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Abstract: The comprehensive microscopic, spectroscopic, and in vitro voltammetric analysis presented
in this work, which builds on the well-studied properties of carbon-based materials, facilitates potential
ways for improvement of carbon fiber microelectrodes (CFMs) for neuroscience applications.
Investigations by both, scanning electron microscopy (SEM) and confocal Raman spectroscopy,
confirm a higher degree of structural ordering for the fibers exposed to carbonization temperatures.
An evident correlation is also identified between the extent of structural defects observed from SEM
and Raman results with the CFM electrochemical performance for dopamine detection. To improve
CFM physico-chemical surface stability and increase its mechanical resistance to the induced
compressive stress during anticipated in vivo tissue penetration, successful coating of the carbon
fiber with boron-doped diamond (BDD) is also performed and microspectroscopically analyzed here.
The absence of spectral shifts of the diamond Raman vibrational signature verifies that the growth of
an unstrained BDD thin film was achieved. Although more work needs to be done to identify optimal
parameter values for improved BDD deposition, this study serves as a demonstration of foundational
technology for the development of more sensitive electrochemical sensors, that may have been
impractical previously for clinical applications, due to limitations in either safety or performance.

Keywords: scanning electron microscopy (SEM); confocal Raman spectroscopy; fast-scan cyclic
voltammetry (FSCV); carbon fiber; boron-doped diamond thin film

1. Introduction

The characteristics of carbon fiber microelectrodes (CFMs) based biosensors for measuring
extracellular concentrations of neurochemicals and other biological analytes, in real-time and with
high accuracy, have been of continuous scientific interest for the past few decades [1–9]. A variety
of electrochemical recording techniques have employed such sensors, including constant-potential
amperometry and fast-scan cyclic voltammetry (FSCV) [10–15]. Since sensitivity in monitoring changes
in neurochemical concentrations, in vitro and in vivo, strongly depends on the microelectrode material,
on its design, and on its fabrication processes, a large body of research has been directed towards
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such considerations [1–15]. Carbon-based materials, such as pyrolytic graphite, carbon fibers (CFs),
glassy carbon (GC), pitch-based graphitic foams, nanographite ribbons, fullerenes, carbon nanotubes
(CNT), and doped diamond are still considered to be the most suitable candidates because of their
biocompatible, conductive, and mechanical properties [1–15]. Thus, from the time when CF was
invented by Joseph Swan in 1860 [16], it has been continually researched and its properties improved
for multiple applications. While, originally, natural biomaterials such as cotton and bamboo were
used as precursors, current research efforts and manufacturing development of CFs have enabled
their commercial mass production from polyacrylonitrile (PAN)-based white fiber. The high tensile
strength-to-weight ratio, excellent thermal and chemical resistance, and high thermal and electrical
conductivity of PAN-based CFs make them superior to other available candidates [17–19].

While generally effective for in vivo electrochemical sensing, the surfaces of CFs have been further
functionalized and modified to increase their selectivity and sensitivity in detecting a specific analyte
in the presence of other biointerferents, or in monitoring multiple compounds [20–26]. The carbon
surface, which is a disordered graphite layer with a low specific activity, can be easily modified and
its properties tuned to achieve the desired outcomes. Thus, coating the fiber surface with polymers,
enzymes, redox hydrogels, nanotubes, or metallic nanoparticles are examples of methods that have been
commonly employed [20–26]. Among the most investigated selectivity problems is the interference
between dopamine and ascorbic acid. Negatively charged polymer coatings, such as overoxidized
polypyrrole (oPPy) and Nafion have been employed to repel and eliminate, at physiological pH,
the anionic ascorbate and to improve the detection of cationic dopamine [25,26]. Other methods that
have been applied consist of etching the CF surface electrochemically or by flame treatment [27–30].
In the design of CFMs, the commonly used process entails encapsulating CFs with typical diameters
of 7 to 10 µm into glass or silica capillaries that are further attached to metallic wires at one end,
and sealed in place with silver conductive paste. The other exposed end of the carbon fiber is sealed
with 1:1 ethylendiamine epoxy resin, left to dry for a couple of hours, and then trimmed to the desired
length [12–15,31].

