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Abstract: In this study, a novel green adsorbent material prepared by the esterification of bacterial
cellulose (BC) and graphene oxide (GO), richly containing hydroxyl, alkyl, and carboxylate groups
was characterised by FTIR (Fourier Transform infrared spectroscopy), XRD (X-ray diffraction),
SEM (Scanning electron microscopy) and TGA (Thermo-graphimetric analysis). The specific
surface area (SSA) and pore size distribution (PSD) analysis of materials were also analysed.
Batch experiments–adsorption studies confirmed the material to have a very high Pb2+ removal
efficiency of over 90% at pH 6–8. Kinetic studies showed that the uptake of metal ions was rapid with
equilibrium attained after 30 min and fitted well with the pseudo-second-order rate model (PSO).
Isotherm results with a maximum adsorption capacity (Qmax) of 303.03 mg/g were well described by
Langmuir’s model compared to Freundlich. Desorption and re-adsorption experiments realised that
both adsorbent and adsorbates could be over 90–95% efficiently recovered and reused using 0.1 M
HNO3 and 0.1 M HCl.

Keywords: bacterial cellulose; graphene oxide; esterification; trap entanglement; electrostatic
interactions; adsorption; desorption

1. Introduction

Heavy metal ions pollution from industries (sectors such as metallurgy, pharmaceutical, chemical
industry, and petroleum refining etc.) and individual domestic activities present a grave threat to
humans and aquatic and other life forms. Metal ions such as lead (Pb2+), zinc (Zn2+), cadmium
(Cd2+), manganese (Mn2+), silver (Ag+) and mercury (Hg2+) have been enlisted by the Environmental
Protection Agency (EPA) as priority pollutants [1]. These ions are deposited into the atmosphere,
the earth (soil) and water bodies in large amounts by industries, but also, some of these metals
exist naturally in water bodies in minimal quantities. At minimal levels, metals like Zn2+, Cu2+,
Fe2+ and Fe3+ as well as a few others are good for very essential biological processes in human
physiology [2]. However, Pb2+, particularly, at higher concentrations found in wastewater streams
could cause numerous diseases including anaemia and nervous system degeneration [3].

The concerns of heavy metal pollution have in recent times led to many varied technology
introductions to help remediate the issues. These technologies include reverse osmosis, ultrafiltration,
ion exchange, coagulation, floatation, chemical precipitation, electrodialysis, flocculation, evaporative
recovery, sorption (absorption and adsorption) technologies and many others [4–7]. Nevertheless,
challenges such as complicated protocols and the release of toxic wastes during synthesis have called
for a more efficient, less harmful processes with specific focus on the mass transport of contaminants
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in the fastest way possible; exhibiting effective selectivity and capacity for specific contaminants; be of
low-cost and modest to engineer; and minimisation and maintenance of operational requirements [8].

Adsorption is essentially toxic-free, low cost, simple to operate, flexible and conducts rapid
adsorption [9]. Many research reports have revealed new adsorbents of heavy metal ions including
inorganic materials, bio sorbents and activated carbon [10–12]. The most effective way of getting rid of
heavy metal ions from aqueous systems is adsorption and this is crucial since metal ions cannot be
degraded by chemical reactions and bioprocess [13].

Sorption refers to a metal ions’ phenomenon in which they associate (ranging from electrostatic to
covalent) with one that is peripherally available or more functional groups on the sorbent material [2].

Bacterial cellulose (BC), as a biosynthesised polymer, has peculiar properties which are abundantly
reported in the literature and that have led to a soaring interest in their technical applications besides the
already known medical functions [5,6,14–24]. BC has the capacity to act as a host biopolymer to receive
other various guest molecules or inorganic particles to be incorporated into its matrix [15,17,25,26].
For this reason, many BC hybrid composites are now studied for different applications such as
photo-catalytic nano-materials, optically transparent films, magnetic materials and adsorbent materials,
especially for heavy metals and many others.

Because BC is a natural polysaccharide like plant cellulose, chitosan and others, which have successfully
been used as materials for adsorption, it stands a greater chance to be better used to prepare a new composite
adsorbent for metal ions. Further modification to introduce functional groups such as amine/amides,
carboxyl and thiol groups will offer excellent remediating capacities through their hydroxyl group sites and
also owing to the characteristic nano-reticular three-dimensional structure of BC [27]. Established modes of
modifications of BC include grafting, ethylation, amination and densification [28].

Graphene oxide (GO) has abundant oxygen-containing functional groups such as hydroxyl,
carbonyl, carboxyl and epoxide on the surface, enabling them to form strong complexes with metal ions.
These characteristics allow GO to act as an adsorbent for heavy metal ions, organic solvents, dyes and
oils removal and pre-concentration [7,29–34]. Several reported graphene composite publications are in
the areas of electronic and catalytic usages and water purification via adsorption [10,35–40]. Part of the
soaring interest is due to the discovery of its exceptional physicochemical characteristics as a result of
its significant structure; being a lightweight material which can withstand high pressure [10,30], has a
higher specific surface area and low production cost [41]. It is well known that electrostatic interaction
is the mechanism behind the cationic heavy metal remediation; between metal cations and negative
surface charge and/or electrons of the composite [10].

Few reports are available on bacterial cellulose–graphene oxide composites as an adsorbent in
water pollution remediation in spite of the overwhelming publications on the application of graphene
oxide (GO) and graphene nanosheets (GN) composites in numerous diverse fields.

Wang et al. reported a superabsorbent novel BCGO (Bacterial cellulose Graphene oxide) aerogel
which exhibited an excellent property for the absorption of organic liquids [16], which offers a good
background for the exploration of BCGO’s adsorptive capabilities.

