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Abstract: In this study, a lightweight sandwich aircraft spoiler (AS) with a high stiffness-to-weight
ratio was designed. Excellent mechanical properties were achieved by the synthetic use of topology
optimization (TO), lattice structure techniques, and high-performance materials, i.e., titanium alloy
and aluminum alloy. TO was first utilized to optimize the traditional aircraft spoiler to search for
the stiffest structure with a limited material volume, where titanium alloy and aluminum alloy
were used for key joints and other parts of the AS, respectively. We then empirically replaced the
fine features inside the optimized AS with 3D kagome lattices to support the shell, resulting in a
lightweight sandwich AS. Numerical simulations were conducted to show that the designed sandwich
AS exhibited good mechanical properties, e.g., high bending rigidity, with a reduction in weight by
approximately 80% when compared with that of the initial design model. Finally, we fabricated the
designed model with photosensitive resin using a 3D printing technique.
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1. Introduction

A spoiler in aircrafts is a piece of equipment aimed at intentionally reducing the lift component of an
airfoil in a controlled way [1]. Considering the demanding requirements for a high stiffness-to-weight
ratio in the aerospace industry, a spoiler should be designed to be lightweight and with a high
stiffness [2]. Traditionally, they have been designed using a trial-and-error method, which is always
time-consuming and normally too conservative. Recently developed topology optimization (TO)
methods [3–5] can overcome these drawbacks.

TO methods, which serve as efficient tools, can produce various novel candidates for engineering
structures. Initially, these methods purely play a role in the conceptual design process in industry,
following shape optimization, size optimization, and numerical verifications. The main reason
behind this is the gap between the complexity and intricacy of an optimum solution and traditional
manufacturing techniques, although various manufacturing constraints are considered [6]. This gap
has been significantly overcome with the rapid development of additive manufacturing (AM), e.g., 3D
printing [7]. Although showing a promising perspective, with the ability of reducing geometric
intricacy restrictions imposed on topology optimization by conventional manufacturing, several key
problems must be dealt with for AM, e.g., the support structure design [8–10]. The superiority of AM
may be more prominent when one attempts to design and fabricate sandwich structures. Sandwich
structures, constructed by attaching two thin (yet stiff) skins to a lightweight (but thick) core, are
typically lightweight structures with high stiffness. Because of the use of the core, the whole structure
can exhibit high mechanical performance using normally low-strength material. Various cores have
been proposed, e.g., tetrahedron [11], 3D kagome [12], pyramid [13], honeycomb [14], origami [15], etc.
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Notice that the advantages and drawbacks of these cores are not covered in this work and readers are
referred to review papers [16,17] and references therein. In this study, 3D kagome is employed as the
core to construct the sandwich aircraft spoiler (AS).

Using TO methods, several components of the aircraft have been designed, mainly including
airframe structures and stiffener ribs for aircraft panels [2]. Using a bi-level optimization scheme, two
Airbus pylons were designed by combing TO methods and geometric optimization [18]. Zhu et al. [19]
proposed a novel TO method to improve the stiffness and strength of an aircraft skin stretch-forming
die. A Heaviside-function-based directional growth topology parameterization has been developed
to achieve stiffener layout designs [20], having the potential to design stiffener ribs for aircraft
panels. Krog et al. designed aircraft wing box ribs by using TO methods [21]. By tackling coupled
fluid–structure problems, morphing aircraft structures were designed by using a multidisciplinary TO
method [22]. In addition, multi-component design problems of aircrafts have been extensively studied
by Zhang and his co-workers [23–25]. However, these final optimized designs [26–28] are generally not
able to be fabricated directly since these designs (1) have no direct link with CAD modelling system and
(2) their edges normally need to be smoothed. Recently proposed morphable moving component/void
(MMC/MMV) [29–31] methods have the ability to seamlessly integrate topology optimization in CAD
modeling systems, which can overcome problem (1). For problem (2), numerous methods, including
employing higher-order finite elements or refined meshes [32–34], mesh adaptive strategies [35,36],
and high-resolution techniques [37,38] have been proposed. Note that level-set methods can inherently
produce structures with smooth edges [39,40].

Alternatively, commercial software, e.g., Abaqus [41], embedded TO algorithm can also produce
optimized structures with clear boundaries. In this work, we employ Abaqus to optimize the AS with
clear boundary features and utilize Solidworks [42] to remodel a CAD model of the optimized AS.
The internal fine structures established in Solidworks, which are very complex, are manually replaced
by 3D kagome cores to improve the manufacturability and the stiffness-to-weight ratio. In addition,
to further reduce the weight and improve the strength of AS, aluminum alloy and titanium alloy
are synthetically applied to the key joints and the other parts, respectively. We conduct numerical
simulations to investigate whether the designed aircraft spoiler can meet the service environment.
Finally, a novel aircraft spoiler model is fabricated by using photosensitive resin.