Originally, however, commercially available CFs were never designed for electrochemical and
clinical purposes, but rather for use in various manufacturing industries. For industrial applications,
hundreds or thousands of micron-sized fibers, covered with an adhesion material, were wound
into bundles (tows) to produce a thread used in weaving carbon fiber fabrics. In such applications,
the important physical characteristic is the tensile strength of the fiber. The micro-sized fibers were
never optimized for compressive stress (as opposed to tensile stress), an important characteristic for
safe electrode penetration of tissue. In addition, uniform electronic properties or chemical composition
were never of critical importance in such manufacturing, but are necessarily important factors for
clinical applications. These manufacturing design issues present a number of practical problems
in the laboratory. First and foremost, commercially sourced fibers, while immensely strong when
bundled together, are very delicate when used individually under the compressive bending load that is
encountered in penetrating tissue. In addition, since commercial fibers were never intended for use in
electrochemical sensing, different commercial sources of these fibers can vary widely in composition,
electrical stability, and chemical surface adsorption properties, characteristics critical in their use
as electrochemical sensors. Sourced CFs also exhibit variable capacitive background currents, and
relatively rapid and variable drifts in the baseline current detected by FSCV. Overall, the present lack
of uniformity and lack of CFs produced specifically for electrochemical detection of neurochemicals
in vivo has led to qualitatively and quantitatively different responses to the same analytes, confounding
analysis and repeatability among research studies.

However, boron-doped diamond (BDD) thin film coatings on metallic rods or on silicon substrates
have been used as alternatives for improving stability, limiting background noise, and reducing
microelectrode fouling [9,15,32,33]. While improved physico-chemical stability has been reported for
these BDD-based microelectrodes, a lower sensitivity to neurotransmitter detection was also found,
through FSCV analysis, in comparison to CFMs. To meet the requirements of efficient electrochemical
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detection, the quality of BDD microelectrodes depends not only on the boron doping level, but also
on the choice of the substrate used, as the lattice mismatch between the substrate and the BDD thin
film can induce an unwanted strained structure on the latter [32,33]. Thus, deposition of BDD on
carbon fibers has been proposed to reduce CF surface degradation [34,35]. This approach can also
reduce the number of defects in the BDD thin film, as an unstrained structure is anticipated; no lattice
mismatch occurs, because both the substrate and the thin film are carbon-based materials. On the other
hand, difficulty in such deposition has also been reported [34,35], as the atomic hydrogen needed for
diamond growth will etch the carbon substrate.

With the objective of achieving more accurate detection and monitoring of neurotransmitters at
concentrations specific to physiological levels, we present in this work a comprehensive microscopic,
spectroscopic, and electrochemical analysis of CFMs fabricated from PAN-based CFs. To improve the
CFM surface stability and potentially increase its performance under compressive stress, BDD deposition
on CFs is also microspectroscopically investigated here.

2. Materials and Methods

2.1. Carbon Fibers

The CFs analyzed in this work consist of three commercially available PAN-based fibers produced
by CARBON NEXUS in Geelong, Australia. CARBON NEXUS, one of the largest CF manufacturing
companies, is a worldwide distributor. A low heating temperature of 225–285 ◦C, that affects the
thermal stabilization process, was applied to the CF labeled as sample 1. Samples 2 and 3 were
processed at low (450–950 ◦C) and high (1000–1500 ◦C) carbonization temperatures, respectively.

2.2. Scanning Electron Microscopy System

The scanning electron microscopy (SEM) measurements were performed with a Helios G4
UXe DualBeam focused ion beam FIB/SEM system (Thermo Fisher Scientific, Hillsboro, OR, USA).
Sections from the three different CF samples were placed over a carbon tape for fiber surface
investigations or attached to a Si substrate for cross-section analysis. The micromanipulator accessory
of the imaging system was employed for moving the samples and mounting them vertically to the
Si substrate. A Xe+ source was used to cross-section mill the samples. An Elstar + UC and an Xe+

electron column were employed to acquire the SEM images with accelerating voltage and emission set
to 1 keV and 13 pA or to 2 keV and 25 pA, rendering the desired magnification and resolution. A 750 V
stage bias was applied for high-resolution images.

