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Abstract: Different empirical models have been proposed in the literature to determine the fatigue
strength as a function of lifetime, according to linear, parabolic, hyperbolic, exponential, and other
shaped solutions. However, most of them imply a deterministic definition of the S-N field, despite the
inherent scatter exhibited by the fatigue results issuing from experimental campaigns. In this work,
the Bayesian theory is presented as a suitable way not only to convert deterministic into probabilistic
models, but to enhance probabilistic fatigue models with the statistical distribution of the percentile
curves of failure probability interpreted as their confidence bands. After a short introduction about
the application of the Bayesian methodology, its advantageous implementation on an OpenSource
software named OpenBUGS is presented. As a practical example, this methodology has been applied
to the statistical analysis of the Maennig fatigue S-N field data using the Weibull regression model
proposed by Castillo and Canteli, which allows the confidence bands of the S-N field to be determined
as a function of the already available test results. Finally, a question of general interest is discussed as
that concerned to the recommendable number of tests to carry out in an experimental S-N fatigue
program for achieving “reliable or confident” results to be subsequently used in component design,
which, generally, is not adequately and practically addressed by researchers.
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1. Introduction

Repeated application of variable loads over time may lead to fatigue failure of real structures and
components. Besides, this type of failure occurs often unexpectedly because the magnitude of the
stresses acting on these components usually remains far below the static material strength. Therefore,
accurate estimation of the fatigue strength of materials is crucial to ensure safe design and maintenance
of structures and components.

In the literature, there is an extensive list of models devoted to the study of material fatigue
strength, which are focused on predicting the service life (N) in terms of a particular generalized
parameter (GP), such as the equivalent range of stresses (∆σ), strains (∆ε) or combinations of both
(Smith–Watson–Topper, etc.). However, most of the models implied are deterministic, despite the
fact that one of the main characteristics of the fatigue problem is its associated uncertainty. The high
variability is inherent to the fatigue phenomenon forces fatigue failure to be considered as a random
phenomenon, so that only models, including random variables should be considered valid for predicting
fatigue life reliably. For that reason, there are different standards and guidelines, such as ISO [1],
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ASTM [2] or ASM [3], that include specific sections to suggest some recommendations for the statistical
analysis of the fatigue data. Furthermore, among the different probabilistic fatigue modes proposed in
the literature, the Weibull probabilistic regression model proposed by Castillo–Canteli [4], the same as
those proposed by Freudenthal, Gumbel and Bolotin [5–8], defines the S-N or ε-N fields as hyperbolic
percentile curves representing the same probability of failure.

Despite the satisfactory probabilistic definition of the S-N field and the robust parameter estimation
provided by the model of Castillo-Canteli, as extensively proven after being applied under consideration
of different driving forces to different materials [9–12], a question still remains open and repeatedly
unanswered in academic forums: “How many experimental tests should be performed to achieve
a suitable probabilistic definition of the S-N field?”. Alternatively, even more precisely, “[h]ow many
experimental tests should be performed to define the percentiles curves and fatigue limit for a given
precision and confidence level”? The question is perhaps motivated by the fact that confidence
intervals of the percentiles shrink according to the increasing number of available results as in the
case of an extensive experimental campaign. Nevertheless, according to the concept of confidence
bands [13,14] it can be concluded that both questions are incorrectly posed, since they cannot be
answered “a priori” because of the complex relation implied among the number of tests and parameter
values, or even because the influence of the suitability or unsuitability of the test strategy is applied.
Only after testing and data assessment, it means “a posteriori”, the problem can be formulated in
the following terms: The fatigue results for a certain probability of failure and precision can be
statistically provided at any time of the experimental campaign irrespective of the number of tests
available, but we have to count on the results being consequently penalized as a function of the
number of tests: The smaller the number of test the higher the penalty applied in the derivation of the
value of the particular fatigue property estimated for a given probability of failure according to the
precision required.

In the past, other procedures, as for instance the bootstrap method [15–18], were applied to face the
reliability question of the S-N field, but their high computational cost together with their questionable
applicability when applied to small samples have contributed them not to be extensively widespread
and consequently applied in the practical current fatigue characterization. Furthermore, different
attempts have been made to incorporate the Bayesian methodology to the evaluation of fatigue results
and fatigue lifetime prediction [19] under low and high cycle fatigue conditions from deterministic
fatigue models, although using a mathematical-statistical formulation less accessible for laboratory
and practitioner engineers. In those contributions, the advantages of applying Bayesian procedures are
emphasized as a way of enhancing fatigue design reliability by incorporating technological knowledge
from theoretical studies and previous experimental experience in particular in the case of a scarce
number of tests available [19,20].

