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Abstract: The single-lap joint of fiber-reinforced composites is a common structure in the field of
structure repair, which has excellent mechanical properties. To study and monitor its quasi-static
response behavior under external load, two methodologies called effective structural mechanical
impedance (ESMI) and reduced-ESMI (R-ESMI) are presented in this article. A two-dimensional
electromechanical impedance (EMI) model for a surface-bonded square piezoelectric transducer (PZT)
is adopted to extract more sensitive signatures from the measured raw signatures. There are two major
advantages of the monitoring scheme based on ESMI and R-ESMI signatures: (1) excellent monitoring
results with less signatures to process, (2) the ability to monitor the quasi-static behavior of a single-lap
joint with previously ignored susceptance signatures. Combining the extracted ESMI signatures
with the index of root-mean-square deviation, the quasi-static behavior of single-lap joints can be
effectively quantified. To test the effectiveness of ESMI methodology, verifying experiments were
conducted. The experimental results convincingly demonstrated that the presented ESMI and R-ESMI
methodologies have good feasibility in monitoring the quasi-static behavior of a fiber-reinforced
composite single-lap joint. The proposed method has potential application in the field of structural
health monitoring (SHM).

Keywords: fiber-reinforced composites; single-lap joint; quasi-static behavior; electromechanical
impedance; piezoelectric transducer; structural health monitoring

1. Introduction

Adhesive joint structures are widely applied in the aerospace, automotive, and marine industries
for their excellent mechanical properties and lightweight advantages. A single-lap joint is one of the
most commonly used adhesive structures due to its easy and cost-effective production, especially in the
field of fiber-reinforced composite repair. However, with the increase in service time, single-lap joints
may suffer damages under the action of external adverse factors, such as impact and environmental
impairment. The occurrence of these damages may severely reduce the mechanical performance of the
joint structure [1–4]. To solve this problem, some advanced techniques are adopted to detect/monitor
the damage inside the structures, such as non-destructive testing (NDT) and structural health
monitoring (SHM).

Conventional NDT techniques contain some typical approaches, such as visual inspection,
radiography, magnetic particle testing, eddy current testing, and ultrasonic testing [5]. Despite several
NDT approaches successfully put into practice in some scenarios, most of them are usually performed
offline and require expensive facilities. SHM techniques are developed from conventional NDT to
some extent, and they are simpler, smarter, and characterized by online monitoring. This is the
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main reason for SHM being a rising and burgeoning technique distinguished from traditional NDT
methods. As a significant method for determining the integrity of structures, SHM involves the use of
multidisciplinary fields including sensors, materials, signal processing, system integration, and signal
interpretation [6]. Active SHM approaches are widely used in many industries, including ultrasonic
guided wave (GW) and electromechanical impedance (EMI). GW is a kind of stress wave that can
propagate along waveguides such as pipes and plate-like structures. Although many researchers
applied the GW technique to detect the damage of composite panels and stiffened structures on
delamination, fatigue damage, repair patch disbond, and internal damage of concrete structures using
damage indicators or damage imaging [7–21], only a few studies aimed at lap joints to investigate
their failure characteristics [1–4,22–24]. Nevertheless, when used for detecting complex structures,
the scattering properties of GW are usually very complicated and difficult to analyze; thus, another
active monitoring technique called EMI is taken into consideration. The EMI method was developed
by many researchers and used for evaluating the damages inside composite or metal structures.
Ai et al. [25,26] adopted the EMI technique for the damage monitoring of civil structures with
surface-bonded or embedded piezoelectric transducers (PZT). Annamdas et al. [27,28] proposed a
three-dimensional EMI interaction model, but this theoretical model is too complex to be applied in
engineering scenarios. Bhalla et al. [29,30] developed a simplified EMI model, which has potential
application in the SHM community. Giurgiutiu et al. [31–33] investigated an in situ active sensor
and embedded self-sensing piezoelectric sensor for online structural health monitoring. Zhu and
Qing et al. [34,35] monitored the disbond on patch-bonded repair and honeycomb composite structures.
Na et al. covered a newly developed low-cost method for adhesive debonding detection with the EMI
technique and monitored metal-based pipeline facilities [36,37]. Some investigations focused on the
mechanical performance of single-lap joints, but only using the quasi-static methodology. These studies
included the external low-velocity impact or fatigue performance [38,39]. There were also some other
investigations focusing on the monitoring of civil engineering structures. Gu et al. [40] studied the
multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete
(RC) columns subjected to seismic excitations. Karayannis et al. [41] investigated the experimental
damage evolution of reinforced concrete steel bars using piezoelectric sensors. Hu et al. [42] reported
damage detection with electromechanical impedance method on a concrete slab structure. Voutetaki et
al. [43] studied a new experimental method for damage identification of RC beams with piezoelectric
transducers. Chalioris et al. [44] and Perera [45] et al. separately investigated the application of wireless
monitoring systems to structures in the field of SHM.