The purpose of this present work was to synthesise a novel superadsorbent via an innovative
and improvised green approach for the removal of Pb2+ metal ions contaminants in aqueous solution.
Adsorbent before and after the adsorption process was characterised using FTIR, SEM, XRD and
TGA analysis. The adsorption conditions for the adsorbent were optimised by varying several
experimental parameters such as pH, contact time, initial concentration and temperature by a batch
adsorption method.

2. Materials and Experiments

2.1. Chemicals and Reagents

Chemicals for the synthesis of BC were derived from Jiangnan University (in-house laboratory),
Wuxi, China. BC; saccharose, peptone, citric acid, Na2HPO4, KH2PO4 and MgSO4 were all
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purchased from Sinopharm Chemical Reagents Co., Ltd., Beijing, China. The bacterial strain was
Gluconacetobacter xylinus 1.1812.

For GO, reagents such as graphite, sodium nitrate (NaNO3), potassium permanganate (KMnO4),
sulphuric acid (H2SO4), hydrogen peroxide (H2O2) and hydrochloric acid (HCl) have been the long-standing
chemicals for the preparation of GO by the ever-present Hummers method and its numerous modifications;
however, we came across a green and completely efficient approach which substitutes NaNO3, KMnO4,
H2O2 and HCl for the strong oxidant K2FeO4 reported by [42]. Reagents were used as procured without
purifications from Sinopharm Chemical Reagent Co., Ltd., Beijing, China.

2.2. Synthesis of Pure BC

Pure BC culture (static condition) medium consisted of 68.2% (w/v) saccharose, 21.8% (w/v)
peptone, 2.71% (w/v) citric acid, 2.71% (w/v) Na2HPO4, 4.1% (w/v) KH2PO4, 0.5% (w/v) MgSO4 and
adjusted to a pH of 3.5 with hydrochloric acid. The culture medium was autoclaved at 130 ◦C and
then allowed to reach room temperature. Ethanol was added after sterilisation to improve the growth
of the cellulose gel. The strain Gluconacetobacter xylinus was inoculated and cultivated at 30 ◦C for
20 days at room temperature.

2.3. Synthesis of GO

K2FeO4 (3.6 g) was introduced into the reactor flask together with 82 mL of H2SO4 at room
temperature. Graphite (0.68 g) was later added to the mixture and magnetically stirred for 1 h, still
at room temperature. The solution underwent centrifugation using deionized water after recycling
of the sulphuric acid. This was repeated four times at 8000 rpm for 5 min to ensure the pH of the
supernatant was close to 7. The washed GO suspension was sent for freezing in a refrigerator at
−30 ◦C in a polytetrafluoroethylene container. It was then further dried directly for 24 h with a
vacuum drying machine.

2.4. Synthesis of BC/GO Membranes

BC/GO composite membranes were prepared by two main approaches. BC/GO 1 was synthesised by
facile one-pot in-situ biosynthesis, while BC/GO 2 was synthesised by what is newly termed in this paper
as a “trap-entangling” approach, all under static conditions. Structure of materials are displayed in Figure 1.
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Figure 1. Synthesis of BC/GO membranes and their chemical structures. (a) Bacterial Cellulose (BC),
(b) structure of Graphene oxide (GO) and (c) BC/GO (composites 1 and 2), obtained after hydrogen
bonding and entanglement.

2.4.1. BC/GO 1 (Plain)

The culture medium for this biosynthetic membrane was produced from 50 g/L saccharose,
16 g/L peptone, 2 g/L citric acid, 2 g/L NaHPO4, 3 g/L KH2PO4 and 0.3 g/L MgSO4. The solution
was autoclaved at 130 ◦C for 1 h to sterilise the medium.

After this, 0.1 g of GO was deposited into the culture solution and magnetically stirred for 1 h
before sonication for a further 2 h to ensure absolute dispersion; at this point 10 mL of the seed broth
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(Gluconacetobacter xylinus) BC was inoculated into a 500 mL Erlenmeyer flask containing 100 mL of GO
dispersed medium. These flasks were then incubated under static conditions at 29–30 ◦C for 20 days.

The schematic diagram of the synthesis process of BC/GO 1 membrane is illustrated in Scheme 1.
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Scheme 1. Synthesis of BC/GO 1.

The harvested membrane was washed with deionized water after 20 days and boiled in a 0.5 M
NaOH solution at 80 ◦C for 60 min to eliminate impurities such as medium components and residual
cells. The final membrane appeared with a plain alabaster white complexion.

2.4.2. BC/GO 2

The same quantities and conditions for the synthesis of BC/GO 1 were used to produce BC/GO 2;
however, the approach was methodically improvised. With the solution autoclaved and the 0.1 g GO
dispersed, it was magnetically stirred and sonicated for 2 h for complete dissolution. The solution was
transferred into a petri dish in a strictly non-contaminative atmosphere and then sterilised again by
autoclaving under static conditions before the seed broth was inoculated and incubated under static
conditions at 29–30 ◦C for 20 days. This approach derives the name “trap-entanglement” from the fact
that under static conditions, the GO particles tended to precipitate (after many days) to the bottom of
the culture solution in the petri dish and were fetched by the process of bacterial growth to form a
bonded layer with the BC. With the petri dish offering a broader surface stretch of the culture medium,
the bacteria accumulated mats of cellulose on the surface of the nutrient broth which is an oxygen-rich
air–liquid interface while the extruded sub fibrils of cellulose trap the GO particles beneath as they
crystalised. The GO nanoplates are evenly distributed and bound by the BC nano-fibril growth in a
spiderweb-like manner [43].