As will be highlighted in this work, a satisfactory solution for the calculation of the confidence
bands of the problem will be found by applying the Bayesian theory, the response of the approach
becoming now simple, unambiguous and rigorous from a statistical viewpoint particularly when
applied to a probabilistic model of assessment.

The practical application of the Bayes methodology is facilitated by means of the application
of a powerful OpenSource and free software named OpenBUGS, which despite its currently limited
dissemination in the engineering area, might completely transform the way in which Bayesian methods
will be applied in the future. The implementation of the OpenBUGS software into the Bayesian theory
is basically explained, and thereafter applied to the assessment of the fatigue S-N data provided by
Maennig [21–23] according to the Weibull regression model proposed by Castillo and Canteli [4],
which allows the confidence bands of the S-N field to be determined as a function of the already
available test results. In the assessment of this practical case, not only the variability of the model
parameters is calculated, but also the confidence bands for each percentile failure curves are determined.
In this way, the fatigue strength or lifetime can be estimated for any probability of failure and given
precision level. Finally, the main conclusions of the work are summarized.
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Furthermore, a question of general interest is discussed as that concerned to the recommendable
number of tests to carry out in an experimental S-N fatigue program for achieving “reliable or confident”
results to be subsequently used in component design, which, generally, is not adequately and practically
addressed by researchers.

2. Fundamentals Bases of the Model

In the following, a general description of the main features of the Weibull regression model
proposed by Castillo-Canteli for analyzing the S-N field is made and the implementation of the
OpenBugs software into the Bayesian methods are explained in order to facilitate the comprehension
of the methodology proposed and its practical application to the case of fatigue data assessment.

2.1. The Probabilistic Fatigue Model

The S-N field solution for lifetime prediction proposed by Castillo and Canteli [4] is a probabilistic
model, based on physical and statistical conditions to be necessarily fulfilled by any valid fatigue model,
in particular on the necessary compatibility condition existing between the driving force (generally
identified with the stress range, ∆σ) distribution for given number of cycles, and the lifetime distribution
for given driving force. As shown graphically in Figure 1 for the two discretional intersecting straight
lines parallel to both axes, each S-N curve pertaining to the S-N field that crosses the left part of the
horizontal line must necessarily cross the lower segment of the vertical line as well, so that the areas
of both shaded zones pertaining to the probability density distribution must be identical. Due to
statistical considerations, see References [4,7,8], Weibull distributions are the most suitable ones for
being proposed to model fitting. As a result, the following equality arises:

E(N∗, ∆σ∗) = F(∆σ∗, N∗), (1)

where E(N∗, ∆σ∗) and F(∆σ∗, N∗) are the cdf of the lifetime N∗ given a certain stress range ∆σ∗ and the
cdf of the stress range ∆σ∗ given a certain fatigue lifetime N∗, respectively. Equation (1) represents
a functional equation [24–26], which provides the only two possible solutions for the probabilistic
S-N field represented by failure hyperbolic shaped percentiles curves, i.e., the curves representing
the number of cycles to failure for a certain probability of failure [4]. Due to physical conditions,
only the solution represented by Equation (2) is considered to be acceptable, where N0 and ∆σ0 are the
characteristic asymptotes (limit number of cycles and fatigue endurance limit) and λ, δ and β are the
location, scale and shape Weibull model parameters, respectively:

p f ailure = 1− exp

−
 log

(
N
N0

)
log

(
∆σ
∆σ0

)
− λ

δ


β (2)
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Equation (2) provides the probabilistic definition of the S-N field, i.e., the p-S-N field, which can be
advantageously assessed by assuming the normalized variable V = log(N/N0)log(∆σ/∆σ0). In this
way, all the S-N field results are evaluated as pertaining to a single Weibull cumulative distribution
function, thus, enhancing reliability in the parameter estimation. The satisfactory application of the
model to practical S-N fatigue programs is confirmed for different materials and driving forces. The free
and easy-to-use ProFatigue software is available to facilitate parameter estimation [27]. According to
this classical concept of probabilistic approach, the five parameters of the model, i.e., λ, δ, β, N0 and
∆σ0, are estimated as if they were fixed values. Nevertheless, the reliability of the parameters obtained
during model fitting depends, obviously, on the total number of tests performed and the suitability
of the test strategy applied in the experimental program. As a result, a sounder evaluation requires
determining the densities of the estimated parameters or the confidence bands of the percentiles curves.