However, only few investigations on single-lap joints with the EMI technique were
conducted [46,47], especially on the issue of quasi-static behavior online monitoring.

In order to solve the abovementioned issue to a certain extent, a novel active monitoring scheme
based on the EMI technique is proposed in this paper to evaluate the integrity and performance
of single-lap joints of fiber-reinforced composites, using square a PZT and the root-mean-square
deviation (RMSD) index. A group of effective structural mechanical impedance (ESMI) signatures
are extracted from the measured raw signatures in the first place, with the ESMI extraction method
referring to the work by Bhalla et al. [29,30]. Then, the reduced-ESMI (R-ESMI) signal processing
method is subsequently developed on the basis of the ESMI method. For the purpose of verifying
the effectiveness of the proposed monitoring scheme, the following three objectives are proposed:
(1) obtaining the ESMI and R-ESMI signatures from the measured raw signatures, (2) monitoring the
quasi-static response behavior of single-lap joints of fiber-reinforced composites under the action of
tensile displacement, and (3) intuitively characterizing the property variation of single-lap joints with
an RMSD index based on the raw signatures, ESMI signatures, and R-ESMI signatures.
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2. Theoretical Principles

The abovementioned coupled electromechanical admittance expression for a square PZT derived
by Bhalla et al. [29,30] is shown in Equation (1).

Y = G + j · B = jω
4l2

h

εT
33 −

2d2
31YE

11

(1− ν)
+

2d2
31YE

11

(1− ν)

( Za,e f f

Za,e f f + Zs,e f f

)
T

, (1)

where the meaning of variables is listed in the nomenclature section.
The expression of T can be defined in two different cases [30], as shown in Equation (2).

T =


tan(Aκl)

Aκl for sin gle− peak behavior
1
2

[
tan(Aκl)
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tan(Bκl)

Bκl

]
for twin− peak behavior

. (2)

According to the Bhalla’s investigation [30], the expression of pure mechanical impedance of PZT
is shown in Equation (3).

Za,e f f =
2hYE

11

jω(1− ν)T
. (3)

In order to make the expression more intuitive, a simplified form of the admittance coupling
equation is deduced on the basis of Equation (1), which endows the equation with a more lucid physical
meaning. The modified admittance coupling equation can be rewritten as another expression that is
made up of two components.

Y = jωC ·
(
1− k

2
p

)
︸          ︷︷          ︸
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+ jωC · k
2
p
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T︸                           ︷︷                           ︸

Component II

, (4)

where C = εT
33(2l)2/h, and k2

p = 2d2
31YE

11/εT
33(1− ν). The meaning of each symbol is listed in

nomenclature section in detail.
From Equation (4), it can be clearly seen that the first part of coupled electromechanical

admittance (component I) is only dependent upon the parameters of PZT, while the second part of
admittance (component II) is partly related to the structural mechanical impedance. Thus, component
II can be used for evaluating the damage occurrence and propagation in the structures. Hence,
component I and component II can be separately defined as a “non-damage-sensitive item” (Ynons) and
a “damage-sensitive item” (Ysens), and Equation (4) can be concisely written as

Y = Ynons + Ysens. (5)

The expression of Ynons is given in Equation (6).