The graphical illustration of the procedure to synthesise BC/GO 2 (black) is shown in Scheme 2.
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2.5. Characterisation

Concentrations of the heavy metal ion solutions before and after equilibrium were determined
using an Atomic Absorption Spectrometer TAS-990 (Beijing Purkinje General Instrument Co., Ltd.,
Beijing, China). For pH, solutions were checked using a Hanna pH meter (Goldpoint Instrument
Company Ltd., Shanghai, China) with a glass electrode.

2.5.1. Fourier Transform Infrared (FTIR) Spectroscopy

A total of 5.0 mg of each of the material samples BC, GO, BC/GO 1 and BC/GO 2 were examined.
FTIR spectral analysis of this experiment employed a Nicolet MAGNA-IR Spectrophotometer (Thermo
Electron Corporation, Waltham, MA, USA) in the range of 400–4000 cm−1 with 32 scans per sample.

2.5.2. Scanning Electron Microscopy (SEM)

SEM images of sample surfaces were analysed using a SEM-SU1510 (Hitachi Company, Tokyo,
Japan) scanning electron microscope operating at a tungsten filament voltage from 15 to 20 keV with a
secondary electron (SE) detector. Before examination, the samples were dried in an oven at 90 ◦C for
1 h and later brought to cool in a desiccator. Then, samples were fixed on sample holders containing a
graphite ribbon and subsequently sputter-coated with gold in a modular high-vacuum coating.

2.5.3. Thermogravimetric Analysis (TGA)

Materials thermogravimetric analysis (TGA) were recorded using an analyser from Mettler Toledo
Co., (Shanghai, China) in static air at a heating rate of 10 ◦C/min from room temperature to 800 ◦C.

2.5.4. X-ray Diffraction (XRD)

The crystalline structure of GO, BC, BC/GO 1 and BC/GO 2 nanocomposites were characterised
by XRD. The diffractograms were obtained by a LabX XRD-6100 X-ray diffractometer (Shimadzu,
Kyoto, Japan) equipped with CuKα radiation; operating voltage of 40 kV and a current of 30 mA.
The diffractograms were obtained with a 2Ø (Bragg angle) range from 4 to 70◦ at a scan rate of
4◦·min−1.
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2.5.5. Specific Surface Area and Pore Size Distribution

To determine the specific surface area of the adsorbent materials, measurements were performed
on a surface area and pore analyser Micromeritics TriStar II 3020 (Micromeritics Instr. Corps., GA,
USA) using N2 adsorption–desorption isotherms at 77.35 K. Samples of BC, BC/GO 1 and BC/GO
2 were degassed at 30 ◦C for 24 h under vacuum at 0.016 mmHg prior to measurement. The N2

amount adsorbed and desorbed onto samples were measured over a wide range of relative pressures
(P/P0 = 2 × 10−5–1.0), whereby P represents the equilibrium pressure and P0 is the saturation pressure.
The specific surface area was determined and calculated using the Brunauer, Emmett and Teller (BET)
method and equation [44], while pore size distributions were evaluated according to the Barrett, Joyner
and Halenda (BJH) method [45].

2.6. Adsorption Experimental Studies

The adsorption behaviour of the prepared composite materials BC, BC/GO 1 and BC/GO 2 for
Pb2+ metal ions (mono-component systems) were evaluated on experimental parameters such as the
initial concentration of metal ions, pH, adsorbent dosage and contact time. Some of the factors affecting
the adsorption of heavy metal ions on the surface of GO include oxygenous functional groups in both
the adsorbent and adsorbate, the thickness of the GO, the species of heavy metal ions in solution and
the experimental conditions. It had been confirmed that the oxygenous functional groups on the GO
surface played an important role in the adsorption [7].

Before the batch experiments, stock solutions of metal ions were prepared by dissolving certain
amounts of PbCl2 for Pb2+, all in distilled water and then diluted to the desired initial concentration.
The desired pH was adjusted by using an aqueous solution of 0.1 M HCl and 0.1 M NaOH. Throughout
this exploration, flasks were shaken (agitated) at a constant rate, allowing sufficient time for adsorption
equilibrium. It was assumed that the applied shaking speed allows all the reactive sites of the
surface area of prepared materials to come into contact with heavy metal ions over the course of
the shaking. The study was performed at room temperature to be representative of environmentally
relevant conditions. All experiments were carried out in duplicate and the average value was used for
further calculation.

The adsorbent was separated by filtration when the adsorption reached equilibration,
and the concentrations of the residual Pb(II) ion were measured by an atomic absorption
spectrophotometer (AAS).

To calculate for the adsorption capacities qe (mg/g) the following Equation (1) was used:

qe =
(C0 − Ce)× V

m
(1)

where C0 and Ce refer to the initial and equilibrium concentrations of the metal ions (mg/L),
respectively. V is the volume of the metal ion solution, and m is mass of the adsorbent.

The removal efficiency of the metal ions (%) was calculated using Equation (2):

RE (%) =
(C0 − Ce)

C0
× 100% (2)

2.6.1. Effect of Initial Metal Ions Concentration on the Adsorption

Using one set of sealed bottles; equal masses of 5 mg of prepared samples were added to
25 mL of Pb2+ solution with different initial concentrations such as 20, 40 and 60 mg/L respectively.
Each bottle was agitated for 30 min at 200 rpm in a water bath shaker at 25 ◦C to allow equilibration.
The supernatants were analysed as stated in the metal analysis after filtration of the adsorbent from
the solution.
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2.6.2. Effect of pH on the Adsorption

The pH range of the experimental solutions of determined metal ions concentrations (stated
above) was controlled at specifics of 3.5, 6 and 8.5 (a consistent difference of 2.5). This was ensured
to establish a good check on the effect of pH in this experiment and secondarily for the purpose of
keeping a check on the formation of metal hydroxides.