Until now, the calculation of the confidence intervals was achieved by applying the Bootstrap
method following a procedure consisting in a previous estimation of the model parameters for the
test data available and successive application of the Monte-Carlo simulation based on the model
parameters just obtained following a faithful replication of the fatigue program planning adopted.
The model parameters for the newly resulting simulated S-N field are estimated by applying the same
probabilistic model, so that, the remaining outgoing simulated S-N fields provide the variability field
of the model parameters (confidence bands) or, alternatively, the confidence bans for the particular
percentile curve of interest. However, this method is usually computationally expensive and does
not always report satisfactory results. As an alternative, Bayes’ methodology and its efficiency are
investigated here, when applied to an advanced model, as that represented by the probabilistic S-N
field solution proposed by Castillo and Canteli corresponding to Equation (2).

2.2. Bayesian Methods

First of all, it should be noted that the main difference between conventional and Bayesian statistical
models is that the formers ones accept the model parameter estimates as fixed or deterministic values,
whereas the second ones consider them as random variables. This applies to both deterministic and
probabilistic models. In the application of Bayesian methods, an initial family of parametric models
is assumed in which the parameters are considered to be random variables rather than constants.
This means that deterministic models are transformed automatically in probabilistic ones, so they are
improved. The probability distribution for each of the parameters involved, i.e., λ, δ, β, N0 and ∆σ0 is
the goal to be achieved [5] when Bayesian methods are applied to the probabilistic S-N fatigue model
considered in Section 2.1, and therefore, not their point estimations. In the following, the Bayesian
methodology is shortly introduced for highlighting its application to fatigue model, including a brief
description of the four fundamental steps to be applied, namely, (a) definition of the prior distribution,
(b) estimation of the prior predictive distribution, (c) derivation of the posterior distribution and
(d) calculation of the posterior predictive distribution.

2.2.1. Prior Distribution

Bayesian methods are initiated assuming a prior distribution of the parameter, which may
reflect the initial engineer’s knowledge about the parameters of the model and their uncertainty.
This distribution can be “non-informative”, when there is no information about the parameters,
or “informative”, when it contains some knowledge based on previous experience.

For example, a parametric model with a parameter vector θ is defined to represent a variable X
taking x values, such as:

X ∼ p(x
∣∣∣θ). (3)

The parameters θ of this function are random and are associated with a prior distribution function:

θ ∼ p(θ
∣∣∣α), (4)
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where α is a vector of the parameter distributions, called hyper-parameter to be distinguished from the
initial model parameters (θ). The prior distribution may be discrete, continuous or mixed, depending
on the type of parameters used.

2.2.2. The Prior Predictive Distribution

Based on the description of the model and the distribution functions of the prior parameters
already defined, it is possible to use the model to make predictions. Based on the description of the
model and the distribution functions of the prior parameters already defined, it is possible to use the
model to make predictions x̃:

p(x̃
∣∣∣θ) = ∫

θ

p
(
X̃
∣∣∣θ)p(θ|α)dθ (5)

It is worth mentioning that this model only contains the information provided by the scientist or
engineer knowledge on the variability of the model parameters without including any information
related to evidence shown in experimental results.

2.2.3. The Posterior Distribution

The knowledge about the parameters is complemented by random samples, which lead to
a posterior distribution of the parameters, including the two sources of knowledge. Thus, once a sample
of size n is obtained from the population to be modelled:

X = (x1, x2, . . . , xn). (6)

It is possible to improve the predictions made by applying the maximum likelihood method by
combining the prior distribution and the information provided by the sample:

p(X|θ) ≡ L(X|θ). (7)

At this point, the posterior distribution of the parameters may be derived by means of the Bayes
theorem expressed by the following formula:

p(X|θ, α) =
p(X|θ)p(θ|α)

p(X|α)
. (8)

