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Abstract: In this work, a simple and highly selective electrochemical biosensor for determination
of uric acid (UA) is synthesized by using β-lactoglobulin (BLG)-functionalized multiwall carbon
nanotubes (MWCNTs) and a platinum nanoparticles (PtNPs) nanocomposite. Urate oxidase (UOx)
can oxidize uric acid to hydrogen peroxide and allantoin, which provides a good opportunity
for electrochemical detection for UA. Under the optimized conditions, the current changes by the
UOx/Bull Serum Albumin (BSA)/BLG-MWCNTs-PtNPs/Glassy Carbon (GC) electrode with the
electrochemical method was proportional to the concentration of UA. According to experiments,
we obtained a linear response with a concentration range from 0.02 to 0.5 mM and achieved a high
sensitivity of 31.131 µA mM−1 and a low detection limit (0.8 µM). Meanwhile, nanoparticles improved
the performance of the biosensor and combined with BLG not only prevented the accumulation
of composite nanomaterials, but also provided immobilization of uricase through electrostatic
adsorption. This improves the stability and gives the constructed electrode sensing interface superior
performance in UA detection.

Keywords: β-lactoglobulin; multiwall carbon nanotubes; nanocomposite; urate oxidase; uric
acid biosensor

1. Introduction

In the treatment and diagnosis of many diseases, using biosensors to detect uric acid in humans is
of vital importance, due to the biosensor’s many advantages, such as low cost, rapid response, high
sensitivity, direct detection, and great selectivity. Biosensors have shown their great contribution in
flourishing the concept of chemically modified electrodes [1]. The most common way to improve the
performance of biosensors is to modify nanocomposite sensing material on the electrode surfaces [2].
Conductive nanomaterials have unique morphologies with high specific surface areas that usually
result in very exclusive advantages such as enhanced electronic conductivity and response to sensor
applications [3]. Their synthesis and chemical modification offer unlimited possibilities.

Multiwalled carbon nanotubes (MWCNTs) can be thought of as multiple rolled-up graphene
nanoribbon sheet structures that generally have diameters of 2–100 nm [4,5]. MWCNTs have been
widely used in nanomaterials due to their advantages of mechanical stability, electrical conductivity,
and optical properties. In addition, scientific research has found that MWCNTs can contribute to
the “mild” enzymatic catalytic pathway of biodegradation [6,7]. Since MWCNTs can serve as a good
surface architecture for biosensors, they are widely used by biosensors researchers in fields such
as the environment, medicine, bioanalysis, and agriculture [8–13]. The chemical modification of
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MWCNTs and other materials has a direct influence on their physical and chemical properties, which
are very important for the electrochemical sensors for biomolecules [14]. A number of studies have
been published using MWCNTs-based biosensors to detect different substances and they all showed
remarkable results [15–22]. Meanwhile, not satisfied with the use of pure carbon materials, scientists
focused on nanocomposite with metal nanoparticles such as Au [23], Ag [24], CuO [25], Pt [26], and
Pd [27], so as to further improve their sensitivity, conductivity, and catalytic properties. Among these,
platinum nanoparticles (PtNPs) offer many advantages, including good conductivity and a strong
ability to catalyze molecules. However, simple chemical modifications of nanomaterials may cause
biocompatibility problems in in vivo systems. Therefore, the introduction of biological materials is
an inevitable trend for future development. Additionally, the use of proteins to synthesize functional
MWCNTs appears to be a sensible choice.

β-Lactoglobulin (BLG) has many biological functions. It is an important globular protein extracted
from bovine milk in the lipocalin family of many ruminants and consists of 162 amino acids [28]. There
is a surface hydrophobic pocket on its structure so BLG is able to present different hydrophilicity and
amphiphilic properties [29]. Our previous study used BLG to adhere to a solid surface and synthesize a
BLG-MWCNTs-Gold nanoparticles nanocomposite for glucose detection. The results proved that BLG
can improve the dispersibility of hydrophobic particles in solution [30]. Furthermore, as an excellent
surfactant with lower toxicity and good biocompatibility, BLG can not only protect the activity of
bioactive compounds but can also contribute to the stability of analysis. Common dispersants include
poly dimethyl diallyl ammonium chloride and polyvinyl pyrrolidone non-covalently bonded to
graphene [31,32].