2.6.3. Effect of Contact Time on the Adsorption

Adsorbent masses, 5 mg each of Pure BC, BC/GO 1 and BC/GO 2 samples were added to 25 mL
of Pb2+ solution with initial concentrations of 20, 40 and 60 mg/L. Each bottle was agitated for time
intervals of 5, 10, 20, 30, 40, 50 and 60 min, respectively, at 200 rpm in a water bath shaker at 25 ◦C
to allow equilibration. At the determined time, the residual concentrations were measured for the
determination of adsorption capacities.

2.6.4. Effect of Absorbent Dosage on the Adsorption

To further examine the prepared materials, the percentage of sequestration of Pb2+ was studied
with three different specific mass dosages of the adsorbent; 5 mg, 10 mg and 15 mg (1/5 w/v, 1/2.5
w/v and 1/1.67 w/v, respectively).

2.6.5. Adsorption Isotherms

A series of Pb(II) solutions with different initial concentrations were prepared by dissolving
certain amounts of PbCl2 in deionized water. Quantities of 25 mL of the separately prepared solutions
were experimented on by placing 5 mg of the adsorbent in each vial containing the solutions. Each vial
was subjected to shaking for 2 h and then centrifugation followed that at 6000 rpm for 15 min and
then, finally, the solutions were filtered. These solutions were then analysed by atomic absorption
spectrophotometry (AAS) PG-990 (Beijing Purkinje General Instrument Co.,Ltd., Beijing, China).
Blank solutions with the same concentrations as the adsorbents were subjected to the same procedure.
Standard Pb(II) solutions were prepared in 0 (blank), 2, 4, 6, 8, 10 mg/L AAS stock solutions (Reagecon
Diagnostics Ltd., Shanghai, China). Adsorption isotherms of the experiments were carried out at
25 ◦C and 40 ◦C. All samples and blanks were run in triplicate to ensure reproducibility and accuracy
throughout the experimentation.

Fitting the adsorption equilibrium data for Pb on adsorbents BC/GO 2 at temperatures of 25 ◦C
and 40 ◦C with an initial concentration of 60 mg/L, the two main classical models applied in the
solid–liquid adsorption systems, Langmuir and Freundlich equations were used. This was to help
interpret the isotherm constants of the metal ions (Pb) binding to the adsorbent materials and their
vital characteristics.

Langmuir’s model, as developed, poses to describe the adsorption on gas–solid phases and in a
linear presentation given as Equation (3):

qe =
QmaxbCe

1 + bCe
(3)

where qe is the amount of metal ions adsorbed on the adsorbent at adsorption equilibrium (mg/g),
Qmax (mg/g) is the maximum adsorption capacity, Ce is the equilibrium metal ion concentration in
solution (mg/L) and b (L/mg) is the Langmuir binding constant related to the energy involved in
adsorption. Plotting Ce versus Ce/qe gives a straight line with slope 1/Qmax and intercept 1/b Qmax.

The Freundlich isotherm is commonly used for heterogeneous surface energy systems with a
linear Equation presented in log form as Equation (4):

logqe = logKf +
logCe

n
(4)
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where qe (mg/g) is the equilibrium adsorption capacity, Ce (mg/L) is the metal ion equilibrium
concentration in the aqueous solution, Kf is the Freundlich constant and n indicates the adsorption
intensity in heterogeneous systems. Kf and n can be determined from the linear plot of log qe versus
log Ce.

2.6.6. Adsorption Kinetics Studies

A batch technique was used to analyse the adsorption kinetics for Pb2+ uptake on the prepared
samples. Adsorbents (5 mg) were placed in each vial with 25 mL of PbCl2 (Pb) and conducted at 25 ◦C.

Initial concentrations of 20 mg/L, 40 mg/L and 60 mg/L of Pb(II) solutions were used. As time
is of great importance in a kinetics experiment, the vials were agitated in a temperature-controlled
bath shaker and then subsequently centrifuged at specified time (min) of 10, 20, 30, 40, 50 and
60. Concentrations of solutions were measured at the beginning and after the specified times,
all determined by AAS. The quantities or amounts were calculated using the initial and final
concentrations of Pb(II) in the aqueous phase. Again, all samples and blankets were run in triplicate to
ensure accuracy and reproducibility.

Adsorption kinetics are essential in the various approaches to design metal ions remediation
systems, especially, in batch operation for large-scale processes [46]. There are two major kinetic
models popularly applied in the study of adsorption, namely pseudo-first-order (PFO) and pseudo-
second-order (PSO) models. We explored both models to find the best fit for the prepared materials in
this experiment. Ideally, there are two key issues to address in the kinetic experimentation; contact time
for equilibrium adsorption against the influence of the initial adsorbate concentration on the uptake.

The PFO equation developed by Largergen describes the rate of adsorption in the liquid-phase
systems and is represented in a linear form in Equation (5):

dqt
dt

= k1
(
qe − qt

)
(5)

where qe and qt (mg/g) are the adsorption capacities at equilibrium (te) and time t (min), respectively,
and k1 (min−1) is the constant rate of the PFO kinetic model.