2.2.4. The Posterior Predictive Distribution

Finally, the posterior predictive distribution is obtained using the posterior distribution from the
previous step, which includes both the prior provided information and the experimental evidence
collected in the posterior distribution of the model parameters, thus, allowing predictions (x̃) to
be made:

p(x̃
∣∣∣X, α) =

∫
θ

p
(
X̃
∣∣∣θ)p(θ|X,α)dθ. (9)

Note that Bayesian models do not work with the initial family of distributions, but with the
predictive distribution, i.e., a convex combination, possibly infinite, of a set of models from this family,
whose weights or coefficients arise from the posterior distribution. In this way, an extended family of
the initially selected family of distributions is found. This allows the sample to achieve a better model
fit. Note that the resulting models are extensions of the initially assumed family of models because by
considering Dirac distributions as posterior distributions, the models of the initial family are obtained.

This extension plays a significant role in the real engineering practice because it provides high
flexibility in building models allowing better correlation between theoretical models and the reality to
be attained as pursued in modelling fatigue problems.
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2.2.5. Application Example

With the aim of illustrating the different distributions, i.e., prior, prior predictive, posterior and
posterior predictive distributions presented in the previous subsections, an example of the application
of Bayesian Methods is presented, in which a very simplified model that follows a normal random
distribution N(θ,1) is assumed.

In this example, the normal random model only implies one internal vector of parameters, θ,
which is assumed to be random as well following a uniform distribution θ~U(4,8) (see dot line in
Figure 2). As previously described, the initial random distribution of the parameters represents the
prior distribution, and its parameters are called hyperparameters. Therefore, the prior distribution in this
example would be the uniform distribution, and the hyperparameters will be 4 and 8.
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Once the model and the prior distribution have been defined (θ~U(4,8)), it is possible to obtain
the prior predictive distribution (see blue line in Figure 2):

p(x̃
∣∣∣4, 8) =

∫
θ

fU(4,8)(θ) fN(θ,1)(x̃)dθ. (10)

After that, a sample of size n = 10 is obtained (see points on the horizontal axis in Figure 3) and
the prior distribution improved, resulting in a posterior distribution of the parameters (see dot line
in Figure 3),

p(θ
∣∣∣X, U(4, 8)) ∝

∏
i=1,10

fN(θ,1)(xi) fU(4,8)(θ). (11)
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Finally, the posterior predictive distribution is obtained (see violet line in Figure 3), which can be
considered the final predictive model:

p(x̃
∣∣∣X, U(4, 8)) =

∫
θ

fN(θ,1)(x̃)p(θ
∣∣∣X, U(4, 8))dθ. (12)

As noted, Bayesian methods consider parameters (θ) as random variables and subsequently
obtain convex combinations of the initial model family. In fact, the distribution, actually assumed at
the end of the method, is a weighted or mixed distribution, which results after combining the prior or
posterior distribution with the initial distributions family.

3. The Proposed Model

In this section, the application of the Bayesian method to the probabilistic S-N field model of
Castillo–Canteli, see Equation (2), is presented with the five parameters of the model being considered
as random variables. To this end, the OpenBUGS software package has been used, which, given
prior distributions and a sample of experimental results, generates large samples of the posterior
model based on Markov Chain Monte Carlo (MCMC) techniques. This means that a large sample
of any statistic can be accomplished and, consequently, an excellent approximation of its probability
distribution is achieved.

On the following, the implementation of the Bayesian Weibull fatigue Model in OpenBUGS is
introduced in its two variants: Code text in flat format and visual programming by the Doodle module.

3.1. Model Implementation Through Openbugs Code

The only extreme value distribution implemented in OpenBUGS is the generalized extreme value
for maxima; so that the Castillo-Canteli model, which is based on a Weibull extreme value for minima,
must be implemented by this function (See Appendix A).

Once the model is defined, the implied parameters (N0, ∆σ0, β, λ, δ) are defined in the prior as
uniform random ones, ranging between a minimum and a maximum value:

N0 ∼ U
(
N0min , N0max

)
,

∆σ0 ∼ U
(
∆σ0min , ∆σ0max

)
,

β ∼ U(βmin , βmax ),
λ ∼ U(λmin ,λmax ),
δ ∼ U(δmin , δmax ).

