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Abstract: As a newly-developed two-dimensional (2D) material of group-IVA, few-layer silicon (Si)
nanosheets were prepared by the liquid phase exfoliation (LPE) method. Its non-linear saturable
adsorption property was investigated by 532 and 1064 nm nanosecond lasers. Using Si nanosheets
as the saturable absorber (SA), passive Q-switched all-solid-state lasers were demonstrated for the
first time. For different laser emissions of Nd3+ at 0.9, 1.06, and 1.34 µm, the narrowest Q-switched
pulse widths were 200.2, 103.7, and 110.4 ns, corresponding to the highest peak powers of 2.76, 2.15,
and 1.26 W. The results provide a promising SA for solid-state pulsed lasers and broaden the potential
application range of Si nanosheets in ultrafast photonics and optoelectronics.
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1. Introduction

The most famous 2D material, graphene, was exfoliated successfully from graphite for the
first time in 2004 [1]. Since then, other 2D materials like graphene oxide [2], black phosphorus
(BP) [3], topological insulators [4], and transition metal dichalcogenides (TMDs) [5] have been
widely investigated and found to have potential applications in many fields such as biology, medical,
communication and microelectronics. In the nonlinear optical (NLO) field, 2D materials have received
increasing attention in recent years [6–9].

Passive Q-switching is the preferred technique to generate nanosecond and even picosecond laser
pulses which possesses many advantages such as high performance, simplicity, and compactness.
However, traditional saturable absorbers (SAs), like ion-doped crystals and semiconductor
saturable absorber mirrors (SESAMs), are wavelength-sensitive and suffer from narrow modulation
bandwidth. [10–13]. The emergence of graphene-like 2D materials accelerates the development of
passively Q-switched lasers to an ultrabroad spectral region [5,14,15]. Compared with the traditional
SAs, the 2D SAs have shown excellent saturable absorption properties including ultrafast recovery
time, controllable modulation depth, easy fabrication, wide waveband absorption, as well as low cost.
They can easily generate short laser pulses by compressing the laser sizes, which is superior to active
Q-switching methods, e.g., acousto-optic [16] and electro-optic modulation [17].

There are still many problems in the practical applications of 2D SAs. For example, graphene
possesses a low modulation depth and large non-saturable losses [14], BP is very unstable in ambient
atmosphere and may degrade within a few hours, and topological insulators require complex
preparation processes [18]. So the active search for more superior 2D SAs is still underway. The features
of some typical SA materials are shown in Table 1 (CNT is carbon nanotubes). We have tried to
find suitable 2D SA materials from the group IVA elements. Such as silicon (Si), germanium (Ge),
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and tin (Sn), which are isoelectronic to graphene. Among them, Si is one of the most important
materials in modern electronic technology and its nanostructure has many applications due to
size-confinement effect [19–21]. Si-based devices are easier to fabricate as Si is compatible with
complementary metal-oxide-semiconductor (CMOS) technology. Extensive research has been done on
the synthesis of silicon quantum dots (zero-dimensional), silicon nanowires (one-dimensional), and
2D allotropic forms [22–24]. At the same time, the nanostructure Si materials have been promising
candidates as anodes of lithium-ion batteries, which can be used in highenergy density portable
electronics, large-scale energy storage systems, and electrical vehicles [25,26].

Table 1. The pros and cons of some typical saturable absorber (SA) materials.

Materials Advantages Disadvantages

Semiconductor saturable absorber
mirror (SESAM)

Mature technology;
Wide applications

Complex fabrication;
Narrow wavelength range;
Recovery time and modulation
depth are difficult to adjust;
High cost

Graphene

Zero band gap and no selectivity
for wavelength range;
Simple fabrication;
Low cost

Low modulation depth;
Large nonsaturable losses

Carbon nanotube (CNT) Wide waveband absorption;
Low cost

The absorption wavelength range
is determined by the diameter of
the tube; Difficult to disperse

Black phosphorus (BP) Direct and layer-sensitive bandgap Unstable in ambient atmosphere

Tungsten disulfide(WS2) Layer-sensitive bandgap Complex fabrication

Recently, there have been many reports on the synthesis of Si nanosheets. For example, high
quality Si nanosheets were prepared from inexpensive natural clays via a one-step simultaneous
molten salt-induced exfoliation and chemical reduction process [27]. Using graphene oxide sheets
(GOs) as sacrificial templates, Lu et. al developed a facile method to synthesize free-standing ultrathin
silicon nanosheets [28]. Amine-modified Si nanosheets were obtained by the exfoliation of layered
polysilan. They are easily self-assembled into a regular stacking structure [29]. At present, research
on the non-linear optical applications of Si nanosheets is still very scarce and its non-linear saturable
properties were demonstrated in 2018 for the first time [30].