2.3. Confocal Raman System

The Raman measurements were acquired at ambient conditions in a backscattering geometry
with an alpha 300RAS WITec system (WITec GmbH, Ulm, Germany) equipped with a 1024 × 127 pixel,
Peltier cooled CCD camera. The 532-nm excitation of a frequency-doubled neodymium-doped
yttrium–aluminum–garnet (Nd: YAG) laser that was restricted to a power output of a few mW, and a
100× objective lens with a numerical aperture of 0.9, were used. To obtain Raman mapping images,
selected areas of the samples were raster scanned under the laser beam and arrays of the Raman spectra
were recorded with an acquisition time of 50 milliseconds for each pixel and an overall time per image
of a few minutes. The WITec Control software was utilized for controlling the piezo stage during the
scans, as well as for data acquisition. Appropriate background subtractions were performed for all
Raman spectra.

2.4. Fast Scan Cyclic Voltammetry System

In vitro FSCV measurements were conducted using the WINCS (Wireless Instantaneous
Neurotransmitter Concentration Sensing) Harmoni system manufactured at the Mayo Clinic in
Rochester, Minnesota. This system combines four independent FSCV channels with four independent
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electrical stimulation channels, as detailed elsewhere [36]. A standard triangular waveform at 10 Hz,
with the holding potential of −0.4 V, peak potential of 1.3 V, repetition time of 100 ms, and scan
rate of 400 V/s, was used to exploit adsorption and overoxidation of dopamine on the carbon fiber,
for optimal sensitivity [37–39]. Dopamine (DA), the neurotransmitter used for these measurements,
was dissolved in distilled water at a stock concentration of 1 mM, diluted with TRIS buffer (15 mM
tris aminomethane, 3.25 mM KCl, 140 mM NaCl, 1.2 mM CaCl2, 1.25 mM NaH2PO4, 1.2 mM MgCl2,
and 2.0 mM Na2SO4, with the pH adjusted to 7.4), and preserved with 0.1 M perchloric acid. From this
stock solution, dilutions were made in TRIS buffer for the desired final concentrations, before starting
the flow-injection experiments. All pharmacological agents were purchased from Sigma Aldrich
(St. Louis, MO, USA). A flow-injection analysis system, which consists of a syringe pump (Harvard
Apparatus, Holliston, MA, USA) that directs a buffer solution through a Teflon tube to a 6-port injection
valve (Rheodyne, Rohnert Park, CA, USA) was employed for these measurements. An injection valve,
which was controlled by a 12 V DC solenoid, was also used to transport the analyte from an injection
loop to an electrochemical flow-cell, at a rate of 2 mL/min.

2.5. Boron-Doped Diamond Deposition System

The boron-doped diamond thin film was grown by hot-filament assisted chemical vapor deposition
(CVD) using a custom-built reactor at the Mayo Clinic, in Rochester, Minnesota. A mixture of methane
(2 sccm), hydrogen (178 sccm), and trimethylborane (TMB) (20 sccm; 1000 ppm TMB in hydrogen,
Voltaix Products, Branchburg, NJ, USA) was introduced into the chamber, at a total chamber pressure
of 20 Torr. The temperatures of 2000 ◦C for the filament and 800 ◦C for the substrate were monitored
with a Spectrodyne DFP 2000 optical pyrometer and an Omega Engineering type K thermocouple,
respectively, and kept constant during the 30 min film deposition. A Proportional Integral Derivative
(PID) software-based control loop was employed for this procedure. Prior to CF (of about 7 µm in
diameter) insertion into a quartz capillary, the CF was abraded by immersion in a slurry mixture of
100 nm diamond powder (Engis, 105 West Hintz Road, Wheeling, IL, USA) and isopropyl alcohol.