Ynons = Gnons + jBnons = jωC ·
(
1− k

2
p

)
, (6)

where 
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(2l)2

h

[
δεT
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]
Bnons = ω

(2l)2
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31YE
11

(1−ν)

] . (7)

According to Equation (5), Ysens can be given by

Ysens = Y −Ynons. (8)
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Hence, the expressions of the real part and imaginary part can be easily obtained, as shown in
Equation (9). {

Gsens = G−Gnons

Bsens = B− Bnons
. (9)

According to Equations (4) and (5), the expression of Ysens is given by

Ysens = jωC · k
2
p

( Za,e f f

Za,e f f + Zs,e f f

)
T. (10)

Assuming T = α+ jβ and then substituting the expressions of C and k
2
p into Equation (10),

Equation (11) can be obtained.

Ysens = Gsens + jBsens = jω ·
(2l)2

h
·
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31YE
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·
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)
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By rearranging the items in Equation (11), a new formula can be written as

γ1 + j · τ1 = (γ2 + j · τ2) ·
Za,e f f

Za,e f f + Zs,e f f
, (12)
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Furthermore, defining Zs,e f f = xstr + j · ystr and Za,e f f = xa + jya, solving Equation (12) yields
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(
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Equation (14) is simpler in the form of expression than that derived by Bhalla [30]. With the use of
Equations (13) and (14), the required signatures can be extracted from the raw signatures. It must be
mentioned that, according to the derivation of Equations (12)–(14), the self-impedance of the square
PZT sensor is subtracted to acquire the xstr and ystr signatures, which results in too many negative
ESMI signatures. To solve this problem and ensure more signatures are positive in the coordinate
system, as well as making the scale of vertical coordinates identical, another two variables xs and ys

are defined, and they are opposite in number to xstr and ystr, as shown in Equation (15).{
xs , −xstr/104

ys , −ystr/104 . (15)

In order to monitor the quasi-static response behavior of a single-lap joint, a very effective and
commonly used statistical index RMSD is introduced.

The novel statistical index of RMSD used in this paper is given by Equation (16).

RMSD =

√√√√√√√√√√√√√√ N∑
t=1

(Dt − Bt)
2

N∑
t=1

B2
t

, (16)
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where the symbol N denotes the number of data points, t is the counter, Dt represents the tth data point
acquired in damage state, and Bt is the tth data point acquired in the healthy state.

With the use of the above-deduced equations, the EMSI signatures can be obtained. However,
based on the EMSI, a further modified method, R-EMSI, can be obtained. R-EMSI includes two similar
ways of signal processing. Firstly, R-EMSI considers the signatures at peaks, and then these signatures
are adopted for calculating the values of RMSD. Secondly, R-EMSI only considers the signatures at
the main peak (the first peak), and then the signatures at the main peak are used for calculating the
same damage indicator. The methodology of EMSI is able to reduce the scale of signature processing
while the R-EMSI reduces the data scale further. Both methods of EMSI and R-EMSI are investigated
in detail in the later sections.

3. Experimental Set-Up

In order to study the effectiveness of the methodology presented above, a verifying experiment
was conducted.

Referring to ASTM D5868, a specimen of a composite single-lap joint was fabricated using a T300
woven prepreg with vacuum bag molding (VBM) [48]. Then, a square PZT sensor was mounted on
the surface of the joint area with high-strength epoxy resin and wired to acquire the raw signatures.
Although better monitoring results can be obtained with the PZT sensor network in terms of many
investigations, it should be mentioned that the size of the specimen is very small; thus, only a PZT
sensor was mounted on the most concerned the joint area. The key parameters of the T300 woven
prepreg and square PZT sensor are separately enumerated in Tables 1 and 2. The prepared specimen
is shown in Figure 1, and it should be mentioned that the initial gauge length of the specimen was
150 mm.

Table 1. Key parameters of T300 woven prepreg.

Elastic constants Physical parameters Values

E1 (GPa) Young’s modulus X-direction 61.34
E2 (GPa) Young’s modulus Y-direction 61.34
E3 (GPa) Young’s modulus Z-direction 6.9
ν12 Poisson’s ratio XY 0.04
ν23 Poisson’s ratio YZ 0.3
ν13 Poisson’s ratio XZ 0.3

G12 (GPa) Shear modulus XY 19.5
G23 (GPa) Shear modulus YZ 2.7
G13 (GPa) Shear modulus XZ 2.7

Table 2. Key parameters of square piezoelectric transducer (PZT) sensor.