(13)

Equation (13) are the prior distributions associated with the five parameters of the Castillo-Canteli
model. The values of these hyperparameters have been established in a limited range of the
neighbourhoods of N0cc, ∆σ0cc, βcc, λcc and δcc parameters as follows:

N0min = 0.7 N0cc ; N0max = 1.5 N0cc ,
∆σ0min = 0.8 ∆σ0cc ; ∆σ0max = 1.2 ∆σ0cc ,

βmin =
βcc
1.5 ; βmax = 1.5 βcc ;

λmin = λcc
3 ; λmax = 2 λcc,

δmin = δcc
2 ; δmax = 1.5 δcc ,

(14)

where the values of ∆σ0cc, βcc, λcc and δcc are those obtained by implementing the original version
Castillo–Canteli model using, for example, the current version of the ProFatigue software [27].
Alternatively to the implementation of the Castillo–Canteli model by the generalized extreme function,
the ones/zeros Poisson model trick can be used to generate the model in an easier way (see Appendix A).
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3.2. Model Implementation Using Graphic Doodle in OpenBUGS

OpenBUGS has a graphical programming environment called Graphic Doodle, which can be used
to program the previous code easily. Figure 4 shows the acyclic graph of the Bayesian network of the
model. As can be seen, the prior distributions of the five parameters have been defined outside the
model loop as in the previous case.
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Figure 4. Block diagram of the Castillo and Canteli model introduced with Graphic Doodle in OpenBUGS.

3.3. Execution of the Code in OpenBUGS and Analysis of the Results Provided by the Program

Once the model has been implemented into the program, it is necessary to define the initial values
of the variables (Equation (14)) and the experimental data of the fatigue life that to be fitted by the
model, giving rise to the posterior distributions (Figure 5).
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for a hypothetic fatigue case assessment.

Finally, the number of simulations is defined for the initial process (burn-in process) and for the
final sample, and the model is executed. In this case, taking into account the computational time of
OpenBugs and the scatter associated with the fatigue problems, it is proposed to use 1,000 and 20,000
simulations for the initial and final samples, respectively.



Materials 2019, 12, 3239 9 of 17

Once the code is executed, the program provides both a convergence analysis and the model
parameters of the posterior distributions, which are introduced into Equation (12) to derive the posterior
predictive distribution. In this way, the percentiles of the percentiles the fatigue failure probability are
obtained; in other words, the confidence intervals of each percentile as obtained by the original version
of the Castillo–Canteli model.

4. Practical Example

In this section, the Maennig fatigue data [21–23], (see on Table 1), is used to illustrate the method
proposed in the previous sections and its implementation in OpenBUGS. This extensive fatigue program
comprising 360 results, i.e., an exceptionally high amount of data, that is not impaired, or questions the
potential application of Bayesian methodology to assess fatigue programs with a limited amount of
data. Its selection only obeys to a unique opportunity of observing and discussing the evolution of the
confidence limits as a function of the number of results available.

Table 1. Maennig fatigue data.

∆σ(MPa) Lifetime (Thousands of Cycles) (N)

385 51,57,60,67,68,69,75,76,82,83,87,95,106,109,111,119,122,128,132,140
380 59,66,69,80,87,90,97,98,99,100,107,109,117,118,125,128,132,158,177,186
375 65,71,78,84,89,93,98,103,105,109,113,118,124,131,147,156,171,182,199,220
370 83,98,100,104,110,111,122,125,132,136,141,143,146,155,165,194,200,201,251,318
365 89,105,108,118,119,121,130,133,152,164,170,181,182,192,199,211,238,273,324,398
360 117,127,141,151,162,173,181,186,192,198,203,209,218,255,262,288,295,309,394,585
355 112,125,133,156,166,168,173,202,227,247,253,261,285,286,309,365,442,559,702,852
350 115,129,143,169,177,178,218,230,271,280,285,305,326,342,381,431,493,568,734,1101
345 140,155,169,174,218,248,265,293,321,326,348,350,364,374,397,426,461,504,738,1063
340 146,159,168,224,246,253,291,326,358,385,397,425,449,498,532,610,714,763,987,1585
335 154,180,210,254,305,332,363,415,457,482,528,559,593,611,678,767,835,957,1274,1854
330 166,184,241,251,273,312,371,418,493,562,683,760,830,981,1306,1463,1842,1867,2220,2978
325 196,227,250,271,308,347,393,475,548,669,799,879,975,1154,1388,1705,2073,2211,2925,4257