3. Results and Discussion

3.1. Microscopic and Spectroscopic Characterizations of Carbon Fibers

To provide a comprehensive assessment of material morphological progression during the CF
manufacturing process at different temperatures, we first investigated the samples by SEM. Since no
obvious differences were observed for CF surfaces, only a representative SEM surface image is
presented in Figure 1a for a sample carbonized at high temperature. Small surface imperfections
and irregularities can be seen in this figure of a pristine CF, as well as many longitudinal grooves,
inherent in PAN-precursors. Thus, the fiber exhibits, overall, a relatively smooth surface, except for
these randomly distributed granular imperfections. The characteristic quasi-oval, bean-like shape
of PAN-based fibers is also observable in Figure 1b,c, where cross-sectional SEM images are shown,
at different resolutions. As mentioned above, due to the flexibility, and therefore, the ease of bending
these fibers, mounting on Si substrates and appropriate trimming to about 100 µm lengths were
performed for such investigations.

The quality of the fibers is further investigated through the higher resolution cross-sectional SEM
images that are presented in Figure 2a–f. There are visible differences between the fiber morphologies
regarding the presence and magnitude of defects; especially noticeable is the CF exposed only
to a thermal stabilization process (i.e., sample 1). The SEM images associated with this sample,
and presented in Figure 2a,b at different magnifications, reveal quite large hollow spaces throughout
the fiber, with sizes ranging from 1–2 microns to almost the whole fiber diameter. A CF of much more
improved quality is observed in Figure 2c,d, associated with sample 2, with randomly distributed
defects only near the fiber surface. Their sizes are also much smaller, averaging only about 10–20 nm.
Thus, a dramatic decrease in the content of defects occurs when the fiber starts the carbonization process;
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fibers treated to temperatures less than 500 ◦C can be expected to be of low quality. The cross-sectional
SEM images corresponding to sample 3, which are presented in Figure 2e,f, demonstrate a further
decrease in the number and average size of defects for CF carbonized at high temperature. However,
only a slight improvement in fiber quality is achieved when carbonization treatment at a high versus a
low temperature is applied. These observations are in agreement with previously reported results
on the effects of thermal treatment on the microstructure of CFs [40], which reveal that during heat
treatment, the cyclization, dehydrogenation, and oxidation reactions of the PAN polymer chains occur
at a faster rate in the core of the fiber than at its surface. They also emphasize the critical importance of
the thermal stabilization process and its influence on the fiber heterogeneity along the radial direction.
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Figure 2. Cross-sectional SEM images, at different resolutions, of carbon fibers: (a,b) sample 1
exposed to a thermal stabilization process (225–285 ◦C); (c,d) sample 2 carbonized to low temperatures
(450–950 ◦C); and (e,f) sample 3 carbonized to high temperatures (1000–1500 ◦C).

In addition, evidence of different cross-linking mechanisms in the core and skin regions of the fiber
is provided in Figure 3a,b, where very high-resolution SEM images of samples 2 and 3 are presented.
Not only do these images enable a direct comparison between the sizes and density of defects at fiber
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surfaces, but they also allow a visualization of nanoscale features. A higher surface porosity is observed
for sample 2 than for sample 3, the latter corresponding to increased carbonization temperature.
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Figure 3. (a,b) High resolution SEM images of samples 2 and 3 enabling visualization of nanoscale
defects near CF surfaces.

Complementary analysis of CFs by confocal Raman microscopy is also presented in Figure 4a–e.
A well-established characterization method in studying carbon-based materials, Raman technique
has traditionally played an important role in providing information on sp2 or sp3 hybridization in
materials, existence of chemical impurities, defects, and other crystal disorders, such as induced
strain [4,6–9,15,19,32–35,41–43]. As compared with the previous images of conventional SEM, the surface
and cross-sectional confocal Raman mapping images presented in Figure 4a–d show regions that do not
lie within the focal plane of the optics and that are therefore not well defined. Nevertheless, longitudinal
striations along the CF surface are observable in Figure 4b, as well as the large internal defect in the
cross-sectional image of sample 1 (see Figure 4c). Since nanoscale voids are beyond the current optical
resolution capability, they cannot be visualized in the cross-sectional images of samples 2 and 3 (for the
current laser excitation of 532 nm, the resolution limit is about 350 nm). Therefore, only a representative
confocal image is presented in Figure 4d for these samples, which reveals, again, the bean-like shape
characteristic of PAN-based CFs. This shape is hardly distinguishable in Figure 4c associated with sample
1, due to the substantial internal defects of this sample.