The PSO kinetic order model expression of Ho and Mckay [46] reveals a chemical bonding
phenomenon with divalent metal ions and polar functional groups on surfaces which is assumed to
cause cationic exchanges; in Ho and Mckay’s case on peat. The amount of adsorbed divalent ions
(metals) on the surface of adsorbent at time (t) and equilibrium time (te) is given in Equation (6):

dqt
dt

= k2
(
qe − qt

)2 (6)

where k2 (g·min/mg) is the overall rate constant for the adsorption process, qe (mg/g) is the amount
of Pb(II) ions adsorbed at equilibrium and qt (mg/g) represents the amount of Pb(II) ions adsorbed
at any time as per experimentation. To aid in calculations, we considered boundary conditions for
linearised form, the equation turns to become Equation (7):

qt =
k2qe

2t
1

+ k2qet (7)

with k2qe
2 = h, which defines the initial sorption rate. The initial sorption rate, h, the equilibrium

sorption capacity, qe and constant rate of PSO, K2 are derived from the slope and intercept of the plot
t/q as against t.

2.6.7. Desorption Experiments

To understand and determine the reusability of as-prepared samples, 50 mg of BC, BC/GO 1
and BC/GO 2 composites were weighed into 100 mL Erlenmeyer flasks, and 30 mL of Pb2+ metal ion
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solution 60 mg/L buffered at pH 8 was added. Aliquots were separated by filtration after subjecting
them to agitation with the use of orbital shakers at 24 ◦C for 3 h at 120 rpm. Optimum adsorption
parameters were ensured considering the functions of contact time, pH (initial) of solution and the
initial metal ions’ concentration. After filtering, they were washed with deionized water and the
adsorption capacities were ascertained. After a while, the samples loaded with Pb2+ were weighed
into a 100 mL Erlenmeyer flask and 20 mL of 0.1 M HNO3 and 0.1 M HCl were added and stirred for
5 min (130 rpm) at 24 ◦C. The final concentrations were detected with AAS. The determination of the
desorption ratio was derived from the amount of metal ions adsorbed on adsorbent materials and the
final PbCl2 ions concentration in the adsorption medium. The desorption ratio was calculated from
the following Equation (8):

desorption ratio (%) =
amount of Pb2+ desorbed
amount of Pb2+ adsorbed

× 100% (8)

3. Results and Discussion

3.1. Characterisation of Adsorbents

3.1.1. FTIR Analysis

For Pure BC, peaks of 3341 cm−1 represent a hydrogen bond, and, as could be seen from
Figure 2, sharp peaks of 3352 cm−1 and 3346 cm−1 for BC/GO 1 and BC/GO 2, respectively, are
all representations of the (O-H stretching) of hydrogen bonding. These peaks confirm the existence of
hydroxyl groups in the samples prepared, which are essential to the adsorption efficiency. The sharp
adsorption peaks at 2901 cm−1, 2917 cm−1 and 2895 cm−1 of pure BC, BC/GO 1 and BC/GO 2,
respectively, represent (i) asymmetric CH2 stretching for pure BC and BCGO 1, and (ii) Symmetric
CH2 stretching for BC/GO 2. The C-H stretching vibration detected proves the existence of alkyl
groups in the composite material. Peaks at 1651 cm−1 and 1647 cm−1 for both BC/GO 1 and
BC/GO 2, respectively, show Amide 1 (C=O) stretching; confirming the existence of the ester group
which corresponds to the stretching of the carbonyl of carboxylic acid groups. This is due to the
surface interaction between GO and BC. Peaks at 1161 cm−1 and 1053 cm−1 are attributed to the
increase in ether bond length. In summary, there was successful esterification between BC and GO.
The confirmation of the existence of hydroxyl groups, alkyl groups and carboxylate groups suggests
the prepared materials have a high capacity to enhance the adsorption of metal ions.Materials 2019, 12, x FOR PEER REVIEW 10 of 23 
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3.1.2. TGA Analysis

The thermal stabilities of the BC/GO nanomaterials were evaluated using thermogravimetric
analysis (TGA). Almost all sample curves show their first mass loss from room temperature to 100 ◦C,
confirming the presence of water. As shown in Figure 3A, GO shows a continuous steady weight loss
of about 28.8% when heated to 800 ◦C, this could be attributed to some organic group defects on the
surface of the GO sheets compared to BC which shows intermittent irregular weight loss; first slightly
at a temperature <50 ◦C. Then, a slow loss to <250 ◦C (at around 89%) before a further large weight
loss (about 74%) to 360 ◦C, and a final 14% weight loss at 800 ◦C as a result of depolymerisation and
the decomposition of the cellulose backbone. Both BC/GO 2 and BC/GO 1 composites experienced a
couple of additional weight degradation steps during the thermal process with a mass retention of 42%
at 800 ◦C; the presence of a good amount of GO may contribute to this retention capability. BC/GO
1 compared to BC/GO 2 shows slightly fewer steps in degradation with the percentage of retention
seemingly lower than BC/GO 2 at 800 ◦C, which was at 24%.
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Results revealed that GO remarkably improves the thermal stability of BC/GO composites,
BC/GO 2 was discovered to contain about 15% more GO than BC/GO 1 from the TGA information.
However, conclusively, the prepared BC/GO composites can be said to have a good to decent level of
mass retention at higher temperatures.