320 206,231,283,370,413,474,523,597,605,619,727,815,935,1056,1144,1336,1580,1786,1826,1943,2214,
3107,4510,6297

315 226,257,307,370,457,549,570,590,672,781,850,974,1093,1460,1477,1936,2662,2731,3487,4396,5803,
7215

310 206,317,393,446,502,570,627,809,956,1022,1327,1745,2001,2139,2314,3425,4576,5453,7868,8297
305 253,311,329,370,726,845,935,954,1139,1456,1792,2578,3776,5161,8131
300 411,606,700,707,919,1587,1595,2295,4628,6280
295 503,1191,1282,1609,4070,6337
290 1055,1369
285 1220

Firstly, the data has been fitted following the standard procedure of the Castillo–Canteli model
using the ProFatigue software, in order to obtain an initial approximation of the model parameters
values (see Equation (15)) and an initial estimation of the p-S-N field (see Figure 6).

N0cc = 14958 cycles,∆σ0cc = 257.881 MPa,βcc = 2.97,λcc = 0.34,δcc = 0.56. (15)

Those values have been used to define the uniform prior distributions (Equation (13)) according
to Equation (14).
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Thereafter, data has been entered into OpenBUGS, and the simulations have been carried out to
calculate the posterior distributions of the model parameters (see Figure 7).
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Figure 7. Posterior distributions of the model parameters fitted to the Maennig data.

Finally, the posterior distributions of the parameters have been used to obtain the posterior
predictive distribution of the model as the 0.01, 0.10, 0.50, 0.90 and 0.99 quantiles of the S-N curves
(see lines in Figure 8), and the corresponding 0.01–0.99 confidence intervals (see shaded regions
in Figure 8).
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Influence of the Number of Fatigue Tests Performed

As mentioned above, the number of tests has significant influence on the results of the fitting
process of a p-S-N curve. For that reason, the experimental program developed by Maennig, as an almost
ideal case of fatigue data provided in the literature, may not be representative to check the suitability
of the S-N assessment using the new probabilistic model. Nevertheless, the utility of the Bayes model
and that of the fatigue model proposed can be checked, assuming that the virtual planning of the test
program consists of limited samples, which will be randomly select from the original Maennig’s test
program. The number test results considered for the assessment will be gradually increased, in order
to observe their influence on the final S-N field. After their fitting, the evolution in the assessment of
the fatigue program concerning the failure percentiles and fatigue limit distribution is investigated.

To this aim, a random permutation of the 360 results contained in the vector is generated,
providing a simulation of the experimental test sequence as virtually performed by Maennig. Thereafter,
the Bayesian Weibull Fatigue Model is applied to fit initially only the first ten experimental results
furnished by the random permutation vector (see Figure 9). The procedure is continued to define the
evolution of the 0.01, 0.10, 0.50, 0.90 and 0.99 percentiles and the corresponding confidence intervals
when the initial sample with 10 results is enlarged stepwise up to 20, 50, 100, 150, 200, 250 and 300 tests,
respectively, as represented in Figure 9 and Video S1. As expected, the confidence intervals shrink
with the number of tests, but in a non-linear way (see Figure 9).
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Figure 9. Evolution of the whole p-S-N field (S-N percentile curves and confidence intervals) with the
number of tests implied in the fitting process.

Despite the useful information provided by the graphs in Figure 9 showing the evolution of
the confidence bands, and thus, the dependency of the whole p-S-N field with the number of cycles,
a better way to observe how the confidence bands are evolving for an increasing number of fatigue data
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available is to y cut the p-S-N field horizontally at fixed ∆σ and record the number of cycles obtained
for the different cases. Figure 10 represents the evolving results of the confidence bands for the 0.01,
0.1, 0.5, 0.90 and 0.99 percentiles, respectively, when such cuts are applied at ∆σ = 290,320,350 and
380 MPa. As expected, all confidence bands irrespective of the percentile and stress ratio considered
shows a reduction for the increasing number of tests involved in the fitting process. The calculation of
those graphs allows researchers to decide when the experimental running fatigue program should be
finished according to a criterion of maximization of the reliability-cost rate, i.e., when a new test does
not provide a profitable increment of reliability.
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Figure 10. Detailed evolution of the quantiles and confidence intervals with the number of tests
involved in the fitting process for different stress levels.