Uric acid (UA), also known as 2,6,8-trihydroxypurine, is a significant metabolic intermediate in
the human body [33]. In a normal state, the concentration of uric acid remains in a stable range, and
the quantity of uric acid generated in the body is similar to its metabolic discharge during normal
activities. Uric acid is an important marker molecule in serum, urine, and other body fluids, and is
used to detect diseases, such as leukemia and pneumonia. The concentration of uric acid is related to
purine metabolism [34,35]. Urate oxidase can specifically identify and catalyze uric acid. It contains
34 amino acids and has two T-fold domains with similar structures, which play an important role in
the purine metabolism pathway. Different detection areas of uric acid have different concentrations.
In serum, normal levels of uric acid are between 2.18 and 7.7 mg/dL. However, in urinary excretion, the
concentration will remain within the range 25–74 mg/dL. The concentration of uric acid is an important
factor in maintaining long-term stability and upsetting this balance can have serious effects on human
cell’s activities. Some diseases, such as gout, high cholesterol, high blood pressure, kidney disease,
kidney damage, and cardiovascular disease, are caused by high levels of UA in the blood [36–38].
Conversely, other diseases, such as oxidative stress and multiple sclerosis, are caused by abnormally
low uric acid levels in humans [39]. Therefore, the detection of uric acid has a vitally important role in
human disease diagnosis.

In this work, firstly, based on its amphiphilic property, BLG was combined with MWCNTs
so that the MWCNTs would be well distributed. Secondly, modified BLG-MWCNTs that were
previously synthesized on the surface of a glassy carbon electrode (GCE) and PtNPs were
deposited on the interface by electrodeposition. Finally, we immobilized urate oxidase (UOx) to
BLG-MWCNTs-PtNPs/GCE through covalent binding with the help of Bull Serum Albumin (BSA),
and used it to study the electrochemical properties of UA. In the present work, we also prepared an
innovative UOx/BSA/BLG-MWCNTs-PtNPs/GCE sensing interface for the first time. Based on the
results of repeated experiments, we demonstrated a reliable UA sensing system with strong sensitivity,
good stability, fast response, simple operation, and a simplified direct detection process that can allow
the development and production of a large number of portable uric acid biosensors.
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2. Materials and Methods

2.1. Chemicals and Reagents

Uric acid, urate oxidase, K2PtCl6, BSA, β-lactoglobulin, dopamine hydrochloride, cysteine (97%),
glutathione, urea, and cholesterol were obtained from Sigma Aldrich (Saint Louis, MO, USA). Glucose
was obtained from Aladdin Industrial Corporation (Shanghai, China). MWCNTs (450 nm diameter,
10 µm average length, and >95% purity) were obtained from Alpha Nano Technology Co. (Nanjing,
China). In this work, all other chemicals were of analytical reagent grade and all relevant experiments
used Millipore milli-Q ultrapure water.

2.2. Preparation of the UOx/BSA/BLG-MWCNTs-PtNPs/GCE

First, MWCNTs were dispersed in BLG solution (2 mg/mL) under ultrasonic agitation for 60 min,
so that BLG could functionalize MWCNTs, and the BLG-MWCNTs were obtained by centrifugation at
5000 rpm for 20 min. They were redispersed in ultra-pure water for ultrasonic treatment for subsequent
experiments. Then the GC electrode was pre-treated by polishing with 0.3 µm and 50 nm α-alumina
powder and ultrasonically cleaned in ethanol and double distilled water for 20 min in order to remove
the substance with physical adsorption. The GC electrode was scanned at 0.5 M H2SO4 under cyclic
voltammetry until stable. The electrode was ultrasonically cleaned in doubly distilled water and
ethanol for 5 min and blown dry by using N2. Next, the GCE was modified with BLG-MWCNTs by
adsorption. PtNPs were obtained through electrodeposition (10 mM K2PtCl6, 0.1 M H2SO4, −750 mV,
400 s) in order to fabricate BLG-MWCNTs-PtNPs/GCE. Finally, we prepared the UA biosensor by
dropping 8 µL UOx (1 mg/mL) mixed with 3 µL BSA (1 mg/mL) onto the BLG-MWCNTs-PtNPs/GCE.
The unbound impurities were eluted by Phosphate Buffer Solution (PBS) and stored in a freezer at
4 ◦C until used in our research. The whole preparation and detection conceptual process is presented
in Scheme 1.
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Scheme 1. A schematic diagram of the reaction principle and preparation process of the uric acid sensor.