3.1.3. XRD Analysis

The crystalline structure of the prepared samples was characterised by X-ray diffractograms of
cellulose, presented in Figure 4. Typical peaks are easily observable in sample patterns of BC; 2θ = 14.2◦,
23.1◦ and a small peak at 28◦, which were consistent with diffraction (110) and (200) planes of cellulose
I. BC/GO exhibits similar diffraction peaks at 2θ = 14.1◦, 22.8◦ and a small peak at 28◦ at a somehow
higher intensity with no significant peaks shifting or no appearance of new peaks. The higher intensity
can be attributed to the introduction of GO onto the surface of BC as they (GO) are evenly dispersed
on the surface inside the BC matrix. This also confirms the physicochemical modification of the BC,
helping to enhance the degree of crystallinity of the BC to about 20–30%. The chemical modification
purportedly occurs at the surface of the cellulose fibres [47]. Further data information is offered to
support the nature of the thermal stability of the materials (BC/GO 1 and BC/GO 2) divulged by the
TGA results in Figure 3a,b.
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3.1.4. SEM Analysis

SEM images of pristine BC, BC/GO 1 and BC/GO 2 samples are displayed in Figure 5A–F, with
BC showing a nanoporous three-dimensional morphological network structure. The microfibrils
are randomly arranged by overlapping and intertwisted cellulose ribbons in irregular planes across
the span of the membrane with nanosized empty spaces between them [21]. BC/GO 1 and BC/GO
2 provides a good understanding of how GO is introduced into the matrix of BC during synthesis.
Typical BC features the archetypal three-dimensional nanosized spaces between the filaments, which is
further elucidated by the inserted graph on Figure 5A. The filament size is between 10 to 70 nm according
to the insert on Figure 5A. Figure 5B shows GO sheets that are well exfoliated along the planes and
evenly distributed across the entire membrane area, appearing clean and smooth. Figure 5C,E represent
BC nanofibrils successfully cross-linked with GO sheets in a manner physically seen as entanglement
but also chemically explained by the covalent bonding interaction between the reactive groups and the
intercalation of GO sheets with BC fibers; typically, the images representing BC/GO 1. The same can be
described for BC/GO 2, see Figure 5D,F; however, it contains more GO than BC/GO 1. GO sheets are
clearly interlocked within the 3D web-like arrangement of the BC nanofibrils; which occurs during the
formation of the structure by the in situ cultivation approach. BC/GO 1 and BC/GO 2 images depict
similar SEM images and can be explained by the same mode of composition; chemically, as covalent
bonding occurs between the reactive groups of both BC and GO. However, a slight difference can be
seen from the photographed images in Figure 5G–I with regard to the appearance of both materials. As
purposely engineered during the entanglement process in the culture medium, a greater amount of GO is
evidently trapped on the surface of the liquid medium face beneath the BC of BC/GO 2. This explains
the coin-effect (plain on one side/black (GO) on the other side).

The SEM images, Figure 5C–F, show well-composited materials with micro-spaces for ion
transport. Conclusively, a strong adhesion between GO and BC by way of entanglement and strong
electrostatic (physicochemical) interactions between the OH groups of BC and GO confirm successfully
biosynthesized membrane materials BC/GO 1 and BC/GO 2.
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Figure 5. SEM images of samples (A–F) at 200x and 10,000x magnification. (G–I) Photographed images
of final samples; (G) pure BC (H) BC/GO 1 and (I) BC/GO 2.

3.1.5. Analysis of Specific Surface Area (SSA) and Pore Size Distribution (PSD) of BC/GO Adsorbent

Samples of BC, BC/GO 1 and BC/GO 2 tested for their textural properties according to the
BET (Brunauer, Emmett and Teller) and BJH (Barrett, Joyner and Halenda) approach calculations
are presented as follows: BC/GO 1 has a specific surface area (BET) of 49.99 m2/g as seen in
Figure 6B, while displaying an average pore size of 18.696 Å with a total pore volume of 0.0356 cm3/g.
Nitrogen sorption experiments at 77 K of BCGO 2, see Figure 6C, displays a specific surface area
(BET) of 21.58 m2/g with an average pore size of 25.388 Å and a total pore volume of 0.0307 cm3/g.
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Pakulski et al. report the GO specific surface area to be 10 m2/g and confirmed that GO falls within
the range of 10 to 100 m2/g depending on the inherent water content level by BET calculation [48].
In comparison to GO, BC samples are reported to have a SSA of 77 m2/g by Pircher et al., which is
close to 41.79 m2/g, see Figure 6A, as displayed per this experiment’s sample BC [49] with an average
pore size of 17.111 Å. Both BC/GO 1 and 2 are categorised as microporous or mesoporous materials
under the pore size specification of the International Union of Pure and Applied Chemistry (IUPAC)
which classifies pores under 20 Å as microporous, pores between 20 Å to 500 Å as mesoporous and
pores over 500 Å as macroporous materials. The mesoporous nature of our BC/GO composites sets to
enhance the uptake and facilitate ion transport kinetics in the chelation (electrostatic interactions) of
heavy metal ions [50]. The specific surface area of BC/GO 2 serves as a great contributor to the high
adsorption capacity recorded in this experiment.
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Figure 6. Nitrogen adsorption/desorption (at 77 K) curves (specific surface area) distribution curves of
(A) BC, (B) BC/GO 1 and (C) BC/GO 2.

3.2. Adsorption Experiments

3.2.1. Effect of Initial Metal Ions Concentration on Metal Ion Removal

Three distinctive initial ions concentrations were experimented in this study: 20, 40 and 60 mg/L.
It can be seen from Figure 7A that the adsorption capacity of Pb(II) ions increases with an increase in
initial metal ions’ concentration values in the medium. The maximum adsorption is seen to be 214.3
mg/g for the 60mg/L initial concentration sample solution onto the BC/GO 2 adsorbent material.
BC and BC/GO 1 recorded 189.1 and 167.9 mg/g, respectively, for the 60 mg/L initial concentrations
solution medium. Evidently, BC/GO 2 always records the highest capacity followed by BC with BCGO
1 demonstrating the least capacity adsorption in all the solution categories. This suggests an interesting
discovery since pure BC is considered theoretically to require modification to increase its adsorption
capacity; hence the composition with GO for modification in this study. BC/GO 2 proved to have
a notable enhancement in the adsorption efficiency whereas BC/GO 1, with the successful bonding
(50% less GO content than BC/GO 2 according to Table 1) with BC, had lower capacities than pure
BC. This may be due to a phenomenon we intend to investigate in our follow-up publication on the
same subject. The higher adsorption capacity of BC/GO 2 is due to the abundant functional groups on
the material serving as adsorptive sites for interaction with metal ions (Pb2+) for chelation. SEM and
photographed images plus FTIR results confirm this. The highest removal efficiency (%) derived in
this experiment is 89.4%, as can be seen in Figure 7B.