Parameters Physical parameters Values

YE
11

(
×1010N/m2

)
Young’s modulus at constant electric field 9.3

η Mechanical loss factor 0.01
εT

33/ε0 Relative permittivity at constant stress 1920
δ Dielectric loss factor 0.025

d31(C/N) Piezoelectric strain coefficient −200
ν Poisson’s ratio 0.32

ρ
(
kg/m2

)
Density 7750

h(mm) Thickness 0.33
2l(mm) Length 10
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integrated testing system for single-lap joint quasi-static behavior monitoring is shown in Figure 2. 
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Figure 2. Testing platform for single-lap joint quasi-static behavior monitoring.

During the process of the experiment, 19 response states (from N-1 to N-19) were defined under
the action of uniaxial tensile displacement, and their pertinent raw signatures were obtained through
the impedance analyzer. The signatures acquired in the initial state of N-1 were selected as the baseline.
N-19 represented the state at the moment of single-lap joint separation (fracture). The displacement
increasing rate was 0.1 mm/min at each testing state, as listed in Table 3. The frequency scope selected
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for the experiment was from 500 kHz to 2.5 MHz with a step of 1.25 kHz. The reason for selecting such
a high frequency scope was that the joint region of the specimen was small and it had better sensitivity
with higher frequency.

Table 3. Testing states in tensile experiment.

Testing States Displacement
(mm) Testing States Displacement

(mm)

N-1 (baseline) 0.1 N-11 1.1
N-2 0.2 N-12 1.2
N-3 0.3 N-13 1.3
N-4 0.4 N-14 1.4
N-5 0.5 N-15 1.5
N-6 0.6 N-16 1.6
N-7 0.7 N-17 1.7
N-8 0.8 N-18 1.8

N-9 0.9 N-19 (joint
separation) 1.9

N-10 1.0

Based on the correlation between applied displacement and measured reaction force, the curve
graph of “displacement vs. reaction force” could be plotted after amending the rigid body displacement,
as shown in Figure 3. Although the raw signatures of the 19 testing states were obtained in the process of
the experiment, in order to investigate the correlation between the quasi-static response of the single-lap
joint and tensile displacement more lucidly, we selected seven typical states with a uniform interval of
every two points (states) and then renamed these selected states from ST-0 to ST-6. The selected states
are marked with red color on the curve in Figure 3. These selected and renamed states for subsequent
comparison and discussion are enumerated in Table 4.

Eventually, the raw signatures of the seven selected representative states were processed with the
methodology presented in Section 2. The obtained ESMI signatures were then used for evaluating
the quasi-static response behavior in the process of the tensile experiment. The experimental results
related to the single-lap joint are discussed in detail in the next section.
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Table 4. Selected and renamed typical states.

Selected Testing States Displacement (mm) Notes

ST-0 0.1 N-1 in original state
ST-1 0.4 N-4 in original state
ST-2 0.7 N-7 in original state
ST-3 1.0 N-10 in original state
ST-4 1.3 N-13 in original state
ST-5 1.6 N-16 in original state

ST-6 (joint separation) 1.9 N-19 in original state

4. Results and Discussion

4.1. Quasi-Static Behavior of Single-Lap Joint Analysis

In light of Sections 2 and 3 of the paper, the raw signatures were processed with the ESMI
methodology. Then, the curve graphs of Figures 4 and 5 were plotted to compare the sensitivity to
quasi-static characteristics of the single-lap joint before and after signature extraction. In addition,
in order to investigate the regularity of the quasi-static behavior of the single-lap joint with respect to
the tensile load in a clearer way, only seven typical states were selected, as listed in Table 4.
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Figure 4 shows the graph plotted based on the real part of the raw signatures and ESMI signatures
of the seven selected typical states. From Figure 4a, it can be clearly seen that there was an increasing
tendency of curves in all selected states, and no obvious peaks could be selected as the feature peak for
characterizing the quasi-static response behavior under the action of external load. On the contrary,
using the above-presented ESMI methodology for signal processing, a group of more effective signatures
could be obtained, and five characteristic peaks appeared, which could then be used for investigating
the serving condition of the single-lap joint, as shown in Figure 4b.