In Figure 11 the evolution of the distribution function of the fatigue limit, in particular for 0.01,
0.5, and 0.99 probability of failure is shown as a function of the total number of specimens tested by
applying the Bayesian analysis. It is reminded that the fatigue limit, ∆σ0, is one of the parameters
intervening in the Castillo-Canteli model, see Equation (2), representing the horizontal asymptote,
i.e., the driving force below which no fatigue damage occurs. Its statistical distribution, as provided by
the S-N field, has great significance in the characterization of the fatigue behavior of materials, not only
as a damage lower bound, but also because its role in the interpretation of non-propagating cracks,
correspondence with the threshold ∆Kth in the crack growth rate curve, and determination of the
intrinsic crack, but also in the definition of the Kitagawa-Takahashi diagram.
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5. Conclusions

The main conclusions drawn from this work are the following:

(a) Concerning the Bayesian model:

1. Despite the limited utility of standard Bayesian methods, which utility is generally restricted
to specific and simple cases, the Bayesian methods based on Markov Chain Monte Carlo
(MCMC) techniques, implemented in the OpenBUGS, can be advantageously used in
the analysis of more complex and advanced models, particularly probabilistic ones, thus,
opening the applications to a broad spectrum of fracture and fatigue problems to be explored
in the future, as the one investigated here.

2. The OpenBUGS software allows for the systematic sampling of the model parameters to be
integrated into posterior predictive models, once the prior information has been enriched with
the experimental data.

3. The new Bayesian approach allows very large posterior samples of the model parameters to
be obtained and use them to derive the approximate distribution of any variable instead of
working with closed complex formulas.

4. Bayesian methods, instead of providing point estimates of the variables, provide very large
samples of them that can be interpreted as their density functions, which is much more than
confidence intervals.

5. The application of Bayesian techniques to the probabilistic regression Weibull model
proposed by Castillo and Canteli for the analysis of S-N data enables the initial simple
probabilistic definition of the five parameters model to be enhanced by providing the
probability distribution for any percentile failure curve of the original model (to be interpreted
as confidence intervals). Furthermore, the approach enables the subsequent evolution of the
confidence intervals to be defined as a function of the number of tests carried out.

(b) Concerning the S-N model:

1. The Bayes methodology can be applied at any time during the testing process providing
an invaluable contribution to enhance the confidence intervals of the S-N assessment,
in particular when using such a probabilistic model as that of Castillo-Canteli.

2. The evolution of the confidence bands for the fatigue limit referred to the assessment of the
fatigue S-N field of the Maennig example confirms the robustness of the S-N model proposed
by Castillo-Canteli. In fact, the confidence bands obtained by applying the Bayes methodology
proves to show a near asymptotic trend with quick diminishing for increasing number of
evaluated test results evidencing a moderate variation in the ranges of the fatigue limit even for
scarce number of test data.
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3. The confidence intervals in the particular case of the fatigue limit are transcendental because
the direct interpretation of the latter, whereas those for the remaining S-N parameter are of less
interest when separately interpreted. Instead, the reciprocal interdependence, i.e., the correlation,
existing among all the model parameters is better reflected through the representation of the
confidence bands (distribution of the particular probability of failure) of the percentiles S-N
curves, preferably only for low or very low probability of failure in practical design.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/19/3239/s1,
Video S1: Evolution of the whole p-S-N field, Video S2: Evolution of the quantiles and confidence intervals with
the number of tests.

Author Contributions: Conceptualization: E.C., A.F.-C. and M.M.-C.; methodology: E.C.; software: E.C. and
M.M.-C.; validation: M.M.-C. and S.B.; writing—original draft preparation: All Authors; writing—review and
editing: All Authors.; supervision: E.C.; please turn to the CRediT taxonomy for the term explanation.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A OpenBugs Codes

This Appendix shows the code implemented in OpenBugs to introduce the Castillo-Canteli model
by using the generalized extreme function. To do that, and with the aim of facilitating the reading of
the code, four auxiliary variables have been defined (lines 3 to 6), which are used to define in a simpler
way the model (line 8).

Once the model is defined, the implied variables (N0, ∆σ0, β, λ, δ) are defined as uniform random
ones, ranging between a minimum and a maximum value (lines 10 to 14).

Mode 1
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Furtheremore, the ones/zeros Poisson model trick has been used to introduce the Castillo and
Canteli model, as can be seen in the following code:
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