
relation between the gradient parameter and the ellipticity of particles at kh = π and kh = 2π is plotted
in Figure 5. It is found that the influence of the gradient property on the ellipticity of a particle on the
surface is more obvious than that on the wave velocity.
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5.2. Material Parameters Varying Linearly

For numerical analysis with the theoretical model described above, we assumed that the Lamé
parameters λ and µ, mass density ρ, and viscosity coefficient η in the functionally graded viscoelastic
film varied as follows:

λ = λ0 + p1λ0
z
h

, µ = µ0 + p2µ0
z
h

, ρ = ρ0 + p3ρ0
z
h

, η = ξµ (37)

where λ0, µ0, and ρ0 are material parameters of the film lower surface at z = 0; η is the viscosity
coefficient; ξ is a constant and is selected as 10−5 (except in Section 5.2.3); and p1, p2 and p3 are the
gradient parameters of λ, µ, and ρ, respectively (0 ≤ p1, p2, p3 < 1).

The material parameters used in this paper can be deduced as:

ĉ11 = λ+ 2µ−
4
3

iΩη, ĉ44 = µ− iΩη (38)

5.2.1. All Material Parameters Varying Identically

Suppose that all material parameters vary along the thickness direction linearly and identically,
i.e., pi = p(i = 1, 2, 3). The wave velocity plotted as a function of wave number when p = 0, 0.3, 0.5,
and 0.7 is shown in Figure 6. By comparing the results for the case in Section 5.1, a similar conclusion
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can be reached. If all the material parameters vary along the thickness direction identically, the wave
velocity curves almost coincide.
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Figure 6. Wave velocity of Lamb waves in homogenous viscoelastic film and in FGVM film (with all
material parameters varying linearly and identically). (a) Real part, (b) imaginary part.

In these cases, the bulk wave velocity, including the shear wave velocity csh and the longitudinal
wave velocity cL, where cL =

√
(λ+ 2µ)/ρ, are constants. This implies that, if the bulk wave velocities

are constants, the wave velocity of Lamb waves in the FGVM thin film are almost similar to that in a
homogenous film.

Similarly, the wave structures are also plotted in Figure 7. It is found that the gradient parameter
has an obvious influence on the wave structure. It is also shown in Figure 7 that the ellipticity of
particles on the upper and lower surfaces is different owing to the gradient property of the FGVM film.
Considering testability, we suggest that the ellipticity of a particle on the surface can be applied for
measuring the gradient parameter when all material parameters vary identically.Materials 2018, 11, x FOR PEER REVIEW  12 of 17 
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5.2.2. Material Parameters Varying Independently

To investigate the influence of the elastic modulus and density gradient on dispersion and
attenuation characteristics of Lamb waves in gradient viscoelastic film, we chose three types of films
for which the gradient parameters are:

A : p1 = p2 = p3 = 0; B : p1, p2 = 0, p3 = 0.2; C : p1 = 0.2, p2 = 0.2, p3 = 0

Film A is a homogeneous film, which can be used for referencing the propagation characteristics
in the gradient film. The elastic modulus in film B is a constant, and the density increases along the
thickness of the film and the density of the lower surface is the same as that of the homogeneous film.
Conversely, the density in film C is a constant, and the elastic modulus varies along the thickness
direction linearly.

The real and imaginary parts of the wave velocity in the three types of films are shown in Figure 8.
When the mass density increases, the real part and the absolute value of the imaginary part of the wave
velocity of each mode are less than these in the homogenous film; when the elastic modulus increases,
the real part and the absolute value of the imaginary part of the dimensionless wave velocity of each
mode are larger than these in the homogenous film.Materials 2018, 11, x FOR PEER REVIEW  13 of 17 
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5.2.3. Relative Viscosity Coefficient Varying Independently

In engineering application, the relative viscosity coefficient might vary along one direction because
of the environment. However, in these cases, the mass density and the elastic parameters might not
change. To reveal the influence of the gradient relative viscosity coefficient on the wave property, we
suppose that the relative viscosity coefficient ξ varies along the thickness direction and that other
parameters including λ, µ, and ρ are constants. The material parameters are:

λ = λ0, µ = µ0, ρ = ρ0, η = ξµ, ξ = 10−5p4(z/h) (39)

The wave velocity is plotted as function of wave number in Figure 9. In Figure 9a, the curves for
the real part of the phase velocity almost coincide. This suggests that the influence of the gradient
relative viscosity coefficient on the dispersion curves is too slight to measure. However, obvious
differences can be observed in Figure 9b, which describes the relation between the imaginary parts
of the wave velocity. The absolute value of the imaginary part of the dimensionless wave velocity
increases with the increase of the gradient relative viscosity coefficient. The physical meaning of the
imaginary parts of the wave velocity will be discussed in the next section.
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5.3. Influence of Gradient Parameter on Wave Attenuation

Equation (18) is a complex equation. As the wave number is a real number, the wavelength is also
a real number, the obtained wave velocity is complex, and the product Ω of the wave velocity c and
the wave number k is complex, which can be expressed as follows:

cp = Re(c), Ω = ω+ iω̃ = ck (40)

where ω and ω̃ are the real and imaginary parts of Ω, respectively, ω is frequency, and ω̃ is related to
the attenuation of the wave amplitude. From Equation (40), we have:

ω = cpk (41)

In viscoelastic materials, the wave propagation process is essentially a quasi-periodic motion, and
the period of the particle displacement is determined by the phase velocity. The period is expressed
as follows:

T =
2π

kRe(c)
=

2π
ω

(42)

To analyze the attenuation trend, we define the amplitude ratio of the adjacent period as the
damping coefficient γ, given by:

γ = exp
[
−2π

Im(c)
Re(c)

]
= exp

(
−

2πω̃
ω

)
(43)

In this study, the normalized product of frequency and thickness ω̂h is selected to be the abscissa. If

ω̂ =
ω
csh

is satisfied, then

ω̂h =
ω
csh

h =
cp

csh
kh (44)

The influence of the gradient properties on the damping coefficient is plotted in Figure 10.
The damping coefficient increases with the increase of the frequency. When material parameters are
constants, or material parameters vary along the thickness direction with the same exponential function,
or both Lamé parameters and mass density vary linearly, the damping coefficient of Mode 1 and Mode
2 is similar, as shown in Figure 10a,b. However, when the Lamé parameters and mass density do not



Materials 2019, 12, 268 14 of 16

vary identically, a difference in the damping coefficient can be observed, as shown in Figure 10b. When
the mass density increases, the damping coefficient increases at high frequency (ω̂h > s0). This implies
that, at high frequency, if the mass density increases along the thickness direction, then the Lamb
waves in the FGVM thin film should attenuate more quickly than those in a homogenous material.
Conversely, if the Lamé parameters increase along the thickness direction, then the attenuation of
Lamb waves in the FGVM thin film should be weakened. If only the relative viscosity coefficient
increases along the thickness direction, then the attenuation of Lamb waves will become more serious,
as shown in Figure 11. As the gradient coefficient increases, the damping coefficient increases and the
attenuation tendency becomes obvious.Materials 2018, 11, x FOR PEER REVIEW  15 of 17 
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Figure 11. Damping coefficient of Lamb waves with the relative viscosity coefficient varying.

6. Conclusions

The power series method can be employed for solving the governing differential equations for
Lamb wave propagation in FGVM thin films. The MMA method is proposed to solve the transcendental
equations in the form of a series with complex coefficients. It is suggested that the meshing number
should be selected as 6–8 in the first loop step and 4 in other loops. The numerical results obtained by
these methods agree well with the exact analytical solution.

When Lamé parameters and mass density vary along the thickness direction identically, the
influence of the gradient properties on the wave velocity is slight but that on the wave structure and
the ellipticity of particles on the surface is obvious. This suggests that the ellipticity of particles on the
surface should be selected to measure the gradient property if the bulk wave velocities are constants
in the FGVM thin film. When Lamé parameters and mass density vary along the thickness direction
independently, the variation of the phase velocity can be used for testing the gradient parameters.



Materials 2019, 12, 268 15 of 16

However, when the relative viscosity coefficient is a variable and both Lamé parameters and mass
density are constants, the gradient property will not affect the phase velocity. The attenuation tendency
becomes obvious with the increase of the gradient relative viscosity coefficient.

The method proposed herein and the results obtained should provide theoretical guidance for
ultrasonic nondestructive testing of heterogeneous viscoelastic materials and enable the safe evaluation
of surface acoustic wave devices.
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13. Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Wieja, K. Propagation of ultrasonic Love waves in

nonhomogeneous elastic functionally graded materials. Ultrasonics 2016, 65, 220–227. [CrossRef]
14. Cao, X.S.; Jin, F.; Wang, Z.K. On dispersion relations of Rayleigh waves in a functionally graded piezoelectric

material (FGPM) half-space. Acta Mech. 2008, 200, 247–261. [CrossRef]
15. Yuan, L.; Shen, Z.H.; Ni, X.W.; Lu, J. Numerical calculation of laser induced surface wave in material with

changes of near-surface properties. Infrared Laser Eng. 2007, 36, 328–331.
16. Sun, H.X. Numerical simulation of laser-generated Rayleigh wave by finite element method on viscoelastic

materials. Acta Phys. Sin. 2009, 58, 6344–6350.
17. Cai, C.; Liu, G.R.; Lam, K.Y. A transfer matrix approach for acoustic analysis of a multilayered active acoustic

coating. J. Sound Vib. 2001, 248, 71–89. [CrossRef]
18. Du, J.K.; Ye, D. SH waves in laminated structure of functionally gradient piezoelectric material. J. Solid Rocket

Technol. 2005, 28, 133–136.
19. Collet, B.; Destrade, M.; Maugin, G.A. Bleustein–Gulyaev waves in some functionally graded materials. Eur.