Moreover, from Figure 4b, it can be also found that the amplitude of the curve in each state
changed gradually with the increase in tensile displacement, and there were slight shifts in peak
frequency in each state. With the increase in tensile displacement, there were also gradual changes in
signature amplitude, but the amplitude dropped sharply at the moment of joint separation, which was
intuitively observed.

Figure 5 shows the graph plotted based on the imaginary part of raw and ESMI signatures for the
abovementioned seven selected typical states. From Figure 5a, it can be obviously seen that there was
a rising tendency of curves in these selected representative states, and no obvious peaks could be used
to act as characteristic peaks for investigating the quasi-static response behavior with respect to the
tensile displacement. However, using the abovementioned ESMI methodology for signature extraction,
a series of more sensitive signatures could be acquired, and several new characteristic peaks appeared,
which could then be used for supplementing the information on the service condition monitoring of
the single-lap joint, as shown in Figure 5b.

Moreover, in Figure 5b, it can also be observed that the amplitude of the curve in each state
changed gradually with the increase in tensile displacement, and there were slight shifts in peak
frequency in each state. At the beginning of the tensile experiment, the amplitude gradually increased
with the displacement, and the amplitude dropped sharply when joint separation occurred, albeit not
as obvious as that in the real part case.

4.2. Characterization of Single-Lap Joint Condition with RMSD Index

Despite the curves in Figures 4 and 5 showing the correlation between tensile displacement and
measured signatures, no intuitive enough regularity could be found. Hence, to solve this problem, the
index of RMSD was adopted.

As mentioned above, the curves in Figures 4b and 5b show very obvious peaks (Peak-1 to Peak-5);
thus, a novel signature processing method was developed based on the extracted ESMI signatures,
which involved calculating the RMSD index with the peak ESMI signatures of the selected typical
states. The RMSD values were then calculated on the basis of these obtained peak values, as well as
those based on raw signatures. These RMSD histograms are shown in Figures 6 and 7. It should be
pointed out that the magnitudes of histograms in the vertical coordinate were identical so as to scale
the discrepancy between RMSD bars.

Figure 6 shows the histograms plotted based on the real part of the raw and ESMI signatures of
the single-lap joint. It can be clearly seen that the largest magnitude of RMSD occurred in the state
of ST-6 among the selected testing states, both in Figure 6a,b. Due to the real part having excellent
sensitivity to structural deterioration, the pertinent raw signatures and extracted ESMI signatures
showed good effectiveness when used for studying the variation characteristics of the single-lap joint.
Therefore, the real part of both the ESMI signatures and raw signatures could be used for evaluating
the health condition of the joint structure. Nevertheless, it should be pointed out that the difference
between ST-6 and other states (ST-1 to ST-5) in Figure 6b was much larger than that in Figure 6a.
Hence, the histogram of xs was capable of characterizing the correlation between displacement and
the RMSD index in a more effective manner.

Figure 7 shows the histograms plotted based on the imaginary part of the raw and ESMI signatures.
It is easily noted that the largest RMSD bars in magnitude appeared in the state of ST-6, which denoted
the moment of joint separation, both in Figure 7a,b. According to the experimental investigation,
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we considered the imaginary part of the raw signatures to have better sensitivity to reaction force
variation. In terms of Figure 3, the reaction force initially increased with the tensile displacement, then
decreased when the bearing capability of the structure worsened. This characteristic could also be
indicated with the impedance (or admittance) index.

Upon processing using the ESMI methodology, a group of signatures more sensitive to structural
variation than to reaction force variation could be extracted, as shown in Figure 7b. According to
the states from ST-1 to ST-6, the changing law monotonically increased, and the difference between
two bars was more distinct in Figure 7b. Hence, from the authors’ viewpoint, the histogram of ys was
also competent for effectively indicating the correlation between displacement and the RMSD index.
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4.3. Data Processing Scale Reduction Method for Single-Lap Joint Monitoring

In the preceding section, for the purpose of comparing and analyzing the experiment results in
a more concise and lucid manner, only some typical states were selected; however, as is well known,
better investigation results can be obtained if more testing states are taken into consideration. However,
more testing states bring in a mass of experimental data to deal with and this process is usually
complicated; thus, a novel method called R-ESMI was developed to reduce the data processing scale.