2.3. Apparatus and Measurements

The X-ray diffraction (XRD) analysis was obtained using a Rigaku D/max-rA with Cu Kα radiation
(λ = 1.5418 Å) (Rigaku, Osaka, Japan). A Tecnai G2 F20 instrument (Philips, Amsterdam, the
Netherlands) was used for transmission electron microscopy (TEM) and energy-dispersive X-ray
spectroscopy (EDX). We used a Tensor 37 FT-IR (Bruker, Karlsruhe, Germany) to obtain Fourier
Transform Infrared Spectroscopy (FT-IR) spectra. A working electrode (GC electrode), counter
electrode (Ag/AgCl; saturated KCl), and reference electrode (platinum wire) constituted a conventional
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three-electrode system. The 283 Potentiostat/Galvanostat electrochemical workstation (EG&G PARC
with M270 system, Boston, MA, USA) provided all the electrochemical measurements.

3. Results and Discussion

3.1. Morphologies of BLG-MWCNTs-PtNPs Nanocomposites

In this study, the morphological characterizations of MWCNTs, BLG-MWCNTs, and
BLG-MWCNTs-PtNPs were revealed by TEM and are shown in Figure 1. In order to determine the
structure of composite materials, TEM examinations were conducted at different levels of magnification.
Figure 1 shows the microstructures of MWCNTs (Figure 1A) and BLG-MWCNTs (Figure 1B). It is
known that MWCNTs generally consist of several graphite layers of different diameter, like coaxial
cables. There are two disulfide bonds and one free sulfhydryl group in the structure of a BLG,
which improves the dispersibility of composite materials. Taking advantage of abundant amino acids
from BLG-MWCNTs, it is easier for Pt nanoparticles to anchor to active sites. Figure 1C shows the
result of the synthetic nanocomposite. PtNPs are dispersed on the surface of the BLG-MWCNTs
without accumulation and agglomeration. We also analyzed the EDX spectra of BLG-MWCNTs-PtNPs
(Figure 1D). EDX analysis revealed that the nanocomposite consisted of C, O, Cu, and Pt elements.
Cu and O peaks were from the substrate. In conclusion the BLG-MWCNTs-PtNPs nanocomposite was
synthesized successfully.
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Figure 1. TEM results of MWCNTs (A), BLG-MWCNTs (B), and BLG-MWCNTs-PtNPs (C); EDX
spectrum (D) of BLG-MWCNTs-PtNPs nanocomposite; XRD result of BLG-MWCNTs-PtNPs (b) and
MWCNTs (a) (E); FT-IR result of BLG-MWCNTs-PtNPs (b) and MWCNTs (a) (F).

XRD results are shown in Figure 1E. Comparing curve a with curve b, the result shows that curve
b has the characteristic peak of Pt nanoparticles corresponding to diffraction peaks (111), (200), and
(220). There are no other metals in the composite nanomaterials; the diffraction peaks at 2θ values of
39.5, 44.6, and 64.9 correspond to the crystal plane peaks (111), (200), (220), and (311) of platinum metal.
This means that the composition of the composite nanomaterials is as expected. The FT-IR result is
shown in Figure 1F. Curve a shows the special absorption peak positions of 3429 cm−1, 1729 cm−1,
1625 cm−1, 1219 cm−1, and 1055 cm−1 corresponding to absorption peak chemical bonds of O–H, C=O,
C=C, C–O–C, and C–O. Curve b shows the absorption peaks at 3429 cm−1 (O–H), 1219 cm−1 (C–O–C),
and 1055 cm−1 (C–O) decrease and flatten with the combination of BLG. In addition, the absorption
peak at 1729 cm−1 (C=O) decreased because PtNPs attached to the materials. When PtNPs were
modified onto the materials, they affected the ability of the groups to absorb infrared light. Therefore,
the BLG-MWCNTs-PtNPs nanocomposite was successfully prepared.