Definite structural differences between the samples can be observed in Figure 4e, where the
integrated Raman spectra (the averages of tens of thousands of accumulated Raman mapping spectra)
associated with the three samples are shown. For additional accuracy, deconvolutions into Lorentz
band shapes of the important features, such as the first and the second order vibrational modes,
were also performed. Besides the G band assigned to the E2g vibrational mode and present in all
graphitic structures [41–43], which is centered at 1575 cm−1, the peak of the recognized defect-induced
electron-hole “inter-valley” double resonance process that activates transverse optical phonon modes
close to the zone boundary K point, the D band, is also observed in these spectra, at 1344 cm−1.
An obvious decrease in the full width at half maximum (FWHM) is seen for the D band when the
CFs are exposed to carbonization versus stabilization temperatures, from 227 cm−1 for sample 1,
to 173 cm−1 and 171 cm−1 for samples 2 and 3, respectively. In addition to a similar decrease of its
FWHM from 107 cm−1 (for sample 1) to 87 ± 2 cm−1 (for samples 2 and 3), the G band also shows a
trend of intensity increase. This trend suggests that by employing the intensity ratio of the D and G
bands, ID/IG, which is commonly used as an indicator for estimating the degree of structural disorder in
carbon-based materials and of average crystal planar domain size, further discrimination between the
merits of samples 2 and 3 can be achieved. The decrease in this ratio from 1.13 for sample 1, to 1.0 for
sample 2, to a final value of 0.89 for sample 3, indeed, confirms the superiority of sample 3. However,
the need for fitting a new Raman feature, D3, around 1490 ± 5 cm−1 (red colored line) to correctly
fit the spectral shape between the D and the G bands implies the persistence of some disordered
structure. This D3 band, which does not have any apparent maximum, has been attributed to the
presence of amorphous carbon in the analysis of CFs [42,43]. Since existence of unwanted amorphous
carbon impurities at CF surfaces has already been confirmed in our previous SEM measurements (see
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Figure 1a), the necessity of having the D3 feature also demonstrates good agreement between the
Raman and SEM assessments. On the other hand, the decreases in the intensity and broadness of
this band in the Raman spectra indicate a less defective material at higher temperature treatments,
again corroborating our SEM results.
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Examination of the second order Raman bands, such as the 2D (G’) and D + G bands, can provide
additional information about the CF quality. For example, although not very well defined, these bands
are observed around 2650 cm−1 and 2890 cm−1, respectively, for samples 2 and 3. Only a very broad
band is detected for sample 1, suggesting, once more, an induced structural disorder that is quite
large in this case. However, for consistency, we still fit this broad feature in the Raman spectrum of
sample 1 with the two lines corresponding to 2D and D + G bands. As an indicator of a lesser degree of
three-dimensional ordering in this sample, no specific band labeling is provided, as it is in the Raman
spectra of samples 2 and 3.