R-ESMI is an improved methodology of ESMI, aimed at obtaining the peak values from the
extracted ESMI signatures before using them to calculate the RMSD index to investigate the quasi-static
characteristics of single-lap joints. The R-ESMI method includes two methods to reduce the processing
scale of data: (1) calculating RMSD values based on all of the ESMI peak signatures (from Peak-1



Materials 2019, 12, 3241 11 of 17

to Peak-5), or (2) based on the main peak signatures only (Peak-1). The pertinent histograms were
plotted and compared in terms of the above RMSD values of raw signatures, ESMI signatures, and
R-ESMI signatures.

For the purpose of characterizing the quasi-static behavior of the single-lap joint in a more
effective way, the RMSD values from N-1 to N-19 (all testing states) were calculated, and their pertinent
histograms were plotted. These obtained RMSD values were separately based on the real parts of
raw signatures, ESMI signatures, and R-ESMI signatures (ESMI signatures at peaks from Peak-1 to
Peak-5 and signatures at Peak-1 only). The corresponding histograms were then comparatively plotted,
as shown in Figure 8.Materials 2019, 12, x FOR PEER REVIEW 12 of 18 
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Figure 8. Comparative root-mean-square deviation (RMSD) histograms based on real part of signatures
in all testing states: (a) raw Gs signatures; (b) extracted xs signatures; (c) extracted xs signatures at all
peaks; (d) extracted xs signatures at Peak-1 only.

From Figure 8a–d, it can be easily noted that there were differences in bar height among testing
states in the four figures. In order to quantify this difference in a more intuitive way, specific values
(SV) of every two adjacent RMSD bars in different testing states were separately calculated using
Equation (17). The histogram of these specific values was then plotted, as shown in Figure 9.

SVk−1 =
(RMSD)k

(RMSD)k−1
(k= 2, 3, 4 · · · 19), (17)

where k is the sequence number of the bar in the RMSD histogram.
Figure 9 shows a very obvious difference among the four types of RMSD bars, as annotated in the

figure. It indicates that the calculated RMSD values based on the Peak-1 signatures showed the best
effectiveness when used for characterizing the quasi-static behavior of the single-lap joint, followed by
the RMSD calculated on the basis of ESMI signatures of all peaks.
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Apart from characterizing the regular pattern of the single-lap joint with the real parts of
signatures, the imaginary ones are also needed to provide additional information to study this issue
comprehensively. Hence, the RMSD values based on the imaginary parts of signatures were also
calculated, and the pertinent RMSD histogram is illustrated in Figure 10.

As shown in Figure 10a, it can be deduced that the deviation of N-2 to N-10 from baseline
became larger and the impedance (or admittance) increased, which indicates that the single-lap joint
was capable of bearing a larger reaction force at these moments. Subsequently, when the joint was
stretched to a certain extent, 1.0 mm in the experiment, the load bearing capacity of the joint began to
deteriorate. The impedance (or admittance) variation of the joint structure in amplitude decreased
and, when the tensile displacement was 1.5 mm, the impedance (or admittance) of the joint structure
lowered to the baseline state (N-1). Subsequently, the impedance (or admittance) continued lowering.
Then, the deviation of impedance (or admittance) between the current state and baseline state went
downward, which led to the RMSD index becoming larger again.

In order to reduce the data processing scale, the effectiveness of the ESMI and R-ESMI
methodologies was compared. The RMSD graphs on the basis of ESMI and R-ESMI signatures
are shown in Figure 10b–d. In Figure 10b, the variation tendency of RMSD bars was similar to that in
Figure 8b, which indicates that the sensitivity of RMSD-ys to reaction force declined and became more
sensitive to the tensile displacement variation, which can be deduced through carefully comparing
Figure 10b with Figure 8a,b. However, from the authors’ perspective, there are still too many ESMI
signatures to be processed. Hence, R-ESMI was subsequently developed to solve this problem further.