3.2. Electrochemical Activity of Nanocomposite Electrodes

Figure 2 shows the cyclic voltammogram (CV) responses of different modified electrodes.
Two trends of significant redox peaks can be observed at 190 and 290 mV. We can analyze the
electroactive surface area of the modified electrodes by comparing Ip based on the Randles-Sevcik
equation [40]:

Ip = 2.69 × 105AD1/2n3/2v1/2C (1)

Redox peak current, Ip, can be calculated where A is the electrode’s electroactive surface area, D is
the diffusion coefficient (6.70 ± 0.02) × 10−6 cm2 s−1, n is the number of electrons participating equal
to 1, v is the scan rate, and C is the concentration of the probe molecule (10 mM) [27]. With reference to
the above equation and CVs, the electroactive surface area of the BLG-MWCNTs-PtNPs/GC electrode
can be calculated to be 1.6 times higher than that of the BLG-MWCNTs/GC electrode, 1.9 times higher
than that of the MWCNTs/GC electrode, and 2.2 times higher than that of the bare GC electrode. These
data undeniably show that BLG-MWCNTs-PtNPs/GC electrodes are excellent media for electron
transfer between the working electrodes and [Fe(CN)6]3−. This excellent result was attributed to the
synergistic effects of BLG and PtNPs functional MWCNTs, such as large surface area, high electrical
conductivity, large edge, basal ration, and catalytic activity.



Materials 2019, 12, 214 6 of 12Materials 2019, 12, x FOR PEER REVIEW 6 of 12 

 

 
Figure 2. Cyclic voltammograms (CVs) of GC electrode (a), MWCNTs modified GC electrode (b), 
BLG-MWCNTs modified GC electrode (c) and BLG-MWCNTs-PtNPs modified GC electrode (d) 
scanned in 0.1 M KCl solution with 10 mM [Fe(CN)6]3−. 

3.3. Optimization of the Testing Environment 

Figure 3 shows the optimization results of the pH of uric acid detection with the UOx/BSA/BLG-
MWCNTs-PtNPs/GCE. The scan rate of uric acid detection is very important. The current response 
of different scan rates will produce different results. Figure S1 shows the CV results in the same uric 
acid solution conditions (buffer pH = 7.0, scanning voltage range −600~800 mV, 0.9 mM) under 
different scan rates. We selected the representative coordinate point scanning rate from 10 to 100 
mV/s. The current value is proportionally related to the scanning rate. As the scanning rate increased, 
the current response also increased. However, if the scan rate is too high, it will affect the modified 
electrode’s stability, especially the activity of the uric acid oxidase, and shorten the life of the sensor. 
After a long period of experimentation and contrast, we selected a scanning rate of 50 mV/s as the 
best scanning rate for the system to detect uric acid. 

In order to obtain a more intuitive understanding of the influence of pH change, we also studied 
different pH environments. Figure 3A shows for various pH gradients (pH = 6.0, 6.5, 7.0, 7.5, 8.0, and 
8.5) the response to 0.9 mM uric acid. We can see that within the range of pH = 6.0 to pH = 7.0, the 
electrodes current response of uric acid increased as the pH value was increased. However, when the 
pH value was greater than 7.0, the current response of uric acid declined gradually. Figure 3B 
illustrates that the testing environment of pH = 7.0 is the optimal pH for catalytic activity of uric acid 
oxidase. 

 

Figure 2. Cyclic voltammograms (CVs) of GC electrode (a), MWCNTs modified GC electrode (b),
BLG-MWCNTs modified GC electrode (c) and BLG-MWCNTs-PtNPs modified GC electrode (d)
scanned in 0.1 M KCl solution with 10 mM [Fe(CN)6]3−.

3.3. Optimization of the Testing Environment

Figure 3 shows the optimization results of the pH of uric acid detection with the UOx/BSA/
BLG-MWCNTs-PtNPs/GCE. The scan rate of uric acid detection is very important. The current
response of different scan rates will produce different results. Figure S1 shows the CV results in the
same uric acid solution conditions (buffer pH = 7.0, scanning voltage range −600~800 mV, 0.9 mM)
under different scan rates. We selected the representative coordinate point scanning rate from 10
to 100 mV/s. The current value is proportionally related to the scanning rate. As the scanning rate
increased, the current response also increased. However, if the scan rate is too high, it will affect the
modified electrode’s stability, especially the activity of the uric acid oxidase, and shorten the life of the
sensor. After a long period of experimentation and contrast, we selected a scanning rate of 50 mV/s as
the best scanning rate for the system to detect uric acid.
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In order to obtain a more intuitive understanding of the influence of pH change, we also studied
different pH environments. Figure 3A shows for various pH gradients (pH = 6.0, 6.5, 7.0, 7.5, 8.0, and
8.5) the response to 0.9 mM uric acid. We can see that within the range of pH = 6.0 to pH = 7.0, the
electrodes current response of uric acid increased as the pH value was increased. However, when
the pH value was greater than 7.0, the current response of uric acid declined gradually. Figure 3B
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illustrates that the testing environment of pH = 7.0 is the optimal pH for catalytic activity of uric
acid oxidase.