2. Materials and Methods

2.1. Topology Optimization Method

TO aims to obtain the optimal material layout under the prescribed loading and boundary
conditions with the given material. Density-based methods treat the material density of each element
as the design variable between 0 (void element) to 1 (solid element) by allowing the material to take
intermediate densities (gray element). The Young’s modulus of the elements in the design domain
is parameterized with design variable and the properties of intermediate densities are artificially
penalized. To achieve penalized intermediate densities, the Young’s modulus of the eth element can be
expressed as [3],

Ee = xp
e Es (1)

where Es is the Young’s modulus of the solid element, xe is the relative density of the material element
(i.e., the design vector of the element densities), and p as the penalization power is used to suppress
intermediate density and ensures good convergence to 0/1 designs, which usually has a value of 3.

Let the structure be discretized into N finite elements (i.e., the number of design variables) and let
ke be the element stiffness matrix, then, the global stiffness matrix can be expressed as:

K =
N∑

e=1

xp
e ke. (2)



Materials 2019, 12, 3225 3 of 9

To maximize the structural stiffness is equivalent to minimize the structural compliance, thus the
TO problem can be formulated as [2–4],

Min :c(x) = UTKU =
N∑

e=1

(xe)
puT

e keue

s.t. :
V(x)
V0

= f

:KU = F

:0 < xmin ≤ x ≤ 1

(3)

where c(x) is the objective function, F is the global load vector, U and ue are the global and element
displacement vectors, respectively, V (x) and V0 are the solid material volume and design domain
volume, respectively, f is the prescribed volume fraction (i.e., the ratio of optimized structure to design
domain), and xmin is a vector of minimum relative densities, which avoids the non-positive definite
stiffness matrix, and its value is usually set to be 0.001.

The optimization presented in Equation (3) can be solved by utilizing many methods, e.g., the
method of moving asymptotes (MMA) [43], optimality criterion (OC) method [44], linear or sequential
quadratic programming methods [45,46], the ESO method [47,48], etc. In this study, Solid Isotropic
Material with Penalty (SIMP)and OC methods were used to optimize the AS, in which OC is the solver.

2.2. Design Problem Definition

The initial design domain of AS is shown in Figure 1a, which consists of a skin (highlighted in
green), joints (highlighted in red), and the main structure (highlighted in gray). The initial thickness of
the skin was set to be 1 mm. The skin domain had a length and width of 1220 × 426 mm, and was
discretized by 21,551 S4 elements. The remaining domain had a length of 1220 mm and a width of
470 mm and is occupied by 149,779 C3D8 elements. Two non-design domains, the skin and joints,
are defined to maintain the integrity of the final design. The objective function is to minimize the
structural flexibility under a volume constraint of 20%. The x-direction of all joints is constrained,
y-direction of joints 1 and 2 is constrained, and z-direction of joints 2, 3, 4, and 5 is fixed. A distributed
uniform load of 20,000 Pa is applied at the structural upper skin along the vertical skin. Joints and
the skin were constructed using titanium alloy and aluminum alloy was used to form the other parts,
of which the properties are shown in Table 1. The volume and the weight of the initial AS were 14.1
× 10−3 mm3 and 40.395 kg, respectively. It should be noted that all the initial design parameters,
including geometric and material parameters, in this study were provided by an aircraft design and
research institute in China. In addition, although the tensile and compressive strength of aluminum
are very close, the values we used in this study exhibiting apparent difference are provided by the
institute mentioned above.

Table 1. Properties of the used materials.

Material Titanium Alloy Aluminum Alloy

Density (kg/m3) 4500 2760
Tensile strength (MPa) 900 450

Compressive strength (MPa) 880 270
Modulus of elasticity (GPa) 108 68

Poisson’s ratio 0.33 0.33
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lower surface. Note that the positions of the lattice structures are carefully selected according to the 
stress distribution presented in Figure 2b; in other words, we employ the 3D kagome lattice structure 
to support the skins of the spoiler to reduce the stress concentration. It should be underlined that the 
detailed process to determine the specific lattice geometry is as follows. The basic unit cells of the 3D 
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geometry of the optimized structure presented in Figure 2a. Next, we distributed the unit cell 

Figure 1. (a) An initial aircraft spoiler (AS) design domain; (b) the optimized AS and von Mises stress
distributions; (c) remodeled AS.

3. Results and Discussions

Figure 1b shows the optimal material layout of AS and the von Mises stress distribution.
The maximum stress (stress concentration) of this structure occurs at the joints, as expected, with
a maximum value of 256.6 MPa. To remodel the optimized AS, the regions with material density
greater than 0.4 are replaced with solid materials, otherwise removed (Figure 1c). The inner fine
features are removed to increase the manufacturability (Figure 2a). The remodeled AS includes the
skin (colored green), the lower surface (colored blue), and joints (colored gray). In addition, sharp
corners are rounded to avoid the stress concentration. The internal structure, linking the skin and the
lower surface, is removed to make room for the lattice structure. The material for the lattice structure
is aluminum, whose properties are presented in Table 1. Note that the maximum stress occurs at the
surface of the joints. Hence, we increased the thickness of the joint to 4 mm. Moreover, to ensure the
designed structure can be easily fabricated by using a normal 3D printing machine, the thickness of
both the skin and lower surface is set to be 2.5 mm.
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Figure 2. (a) The remodeled AS excluding the inner structures and (b) its von Mises stress distribution.