In this study, the saturable absorption response of Si nanosheets was investigated at 532 and
1064 nm by nanosecond lasers. The modulation depth and saturable intensity were measured to
be 18.9% and 16.2 MW/cm2, 17% and 19.8 MW/cm2 for 532 and 1064 nm wavelength, respectively.
Using Si nanosheet-coated quartz substrate as SA, the passively Q-switched operations for solid-state
lasers were realized at 0.9, 1.06, and 1.34 µm with a compact concave-plane resonator.

2. Materials and Methods

Liquid phase exfoliation (LPE) has been widely used to produce high-quality 2D nanosheets
because of its effectiveness and straightforwardness. In this study, the few-layer Si nanosheets were
prepared from bulk Si by the LPE method assisted with sonication. High purity ethanol was used
as the organic solvent for the feature of hypotoxicity. In the process of exfoliation, no surfactant was
required due to the on-surface isolation. Firstly, a commercial high-purity bulk Si crystal (purity
99.999%) was milled in an agate mortar for 30 min, and the obtained Si powder was dissolved in
absolute ethanol. The mixed liquid was ultra-sonicated for 2 h. The dispersion was then settled for
3 days to deposit undispersed particles. The final supernatant liquor was the needed Si nanosheets
dispersion (Figure 1a), which was directly used for the saturable absorption property measurement.
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For all other measurements in this paper, the Si nanosheet dispersion was dropped on the quartz
substrate, and the dried component acted as the experimental sample (Figure 1a).
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Figure 1. (a) Photographs of the Si nanosheet dispersion and the Si nanosheets coated on quartz
substrate. (b) Scanning electron microscope (SEM) image of Si powder and (c) SEM image of Si
nanosheets. (d,e) Atomic force micrsocope (AFM) image and corresponding height profile of Si
nanosheets. (f) Raman spectra of bulk Si and Si nanosheets.

The morphologies of Si crystal powder and Si nanosheets were observed by a field-emission
scanning electron microscope (FE-SEM, S-4800, Hitachi, Kyoto, Japan). As shown in Figure 1b, the Si
powder displayed representative solid agglomerates with typical dimensions of several micrometers,
which formed a stacked layered structure. The cleavage steps and cleavage planes manifested the weak
binding force among layers. The SEM image of Si nanosheets were shown in Figure 1c. The nanosheets
exhibited laminar morphology, which was in stark contrast to the appearance of bulk Si. Meanwhile, the
Si nanosheets are almost transparent because of their ultrathin nature. The thickness of Si nanosheets
was measured by atomic force microscopy (AFM, MultiMode IIIa, Agilent, California, America). The Si
nanosheets dispersion was dropped onto a sapphire substrate and settled in atmosphere for 24 h
before measurement. Figure 1d,e show a typical AFM image and the corresponding height profile of Si
nanosheets. The thickness was in the range of 4.67–5.58 nm, and the average thickness was 5.28 nm.
Considering the single layer thickness of Si nanosheets is 0.31 nm [13], our sample is 17 layers.

To further confirm that the prepared sample was few-layer Si nanosheets, the Raman spectra
(excitation wavelength: 633 nm, LabRAM HR800, HORIBA Ltd., Kyoto, Japan) of bulk Si powder and
Si nanosheets were measured. The detailed results are shown in Figure 1f. For the bulk Si powder
obtained from bulk material, there was one sharp Raman peak at 522.6 cm−1 originating from the
microcrystalline [31]. For the Si nanosheets, the Raman peak appeared at 511.8 cm−1, which presented
an obvious red shift of 10.8 cm−1 with a broadened FWHM (full width at half maximum), compared
to the Si powder. Such properties of Si nanosheets have been predicted in theory and proved by
different experiments [27,28,32–34], and our measurement results are consistent with those obtained
by J. Ryu et. al [27], where a 11 cm−1 red shift to 508 cm−1 observed from the 5 nm thickness Si
nanosheets. Meanwhile, the commonly observed peaks corresponding to amorphous surface oxides
between 300 and 450 cm−1 as well as the peak at 480 cm−1 appearing in amorphous Si were not found
in our measurement.
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3. Results and Discussion

3.1. Saturable Absorption Performance

A 10 Hz, nanoseconds electro-optic Q-switched Nd:YAG laser (self-built) was used as the light
source to characterize the saturable absorption property of Si nanosheets by measuring its transmittance
variation with the incident power density. The pulse durations of fundamental wave (1064 nm) and
its frequency doubling wave (532 nm) were 19, 16 ns, respectively. The as-prepared Si nanosheets
dispersion was held in a quartz cuvette with 1 mm thickness. As a control test, a quartz cuvette with
solvent alcohol was measured at different energy levels and no NLO effect was observed. So the
affection of cuvette and alcohol on the NLO response signal can be neglected. The experimental results
are shown in Figure 2.
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Figure 2. Transmittance versus incident power intensity for Si nanosheets dispersion at (a) 532 and
(b) 1064 nm.