Table 1. Sample code, GO-content, percentage of GO trapped and cultivation period.

Code (Name) GO-Content (% w/v) into Medium GO% Trapped Cultivation Period

BC 0 0 20 days
BC/GO 1 0.1 40% 20 days
BC/GO 2 0.1 95% 20 days
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3.2.2. Effect of the Solution pH on Metal Ion Removal

Figure 8a reveals the effect of the three different initial concentrations at 25 ◦C at an equilibrium
time te (min) of 1 h set at pH 3.5, 6 and 8.5; showing the highest removal efficiency of 89.4% at pH
8.5 with the BC/GO 2 material. This proves that the prepared materials perform best in higher pH
conditions for Pb2+ adsorption. Several publications [27,51–53] report that Pb(II) ions removal capacity
increases with a pH increase but the highest pH value recorded by most of these publications is
≤6. Its predominantly reported that at lower pH values, Pb(II) tends to be difficult to remove as a
repulsive force between the metal cations and most of the functional groups on cellulose occurs due
to protonation.

At pH 6, the adsorption capacity (in this experiment) is 84.2% (which is slightly below the highest
value (8.5)) overall, until it plateaued. These high values agree with most reports which have found
that the pH range within which Pb(II) ions are most greatly absorbed is between 4.5 to 6. However, it is
also widely established that the precipitation of metal ions occurs at higher pH values over 8–11. In this
study, minimal to almost no precipitation was witnessed even at pH 8.5 when the recorded percentage
of the removal efficiency was 90%. The high adsorption of Pb(II) onto BC/GO 2 is attributed to the
availability of numerous hydroxyl and carboxyl groups on the material which are ionised under high
pH (but not beyond 8) conditions to enhance the strong electrostatic attraction with metal ions in the
solution (Pb2+). Therefore, the pH value of most solutions was set at 6 for the following experiments
due to its positive effect.
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Figure 8. (a) Effect of solution pH on removal (b) Effect of adsorbent dosage on metal ion removal (c,d)
Effect of contact time on metal ion removal.

3.2.3. Effect of Contact Time on Metal Ion Removal

Figure 8c,d show a sharp adsorption or uptake within the first 5 min for all the materials with
BC/GO 2 expressing high values with time compared to BC, with BC/GO 1 showing the lowest
adsorption capacity of the three. Similar uptake speeds can be identified for all samples as adsorption
is sharp for the first 5 min and steadily rises from 10 min and begins to experience equilibrium from
28–30 min. The reason for the sharp uptake within 5 min could be due to the free surface area of the
materials available for bonding with the metal ions. However, as time increases and surface reactive
areas are sufficiently occupied through bonding exhaustion, the uptake plateaus, showing that it has
reached equilibrium. An uptake equilibrium in all the material adsorption cases begins at 28 min and
is maintained as time progresses.

3.2.4. Effect of Adsorbent Dosage on Metal Ion Removal

The result of the adsorbent dosage is displayed in Figure 8b where a trend is evident as the
removal efficiency increased with an increase in the adsorbent dosage. It is seen that BC/GO 2, with
the highest adsorption efficiency, registers removal efficiencies of 82.8%, 86.7% and 94.3% for a dosage
weight of 5, 10 and 15 mg, respectively. BC/GO 1 and pure BC follows the trend. The increase in
efficiency is explained by an increase in the adsorptive reactive sites and surface area in the aqueous
system for greater sequestration.
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3.3. Adsorption Kinetics

Figure 9 depicts the corresponding PSO for Pb(II) ion adsorption on to BC, BC/GO 1 and BC/GO
2 because it agrees with the linear regression plotting chosen for this experiment whereas PFO did not
conform. Both PFO and PSO were used to model the adsorption rate of metal ions onto the surface
of prepared membranes at pH 6–8 (experimental optimum) at 25 ◦C and 130 rpm. Using origin Pro
2016 software, the kinetic data, shown in Table 2, was modelled by linear regression analysis using a
PFO and PSO equation model. It was discovered that the adsorption data of Pb2+ on BC, BC/GO 1
and BC/GO 2 corresponded seamlessly with PSO, see Figure 9, and the plots show a high correlation
coefficient (R2), complying well with trusted theoretical assumptions of the PSO.
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Table 2. Results of experimental kinetic data for adsorption of Pb2+ onto BCGO materials.

Metal
Ion/Material

qe ex
(mg/g)

Pseudo-First-Order (PFO) Model Pseudo-Second-Order (PSO) Model

K1 (min) qe (mg/g) R2 K2 (min·g/mg) qe (mg/g) R2

BC 68.8 0.71 67.1 0.1821 1.75 68.9 0.998
BCGO 1 149.5 0.73 144.7 0.2343 1.75 149.8 0.998
BCGO 2 220.9 0.73 220.6 0.2976 1.75 221.8 0.999

Parameters derived from the plots for Pb(II) adsorption are shown in Table 2.
The data, shown in Table 2, further indicate that the adsorption is predominantly controlled

by chemisorption which is interpreted as a surface complexation of metal ions onto the abundant
oxygenous groups found on the reactive sites on the surface of GO as also asserted by [54]. The data
also reveal the observed increase in the uptake capacity was respondent to higher initial concentrations
of metal ions (Pb2+) solution in shorter times.