J. Mech. 2006, 25, 695–706. [CrossRef]

http://dx.doi.org/10.1016/j.ndteint.2010.09.010
http://dx.doi.org/10.1016/j.ultras.2014.08.020
http://www.ncbi.nlm.nih.gov/pubmed/25200699
http://dx.doi.org/10.1016/j.apacoust.2006.07.013
http://dx.doi.org/10.1016/j.compositesb.2017.11.042
http://dx.doi.org/10.1016/j.compstruct.2018.11.048
http://dx.doi.org/10.1088/0964-1726/17/6/065005
http://dx.doi.org/10.1016/j.ijsolstr.2009.08.005
http://dx.doi.org/10.1016/j.mechmat.2012.12.004
http://dx.doi.org/10.1016/S0093-6413(02)00316-6
http://dx.doi.org/10.1016/j.ultras.2015.10.001
http://dx.doi.org/10.1007/s00707-008-0002-1
http://dx.doi.org/10.1006/jsvi.2001.3775
http://dx.doi.org/10.1016/j.euromechsol.2006.01.007


Materials 2019, 12, 268 16 of 16

20. Qian, Z.; Jin, F.; Wang, Z.; Kishimoto, K. Transverse surface waves on a piezoelectric material carrying a
functionally graded layer of finite thickness. Int. J. Eng. Sci. 2007, 45, 455–466. [CrossRef]

21. Shen, X.; Ren, D.; Cao, X.; Wang, J. Cut-off frequencies of circumferential horizontal shear waves in various
functionally graded cylinder shells. Ultrasonics 2018, 84, 180–186. [CrossRef]

22. Li, X.Y.; Wang, Z.K.; Huang, S.H. Love waves in functionally graded piezoelectric materials. Int. J. Solids
Struct. 2004, 41, 7309–7328. [CrossRef]

23. Vlasie, V.; Rousseau, M. Guided modes in a plane elastic layer with gradually continuous acoustic properties.
NDT E Int. 2004, 37, 633–644. [CrossRef]

24. Cao, X.S.; Jin, F.; Wang, Z.K. Bleustein-Gulyaev(B-G) waves in functionally graded piezoelectric layered
structures. Sci. China 2009, 52, 613–625. [CrossRef]

25. Dahmen, S.; Amor, M.B.; Ghozlen, M.H.B. Investigation of the coupled Lamb waves propagation in
viscoelastic and anisotropic multilayer composites by Legendre polynomial method. Compos. Struct. 2016,
153, 557–568. [CrossRef]

26. Yu, J.G.; Ratolojanahary, F.E.; Lefebvre, J.E. Guided waves in functionally graded viscoelastic plates. Compos.
Struct. 2011, 93, 2671–2677. [CrossRef]

27. Paehler, D.; Schneider, D.; Herben, M. Nondestructive characterization of sub-surface damage in rotational
ground silicon wafers by laser acoustics. Microelectron. Eng. 2007, 84, 340–354. [CrossRef]

28. Yu, J. Viscoelastic shear horizontal wave in graded and layered plates. Int. J. Solids Struct. 2011, 48, 2361–2372.
29. Zhang, Z.; Sun, C.; Wu, D. Love wave forward modeling in Kelvin-Voigt viscoelastic medium. In Proceedings

of the Annual Meeting of Chinese Geoscience Union, Beijing, China, 20–23 October 2014; p. 1453.
30. Zhang, X.M.; Wang, Y.Q.; Yu, J.G. Guided circumferential SH wave in orthotropic viscoelastic hollow

cylinders. Eng. Mech. 2013, 30, 78–81. [CrossRef]
31. Lefebvre, J.E.; Zhang, V.; Gazalet, J.; Gryba, T.; Sadaune, V. Acoustic wave propagation in continuous

functionally graded plates: An extension of the Legendre polynomial approach. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 2001, 48, 1332–1340. [CrossRef]

32. Li, N.; Qian, Z.; Wang, B. Study on computational methods of dispersion curves in complex wavenumber
range. Chin. J. Appl. Mech. 2016, 33, 365–370.

33. Yang, T.Q. Theory of Viscoelasticity; Huazhong University of Science and Technology Press: Wuhan, China,
1990.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijengsci.2007.03.009
http://dx.doi.org/10.1016/j.ultras.2017.11.005
http://dx.doi.org/10.1016/j.ijsolstr.2004.05.064
http://dx.doi.org/10.1016/j.ndteint.2004.04.003
http://dx.doi.org/10.1007/s11433-009-0029-x
http://dx.doi.org/10.1016/j.compstruct.2016.06.068
http://dx.doi.org/10.1016/j.compstruct.2011.06.009
http://dx.doi.org/10.1016/j.mee.2006.11.001
http://dx.doi.org/10.3901/JME.2013.12.078
http://dx.doi.org/10.1109/58.949742
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Basic Equation for Lamb Waves in FGVM Film 
	Power Series Solution 
	MMA Method and Optimization 
	MMA Method 
	Optimization of the MMA Method 

	Numerical Results and Discussion 
	Comparison with the Exact Analytical Results 
	Material Parameters Varying Linearly 
	All Material Parameters Varying Identically 
	Material Parameters Varying Independently 
	Relative Viscosity Coefficient Varying Independently 

	Influence of Gradient Parameter on Wave Attenuation 

	Conclusions 
	References