The power-dependent transmittance can be fitted by the following equation [35]:

T = A exp

(
−δT

1 + I
IS

)
(1)

where A is a normalization constant, δT is the absolute modulation depth, I is the incident intensity,
and IS is the saturation intensity. The fitted absolute modulation depths are 18.9% at 532 nm and 17.0%
at 1064 nm. Considering the initial transmittance of Si nanosheets dispersion were 77% (532 nm) and
80% (1064 nm), the ultimate transmittance can reach about 96% in theory. The saturation intensity IS

were fitted to be 16.2 MW/cm2 for 532 nm and 19.8 MW/cm2 for 1064 nm, respectively.

3.2. Passively Q-Switched Operation

Using Si nanosheet-coated quartz substrate as SA, passively Q-switched lasers were operated with
Nd3+ doped crystals as gain materials at 0.9, 1.06, and 1.34 µm wavelengths. Similar to our previous
report [36], a plano-concave laser resonator was used in this work as shown in Figure 3. An 808 nm
fiber-coupled diode laser with the core diameter of 100 µm was used as pump power. The pump light
was delivered into the Nd3+ laser crystal by a 1:1 imaging module. A Nd:YAG crystal was used as gain
material with the dimensions of 4 × 4 × 7 mm3 for 0.9 and 1.06 µm laser operations. Both surfaces
of this crystal were anti-reflection (AR) coated at 0.9–1.1 µm waveband. For 1.34 µm emission, the
gain medium was a Nd:YVO4 crystal with the dimensions of 3 × 3 × 5 mm3. To avoid the prior
oscillation of 1.06 µm laser, its transmission surfaces were both AR coated at 1.06 and 1.34 µm. M1 was
a flat mirror which AR coated at 808 nm, and high-reflection (HR) coated at working wavelengths.
M2 was a concave mirror and partially transmitted at working wavelengths. Under our experimental
abilities, the M2 parameters were respectively optimized at each wavelength: for the 0.9 µm laser
operation, its transmittance T = 5%, the curvature radius R = 50 mm. For 1.06 µm, T = 10%, R = 100 mm.
For 1.34 µm, T = 5%, R = 100 mm. The cavity length between M1 and M2 was 27 mm for the 0.9 µm
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laser, 24 mm for 1.06 µm laser and 27 mm for 1.34 µm laser, respectively. The temporal behaviors of
the passively Q-switched laser were recorded with a digital oscilloscope (DPO7104, Tektronix Inc.,
Beaverton, OR, America).
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Figure 3. Experimental set-up of the Si nanosheets Q-switched solid-state laser.

The continuous-wave (CW) laser output was obtained when the Si nanosheet SA was removed
from the resonator. The optical conversion efficiencies were 34.1%, 36.1% and 42.8% for 0.9, 1.06 and
1.34 µm, respectively. When the Si nanosheet SA was inserted into the laser cavity and the pump
power increased, the stable passively Q-switched operation could be achieved. The detailed results are
summarized in Figures 4 and 5.

The threshold pump power for the passively Q-switched operations were 2.41, 1.10, and 0.27 W
for 0.94, 1.06, and 1.34 µm operations, respectively. As shown in Figure 4a–c, the Q-switched average
output power and peak power increased linearly with the absorbed pump power for three wavelengths.
To prevent the Si nanosheets SA from being damaged and lowering the thermally induced loss in the
laser crystal and SA, the pump power was limited in a certain range. The stable passively Q-switched
operations could be maintained until the absorbed pump power increased to 4.52, 3.35, and 1.47 W for
0.94, 1.06, and 1.34 µm operations, respectively. The achieved maximum Q-switched average output
powers of 0.94, 1.06, and 1.34 µm were 164, 131, and 79 mW, corresponding to the absorbed pump
powers of 4.5, 3.35, and 1.47 W, respectively. The highest peak powers were 2.76, 2.15, and 1.26 W for
0.94, 1.06, and 1.34 µm, respectively.

With the absorbed pump power elevated, the time interval between the adjacent pulses and
the pulse durations decreased for three wavelengths. During the 0.9 µm laser operation, in the
absorbed pump power region of 2.41–4.52 W the pulse width decreased from 403 to 200.2 ns, and
the corresponding repetition frequency increased from 166.6 to 294.5 kHz. For 1.06 µm operation,
the pulse width decreased from 248.6 to 103.7 ns, and the repetition frequency increased from 319.8
to 587 kHz in the absorbed pump power range of 1.10–3.35 W. For the 1.34 µm operation, the pulse
width varied from 296 to 110.4 ns with the repetition frequency monotonously increased from 238.5 to
570 kHz in the absorbed pump power region of 0.27-1.47 W. The largest pulse energies calculated were
0.55, 0.22, and 0.14 µJ for 0.9, 1.06, and 1.34 µm, respectively.