3.4. Response of UOx/BSA/BLG-MWCNTs-PtNPs/GCE to Uric Acid

Based on the constructed UOx/BSA/BLG-MWCNTs-PtNPs/GCE, under optimal conditions,
we used the cyclic voltammetry method for continuous scanning of the uric acid solution in different
concentrations ranging from 0 to 3.0 mM. UA was detected in pH 7.0 phosphate buffer solution
and results were shown in Figure S2. Oxidation peaks near 400 mV were observed in the solution
containing UA. The current value enhanced gradually with the increase in UA concentration, which
indicated that UA was oxidized by the UOx. Voltage optimization results also prove that the optimal
operating voltage is 400 mV, which is shown in Figure S3. Therefore, 0.4 V could be used as the
working voltage for UA detection.

Figure 4A shows the amperometric response after continuous progressive addition of uric acid
with UOx/BSA/BLG-MWCNTs-PtNPs/GCE (0.1 M PBS, pH 7.0) at working potential 0.4 V. The UA
biosensor could reach 95% of the maximum current within 5 s, indicating that it had a rapid response
to uric acid. Through the calibration curve of the UA biosensor displayed in Figure 4B, we see that UA
concentration had a linear relationship with current response from 0.02 to 0.5 mM. The result can be
summarized as y = 0.0697 + 31.131C (R2 = 0.992). In this linear regression, y represents the measured
current value and the concentration of UA is indicated as C. Sensitivity is calculated to be 31.131 µA
mM−1. According to the definition from International Union of Pure and Applied Chemistry (IUPAC),
a signal is considered to be credible when the signal-to-noise ratio is equal to 3 [41]. Based on this
theory, the detection limit of the UA biosensor was 0.8 µM (S/N = 3).
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Figure 4. (A) Amperometric response after continuous progressive addition of uric acid (UA) with
UOx/BSA/BLG-MWCNTs-PtNPs/GCE in 0.1 M PBS solution under stirring; (B) the calibration curve
of the relationship between UA concentration and amperometric value.

Compared with other studies listed in Table 1, the UOx/BSA/BLG-MWCNTs-PtNPs/GCE
electrode system shows superiority in terms of detection limit or linear range and improves the
uric acid detection level in the biosensor area.
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Table 1. Characteristics of various amperometric uric acid biosensors.

Immobilization Materials Detection
Technique

Detection
Limit (µM)

Linear Range
(µM) pH Reference

Platinum–nickel/multiwalled carbon
nanotubes

Cyclic
voltammetry 0.03 0.1–240.4 7.0 [42]

Polyethylenimine-multiwall carbon
nanotubes/GCE

Differential pulse
voltammetry 0.1 0.5–50 7.4 [43]

Graphene oxide-uricase/GCE Cyclic
voltammetry 3.45 20–490 6.5 [44]

Graphite screen-printed
electrodes/Prussian

blue/poly(4-aminosalicylic
acid)/uricase

Chronoamperometry 3.0 10–200 8.27 [45]

Cellulose acetate deposited
screen-printed carbon electrode

pre-modified with cobalt
phthalocyanine

Chronoamperometry 15 15–250 9.2 [46]

Screen-printed electrode modified with
Prussian blue/uricase Chronoamperometry 10 30–300 8.5 [36]