3.4. Adsorption Isotherms

From experimental equilibrium data of the Langmuir (Qmax) and the Freundlich models (Qmax),
the maximum metal ion adsorption capacity of the adsorbent exhibited the following order: Pb2+

40 ◦C-Langmuir > Pb2+ 25 ◦C-Langmuir, whereas Pb2+ 40 ◦C-Freundlich > Pb2+ 25 ◦C-Freundlich;
which could be seen from plots in Figure 10, suggesting that the adsorbent is more of a monolayer
homogeneous adsorption material rather than being heterogeneous.
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Figure 10. Adsorption isotherms of Pb(II) ions on BC/GO 2 at temperatures of 25 ◦C and 40 ◦C pH = 6.
(A) Freundlich model Plot 25 ◦C, (B) Freundlich model Plot 40 ◦C, (C) Langmuir model Plot 25 ◦C, (D)
Langmuir model Plot 40 ◦C.

Judging from the obtained coefficients given in Table 3, it can be concluded that the Langmuir
equation shows a better fit (R2 = 0.99), with a higher Qmax (mg/g) maximum adsorption capacity to
the experimental data than the Freundlich equation. The highest maximum adsorption capacity Qmax

(mg/g) was 303.0 mg/g.

Table 3. Isotherm parameters for the adsorption of Pb2+ onto BC/GO materials.

Isotherm Model Temperature R2 Values Qmax (mg/g) b (L/mg) n Kf

Langmuir 25 ◦C 0.99 285.7 1.06 - -
40 ◦C 0.99 303.0 1.75 - -

Freundlich
25 ◦C 0.98 294.2 - 1.67 2.07
40 ◦C 0.98 299.9 - 1.47 2.01

3.5. Desorption and Re-Adsorption

The samples loaded with Pb2+ were weighed into a 100 mL Erlenmeyer flask and 20 mL of 0.1 M
HNO3 and 0.1 M HCl were added and stirred for 5 min (130 rpm) 24 ◦C. The final concentrations were
detected with AAS.

There were three cycles of adsorption–desorption–re-adsorption process with the average taken
to be representative of the desorption and re-adsorption efficiency of the adsorbents as a percentage
(%). From the results in Figure 11, it is easy to indicate that HNO3 performed slightly better than HCl
by a minimal margin. The highest desorption percentage for HNO3 is 90.8% and 89.1% for HCl.
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Figure 11. Desorption results with the use of HNO3 and HCl for Pb2+.

Performing re-adsorption using the BC, BC/GO 1 and BC/GO 2, which were desorbed using
HNO3, adsorbents demonstrated efficiencies for Pb2+ close to 95%. These results suggest that both
prepared adsorbents and adsorbate (Pb2+) can be recovered and reused for about three times before
there will be a significant loss of the adsorption capacity.

These prepared materials, especially BC/GO 2, represent efficient, cost-effective and potential
adsorbents for metal ions removal due to their excellent reusability performance.

4. Conclusions

This work successfully prepared a green bacterial cellulose graphene oxide composite material;
physicochemical modification (confirmed by XRD) by means of esterification between BC and GO
(confirmed by SEM) with good levels of mass retention at higher temperatures (TGA) and found by
FTIR to richly contain hydroxyl groups, alkyl groups and carboxylate. Adsorption studies revealed
the material to have a very high removal efficiency of over 90% at pH 6–8.5 with increasing adsorption
capacity as parameters such as initial ions concentration, adsorbent dosage and contact time increase.
Adsorption data corresponded with trusted theoretical assumptions of the PSO indicating predominant
chemisorption-controlled adsorption interpreted as a surface complexation of metal ions onto the
abundant oxygenous groups found on prepared materials. Isotherm results had greater affinity with
Langmuir showing the highest maximum adsorption capacity (Qmax) 303.03 mg/g than Freundlich;
hence Langmuir’s model best describes the adsorption system. Finally, desorption and re-adsorption
experiments show that both the adsorbent and adsorbates can be over 90% desorbed using HNO3 or
HCl and reused at an efficiency of 95%. An efficient and potentially green adsorbent for metal ions
removal, especially Pb2+, from an aqueous system was produced. Compared to other adsorbents,
BC/GO 2 outperforms others recently reported for the removal of Pb2+, as shown in Table 4.
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Table 4. This paper’s results when comparing different adsorbent materials reported recently in
the literature.

Sorbent Material Adsorbate/Metal Ion High Adsorption
Capacity (mg/g) Ref.

Chitosan modified by graphene oxide Cu(II) 202.5 [55]
Cross-linked graphene oxide sheets via modified extracted cellulose Cu(II) and Pb(II) 46.39 and 186.48 [29]

Polyethylenimine coated bacterial cellulose Cu(II) and Pb(II) 61.46 and 116.41 [56]
Chemically modified cellulose (DTD) Cu(II) and Pb(II) 157.3 and 153.5 [57]

Modified gum tragacanth/graphene oxide composite Pb(II), Cd(II), and g(I) 142.50, 112.50 and 132.12 [37]
Few-layered graphene oxide nanosheets (FGO) Pb(II) 842/400 [31]
Carboxymethylated-bacterial cellulose CM-BC Cu(II) and Pb(II) 12.63 and 60.42 [53]

GO/cellulose membranes Pb(II) 107.9 [54]
This paper Pb(II) 303.0 mg/g

Follow up research is necessary to optimize the adsorption capability of BC/GO 1, the
handleability of the best adsorbent material (BC/GO 2), reusability of both materials, as well as to
check the feasibility with real industrial effluents or groundwater sample removal with Pb(II) present.
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