3.2. Fast Scan Cyclic Voltammetry Analysis

The performance of the CFs in in vitro neurotransmitter detection is further investigated by FSCV,
and the results are presented in Figure 5a–d. For these measurements, CFMs were made from the three
sets of CFs following a design described elsewhere [12,14,31]. Prior to CFM exposure to testing, the tip
of each CF was trimmed with a scalpel to a length of approximately 100 µm, in order to maintain a
similar active surface area for all CFMs. A flow-cell injection system, as described above, was used
for the calibration of each electrode to known concentrations of DA. For this process, the CFM was
placed in a flowing stream of TRIS buffer, and the DA was injected as a bolus at concentrations of 200,
400, 600, 800 and 1000 nM. A triangle-wave potential from −0.4 to 1.3 V at 10 Hz was applied for each
scan, with a scan rate of 400 V/s. Because the current recorded during each potential sweep yields a
combination of capacitive and Faradaic (oxidation/reduction) currents, a sufficient number of potential
sweeps were averaged before stimulation to yield a baseline template that was subtracted from every
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subsequent sweep to obtain Faradaic currents corresponding to the unique electrochemical signal
of the neurotransmitter investigated. Thus, the heights of the peaks in the background subtracted
voltammograms presented in Figure 5a,b for samples 2 and 3, respectively, are directly proportional to
the concentrations of DA oxidized and reduced at the CFM surface. These voltammetric curves for
DA concentrations of 200, 400, 600, 800, and 1000 nM exhibit the usual set of reduction and oxidation
current peaks around 0.6 V and −0.1 V, respectively [12]. No significant difference in sensitivity to
DA detection (n = 3 each concentration, paired t-test, p = 0.32, t = 1.132, df = 4) is evident between
the two electrodes. Similar electrochemical characteristics in terms of background current are also
observed in the corresponding results shown in Figure 5c. The performance of the microelectrodes,
which is presented in Figure 5d, demonstrates a linear increase in the detected oxidation peak current
with increasing DA concentration. A correlation coefficient of about 1.0 (R2 = 0.99892 for sample 2
and R2 = 0.99811 for sample 3) is obtained for both CFMs. All the CFMs made of sample 1 showed
neither background current nor DA response, implying that this sample has no electrical conductivity.
While this outcome is not surprising, based on the extent of defects observed for this sample in our
previous SEM and Raman results, it also substantiates the importance and need for a detailed material
analysis prior to CFM fabrication.
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Figure 5. (a,b) Cyclic voltammograms at 200, 400, 600, 800 and 1000 nM dopamine (DA) for carbon
fiber microelectrodes (CFMs) fabricated from samples 2 and 3 CFs, respectively, as labeled. (c) Shape
and amplitude of the background current for the CFMs associated with (a,b). (d) Average detected
oxidation peak current showing a linear increase for both CFMs, with a correlation coefficient of about
1.0 based upon three trials at each DA concentration.
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3.3. Confocal Raman Microscopy Investigation of BDD Coated Carbon Fiber