UOx/BSA/BLG-MWCNTs-PtNPs/GCE Chronoamperometry 0.8 20–500 7.0 This work

3.5. Reproducibility, Stability, and Selectivity of the UA Biosensor

In order to assess the reproducibility of the UOx/BSA/BLG-MWCNTs-PtNPs/GCE response to
UA, we experimented with curve calibration by executing five sequences and achieved results with a
relative standard deviation value of 3.8%. The electrostatic adsorption of BLG and UOx provides a good
environment for the enzyme, which is why the result showed a good repeatability of the UA biosensor.
We also explored the stability of the UOx/BSA/BLG-MWCNTs-PtNPs/GCE system, recording the
current value of 0.5 mM UA detection by using the UOx/BSA/BLG-MWCNTs-PtNPs/GCE every
three days until the 19th day under the same conditions (stored at 4 ◦C). The current values are
15.4 µA, 15.2 µA, 14.8 µA, 14.7 µA, 14.3 µA, 14.0 µA, and 13.9 µA, respectively. After 19 days, the
current value fell to 90.3% of the first day of detection, showing a relatively stable decline. Finally,
we studied the selectivity of the UA biosensor. We investigated some interfering substances that
could possibly have influence, such as dopamine, glucose, cysteine, glutathione, urea, and cholesterol.
By using the chronoamperometry method, when 0.1 mM uric acid was adding, the current responded
rapidly and remained stable. Interfering substances were then added one by one to assess the effect
on the biosensor response. Figure 5 shows the comparison; UA caused a significant current decrease
according to the UOx/BSA/BLG-MWCNTs-PtNPs/GCE. Therefore, the results demonstrated that
interference of these substances can be neglected, meaning that they had no obvious interference
effect on UA detection, and the developed method provided excellent selectivity and reliability for the
UA biosensor.

3.6. Analysis of Uric Acid in Biological Samples

An experiment was designed to investigate the application of the UA biosensor to biological
samples. The modified Pt electrode interface was used to test in human serum (20-fold diluted
with buffer). Normally, the uric acid level in human’s serum is in the range of 0.13–0.46 mM. If the
concentration of uric acid in the body exceeds this level, it can cause complications. The experiments
were conducted using the standard addition method and the results of three samples are shown in
Table 2.
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Table 2. Recovery ratios of uric acid in 20% serum.

Sample Added UA (mM) Calculated UA (mM) Recovery (%) UA RSD (%) UA

1 0.200 0.191 95.50 2.97
2 0.300 0.322 107.33 4.18
3 0.400 0.423 105.75 3.45

RSD: Relative Standard Deviation.

This demonstrated that the data provided by the UA biosensor with the UOx/BSA/BLG-MW
CNTs-PtNPs/GCE modified interface were excellent, with recovery ranging from 95.5% to 107.33%.
The RSD was also in an excellent range of 2.97–4.18%. All these results demonstrate the promising
application potential of our biosensor.

4. Conclusions

In conclusion, we developed a highly selective and simple electrochemical biosensor for the
determination of uric acid based on UOx catalysis with a UOx/BSA/BLG-MWCNTs-PtNPs/GCE
for the first time. Based on a UOx/BSA/BLG-MWCNTs-PtNPs/GCE sensing interface, the sensor
achieved a good linear relationship between the electrochemical current response and concentration of
uric acid. The innovative use of BLG not only improved performance but also presented great potential
for biosensors, especially for detection in vivo. We proposed an innovative method for real-time
dynamic multi-index detection by integration, with excellent biocompatibility, materials that could
play a vitally important role in both medical and scientific research. Meanwhile, this study provided a
powerful new method for the electrochemical detection of uric acid and also made a great contribution
to broadening application prospects for the development of UA biosensors in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/2/214/s1,
Figure S1: CVs of the scan rate of UA detection with UOx/BSA/BLG-MWCNTs-PtNPs/GCE in the same uric
acid solution conditions (buffer pH = 7.0, the scanning voltage range −600~800 mV, 0.9 mM) under different
scan rates (10 mV/s, 20 mV/s, 30 mV/s, 40 mV/s, 50 mV/s, 60 mV/s, 80 mV/s, 100 mV/s); Figure S2: CVs
study of UOx/BSA/BLG-MWCNTs-PtNPs/GCE upon different concentrations of UA (0, 0.15, 0.3, 0.45, 0.6, 0.9,
1.2, 1.5, 1.8, 2.1, 3.0 mM) into pH 7.0, 0.1 M PBS solution under stirring; Figure S3: Amperometric response of
UOx/BSA/BLG-MWCNTs-PtNPs/GCE upon successive additions of 50 µM uric acid into 0.1 M PBS solution
under stirring at operating voltages from 250 mV to 450 mV; the contrast of sensitivity is shown in a bar graph (B).
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