The typical pulse behaviors at three wavelengths are demonstrated in Figure 4d–f. The tidy and
clean pulse sequences indicated the good results of Si-based Q-switched lasers. When the pump power
was increased further, the pulse performance became degraded and the satellite pulses were found in
the neat pulse sequence. If the pump power continued to be increased, the Q-switched pulse trains
would quickly turned into CW operation. The stable Q-switched pulse trains would reappear if the
pump power were adjusted back to the previous range. This indicated the Si SA was not damaged in
the Q-switching process.

Figure 5a–c show the emission spectrum of passively Q-switched lasers; the center wavelengths
were located at 946.4, 1064.3, and 1341.8 nm for 0.9, 1.06, and 1.34 µm operations, respectively.
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The Q-switching conversion efficiencies with respect to the CW operiation were 10.6%, 10.8%,
and 12.5% for 0.9, 1.06, and 1.34 µm lasers, respectively. The results revealed the notable non-saturable
loss of the present Si-based SA component. On account of the SA substrate being an uncoated quartz
glass, which has large absolutely non-saturable linear loss, the insertion loss of the Q-switch mode has
been appreciably increased. Therefore, the low Q-switching conversion efficiency with respect to the
CW mode were mainly attributed to the uncoated quartz substrate, not the Si nanosheet itself.

The detailed output characteristics of Si-based Q-switched lasers at three wavelegths are
summarized in Table 2 with some recent experimental results about common 2D materials (graphene,
MoS2, antimonene (Sb), Bi2Se3, ReS2) based Q-switched lasers as comparisons (λ is the wavelength,
LC is the laser crystal, τ is the pulse width, f is the repetition rate, SP is the single pulse energy, PP is
the peak power). When the laser crystals are of similar Nd3+ ions doped crystals, among the listed
2D materials in Table 1, the Si-based laser gives a narrower pulse width and higher peak power than
MoS2 and Sb, but is inferior to graphene for the 0.9 µm laser operation. For 1.06 µm laser operation,
the pulse width of Si nanosheets is narrower than graphene, MoS2, and Bi2Se3. In addition, the peak
power of Si is higher than MoS2 and Bi2Se3, but lower than graphene. For the 1.34 µm laser operation,
Si nanosheets give the narrowest pulse widths among four kinds of materials. But the pulse peak



Materials 2019, 12, 201 7 of 9

power was lower than graphene and Bi2Se3. In summary, compared with other typical 2D materials,
Si nanosheets have exhibited comparable passively Q-switching properties under similar conditions
like the gain medium and output wavelength.

Table 2. Passively Q-switching performance for solid-state laser of Si nanosheets and some typical
2D materials.

λ (µm) Material LC
Laser Properties

Ref
τ (ns) f (kHz) SP (µJ) PP (W)

0.9 Si Nd:YAG 200.2 294.5 0.55 2.76 this work
graphene Nd:YAG 162 225 4 24.7 [37]

MoS2 Nd:YAG 280 609 0.35 1.23 [38]
Sb Nd:YAG 208.8 268.3 0.31 1.48 [36]

1.06 Si Nd:YAG 103.7 587 0.22 2.15 this work
graphene Nd:YAG 260 167 8.32 32 [39]

MoS2 Nd:GdVO4 970 732 0.31 0.32 [40]
Bi2Se3 Nd:GdVO4 666 547 0.0585 0.09 [41]

1.3 Si Nd:YVO4 110.4 570 0.14 1.26 this work
graphene Nd:GdVO4 450 43 2.5 5.56 [42]

ReS2 Nd:YAG 403 214 0.42 0.9 [43]
Bi2Se3 Nd:YLF 433 161.3 1.23 2.84 [44]

4. Conclusions

The saturable adsorption property of Si nanosheets was demonstrated by nanosecond lasers.
With Si nanosheet-coated quartz substrate as SA, its passively Q-switched operations for Nd3+

solid-state lasers were successfully realized for the first time. AFM measurement revealed that
the thickness of our Si nanosheet sample, which was prepared by the LEP method, was 5.28 nm,
i.e., 17 layers. This attribute was further verified by a Raman spectrum. At three different Nd3+ laser
wavelengths of 0.9, 1.06, and 1.34 µm, the shortest pulse widths were 200.2, 103.7, 110.4 ns, and the
largest single pulse energies were 0.55, 0.22, 0.14 µJ, respectively. This work shows that Si nanosheets
can be used as effective optical modulating devices for a solid-state laser. As a low-cost, high-yield
2D material, the stable, broadband NLO response will help Si nanosheets to find new applications in
optics and optoelectronics.
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