Reproducibility of the results over time is essential for long-term usage of CFMs. However,
since CF surface degradation by electrochemical etching during FSCV measurements has already
been reported [15], in an attempt to increase the CF surface stability, fiber coating with BDD was also
performed in this study, and the microspectroscopic results are presented in Figure 6a–f. A carbon
fiber carbonized at a higher temperature (i.e., sample 3) was chosen as substrate for this process.
A non-uniform deposition is seen in the optical image presented in Figure 6a, with aggregates of
different sizes randomly distributed over the fiber surface. An estimation of the diameter of the felt
CF at its narrower width demonstrates the absence of any significant occurrence of surface sp2 bond
etching by the atomic hydrogen gas precursor that is essential for diamond growth; a similar CF
diameter of about 7 µm can be observed in this image. Thus, the addition of boron assists with the
growth process of the thin film coating, as previously reported [34,35].
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Figure 6. (a) Optical image of a boron-doped diamond (BDD) coated CF. (b–d) Confocal Raman mapping
images of diamond (red), boron incorporation (blue), and sp2 carbon content (green), respectively.
(e) Confocal Raman mapping image of the BDD coated CF performed with Cluster Analysis software.
(f) Raman spectra associated with each cluster in image (e) and only in vibrational regions of interest.
The same color code is maintained for the image and for the spectra.
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The investigation of the film constituents by confocal Raman microscopy, which is presented
in Figure 6b–d, confirms the achievement of BDD deposition. Selective Raman features, such as the
vibrational line of diamond at 1332 cm−1, the broad, weak band around 1220 cm−1 attributed to boron
incorporation into the diamond lattice, and the graphitic G band around 1580 ± 5 cm−1 were considered
for performing these confocal Raman mapping images. For visualization, these three constituents
were labeled using the following pseudo-colors: red for diamond (Figure 6b), blue for BDD (Figure 6c),
and green for graphitic carbon (Figure 6d). A dominant color overlap between red and green, as well
as preferential incorporation of boron (blue color) is observed in these images. This overlapping
is expected due to the close spectral proximity of the Raman signatures for the sp3 and sp2 carbon
hybridizations (i.e., diamond-associated sharp Raman feature at 1332 cm−1 overlaps with the broad D
band at 1350 cm−1). Consequently, we present in Figure 6e a different approach for assessing potential
CF morphological changes, still through confocal Raman mapping. The acquisition of this image
was performed using the Cluster Analysis package of the WITec Project Plus software, which enables
sorting of the 22,500 hyperspectral data set into subsets, according to spectral similarity. The reason
behind maintaining the same red and blue pseudo-colors for these clusters and for the constituents
was to highlight again the incidence of diamond formation and that of boron incorporation into the
carbon material. The Raman vibrational lines associated with the sp2 carbon substrate is already
incorporated in these subsets of spectra. To allow association of spectroscopic data with the specific
microscale regions in Figure 6e, we present in Figure 6f the graphs corresponding to each cluster,
while maintaining the same color code for the image and for spectra. While a successful coating with
diamond is confirmed by the presence of the 1332 cm−1 Raman peak in both spectra of Figure 6f, this is
not the case for boron incorporation, which, besides being preferential, also induces distortion within
the graphite layer planes. This remark is supported by an obvious decrease in the G band intensity at
1585 cm−1 (in the red line spectrum), which becomes just a shoulder of the broad D3 band at 1438 cm−1

(in the blue line spectrum); the latter band corresponding to amorphous carbon, as discussed above.
Furthermore, a comparison between the Raman spectra of pristine CF (see Figure 4e) and felt CF (red
line spectrum in Figure 6f) reveals that there is a noticeable reduction in the amount of sp2 carbon
due to coating with diamond alone. This statement is based again on the intensity decrease of the G
band, which is further affected by boron addition. Finally, the Raman features at 1150 and 1240 cm−1,
which are associated with boron incorporation into sp2 and sp3 carbon, respectively, demonstrate
preferential boron assimilation throughout the entire CF. The very small intensity of the latter vibration
substantiates that only a small proportion of boron is incorporated into the diamond lattice.

4. Conclusions

Potential for improvements in CFMs, based on a comprehensive understanding of the
structure/property relationships of the employed material still remains. This is true even for
structural CFs manufactured for industrial applications, which are far more developed compared
with the conductive CFs needed for in vivo electrochemical applications. in vivo implantable
CMFs require flexibility and strength under induced compressive strain from tissue penetration,
consistent conductivity over the length of the fiber, and durability against surface degradation.
These CF properties have not been widely studied by carbon fiber manufacturers, given their priority
of structural performance at low cost. Since development in these areas would be of significant
importance to biological analysis, a comprehensive microscopic, spectroscopic, and voltammetric
analysis of CFs is presented in this work. The current results demonstrate an evident correlation between
the structural defects observed from SEM and confocal Raman investigations and the performance
of the CFMs in FSCV measurements. To improve the physico-chemical stability of the CFM surface,
coating of the CF with BDD is also successfully performed and analyzed here. The absence of shifts in
the position of the Raman line characteristic of diamond validates the growth of an unstrained thin-film
coating. Since development of flexible, more sensitive and robust CFM biosensors is envisioned,
this study contributes to specifically tailoring CFs for in vivo neurochemical recording in clinical
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applications. However, due to the complexity and unique challenges of this task, more work needs
to be done to identify optimal parameters for improved uniformity of BDD deposition. Not only is
the quality of the applied thin-film coating important for enhancing CFM conductivity, but also for
increasing the biosensor mechanical resistance to in vivo embedding.
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