Figure 2b presents the corresponding stress distribution of the remodeled AS without the inside
fine structures. The maximum stress becomes 884.1 MPa, which is easy to understand since the internal
support was removed. Subsequently, a 3D kagome lattice structure was added to the inside of the
remodeled AS. The rod diameter of each lattice unit was set to 5 mm. The height of the 3D kagome
lattice structures was determined adaptively, based on the distance between the skin and the lower
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surface. Note that the positions of the lattice structures are carefully selected according to the stress
distribution presented in Figure 2b; in other words, we employ the 3D kagome lattice structure to
support the skins of the spoiler to reduce the stress concentration. It should be underlined that the
detailed process to determine the specific lattice geometry is as follows. The basic unit cells of the
3D kagome lattice [12] close to the joints are first designed in Solidworks (see Figure 3b) according
to the geometry of the optimized structure presented in Figure 2a. Next, we distributed the unit cell
longitudinally along the AS by carefully considering the geometric changes of the lower surface of the
AS. Then, we used the upper surface of the AS to cut the lattice structures and remove the redundant
parts. Finally, we achieced the specific lattice, as shown in Figure 3d. It should be noted that experience
is needed in this step. However, structural optimization techniques [49] can be further adopted to
determine the geometry and the position of the unit cell, which is out of the scope of this study.
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Figure 3a–c show the top view, the lateral view, and the isometric view of the final designed AS,
respectively. The stress concentration of the skin or the lower surface should be significantly reduced
by adding lattice structures. However, the joints, which are non-designable, can be regarded as the
support end of one cantilever and may exceed the maximum stress since we have added more materials
to the skin or the lower surface by increasing their thicknesses. Therefore, titanium alloy instead of the
aluminum alloy is used to construct the key joints, i.e., joints 1, 2, 5, 6. Aluminum alloy is used for the
other parts to further reduce the whole weight.

Figure 4a,b present the von Mises stress distribution and displacement distribution of the final
design, showing that the maximum stress and the maximum displacement are 523.1 MPa and
10.19 mm, respectively. The small displacement means high stiffness of the structure. In addition, the
corresponding stress distributions of the regions with different material properties are also depicted
in Figure 4c,d. Specifically, the maximum stress of the joints 1, 2, 5, 6 and the adjacent regions is
523.1 MPa (Figure 4c) and for other regions is 245.2 MPa. These two values are both smaller than the
yield stress of the corresponding material used. The volume of the designed aircraft spoiler is 2.63
× 10−3 mm3, and the weight is 7.772 kg. Moreover, compared with the initial design structure, the
volume and weight of the final designed AS are reduced by 81.35% and 80.76%, respectively. Therefore,
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we have designed a lightweight sandwich AS with a high stiffness-to-weight ratio by using titanium
alloy and aluminum alloy. Finally, considering the cost of 3D printing for metals, we fabricated the
final designed AS with photosensitive resin by using a Jinshi high speed light curing 3D printer (Type:
JS7255) to show its real configuration, as shown in Figure 5.Materials 2019, 12, x FOR PEER REVIEW 6 of 9 
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It should be stressed that the designed sandwich AS is indeed not the best one since empirical
method is used and TO is normally unable to obtain the global optimum. Alternatively, TO for lattice
structures [49] may provide guidance in the design of AS. However, considering that it is a large-scale
problem and the design domain is geometrically complex, it is not an easy task [50]. Moreover,
this study purely aims at showing a promising way to design a novel AS with a high stiffness-to-weight
ratio. However, for real aircraft spoilers, multiple loads condition and buckling constraints should be
carefully considered.

4. Conclusions

We have designed a sandwich AS with a high stiffness-to-weight ratio by using two materials,
i.e. titanium alloy and aluminum alloy. TO are used to search for the best material distribution with
maximizing the structural stiffness as the objective. The internal support materials obtained from
the TO results are removed and subsequently replaced by 3D kagome lattice structures. To further
improve the strength and at the same time reduce the weight of the aircraft spoiler, joints 1, 2, 5,
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6, the key bearing components, use titanium alloy, while the other parts utilize aluminum alloy.
Results show that the volume and weight of the designed aircraft spoiler are reduced by 81.35%
and 80.76%, respectively, when compared with those of the initial design structure. In addition, the
maximum stress and the maximum displacement of the final designed AS are 523.1 MPa and 10.19 mm,
respectively, demonstrating that it can meet its service environment. We finally fabricated a real model
for the novel sandwich AS by using 3D printing. It is worth highlighting that it is not an easy task to
weld titanium with aluminum, and further studies are needed [51]. Moreover, it is highly necessary to
conduct experiments to verify the mechanical performances of the optimized structure. However, it is
very hard to achieve this goal, and the authors may explore this field in the future.
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