As described above, the R-ESMI methodology includes two ways to calculate the RMSD index,
based on all peak signatures (signatures at the peak from Peak-1 to Peak-5) or the main peak (Peak-1)
signatures only. The histograms are shown in Figure 10c,d.

In Figure 10c, the difference among the bars in height became larger than that in Figure 10a,b.
Furthermore, the calculated RMSD values on the basis of the main peak (Peak-1) signatures were also
plotted, as shown in Figure 10d. Some bar heights were too small to be displayed compared with the
bar representing the state of joint separation. Moreover, by comparing the four subfigures in Figure 10,
a conclusion can be drawn that the largest difference among bars was in Figure 10d, which proves that
the method of R-ESMI with signatures at Peak-1 only had the best effectiveness in reducing the data
processing scale.

For the purposing of evaluating this discrepancy among bars more directly, the specific
values between every two RMSD bars in Figure 10 were also calculated using Equation (17).
Then, the corresponding histogram was plotted, as shown in Figure 11. In this figure, the difference
between the two adjacent RMSD bars could be quantified, supporting the aforementioned conclusion



Materials 2019, 12, 3241 13 of 17

of the R-ESMI (Peak-1 signatures only) having the best monitoring effectiveness with the least signal
processing scale. Furthermore, another obtained inference was that the imaginary parts of signatures
can be also adopted to evaluate the structural health condition if an appropriate signal processing
method is applied.
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5. Conclusions

In this paper, ESMI and R-ESMI methodologies for single-lap joint quasi-static behavior monitoring
were presented, aimed at studying the quasi-static response of this joint structure in a more accurate
but simpler way. The two methodologies, ESMI and R-ESMI, were developed from a modified
two-dimensional EMI model for square PZT sensors.

The intuitive characterization of the joint’s health condition was performed via the variation
in RMSD index, whose values were calculated on the basis of raw signatures, ESMI signatures,
and R-ESMI signatures. Additionally, the specific value (SV) was also calculated to quantify the
difference between two adjacent RMSD bars in magnitude, which also contributed to demonstrating
the effectiveness of the methodologies. Using the methodology presented in this article, obvious
peaks were successfully extracted from the raw signatures with the use of ESMI methodology, which
proves its potential application in structural health monitoring of fiber-reinforced composite structures.
Then, the quasi-static response behavior of the single-lap joint could be characterized intuitively and
effectively via combining the ESMI and R-ESMI signatures with the RMSD index. By adopting the
methodology developed in this paper, the conventionally ignored susceptance signatures can be also
used for evaluating the health condition of a single-lap joint of fiber-reinforced composites if processed
with ESMI and R-ESMI methodologies.

The characterization of quasi-static behavior using the electromechanical impedance method is
difficult, and more work is needed to study this issue further in our future work. The strain rate needs to
be increased to simulate the obvious variation of external loads in a short time. The initial damage inside
the composite-lap joint should be analyzed. The smallest damages that can be monitored in quasi-static
or dynamic processes should be studied. The impacts of is the environment also need investigating.
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Nomenclature

j Complex symbol
ω Angular frequency (rad·s−1)
C Capacitance symbol (F)
εT

33 Dielectric constant (F·m−1)
2l Length of the square PZT (mm)
h Thickness of circular PZT (mm)
kp Coupling coefficient
d31 Piezoelectric strain constant (PC·N−1)
YE

11 Young’s modulus (N·m−2)
ν Poisson ratio
κ Wavenumber (m−1)
cp Phase velocity (m·s−1)
Ynons Damage-non-sensitive component in admittance model (S)
Ysens Damage-sensitive component in admittance model (S)
Y Coupling mechanical admittance (S)
ρ Density (kg·m−3)
η Mechanical loss factor
δ Dielectric loss factor
Za,e f f Effective driving point impedance of PZT under short-circuited condition (N·s/m)
Zs,e f f Effective driving point impedance of host structure (N·s/m)
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Z Coupling mechanical impedance (Ω)
xstr Real part of ESMI signatures
ystr Imaginary part of ESMI signatures
SV Specific value of two RMSD values in adjacent testing states
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