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Abstract: Wire coatings are necessary to provide protection from the aggressive environment and to
add mechanical strength to wires and cables. In this study, we investigated the effect of radiative linear
as well as non-linear heat transfer on the wire coating in response to joule heating, using a third grade
fluid as the coating material. For the temperature dependent viscosity, two models namely—Reynolds’
and Vogel’s—were used. The non-linear ordinary differential equations were solved analytically by
the Homotropy Analysis Method (HAM). Numerical technique was also applied for comparison and
good agreement was found. It is interesting to note that the temperature parameter had a remarkable
effect on the temperature distribution and heat transfer characteristics in the flow region within the
die. It was observed that the velocity of the fluid within the die decreased as the magnetic parameter
increased, while the magnetic field had an accelerating effect on the temperature distribution. Near
the surface of the wire, the velocity of the coating material accelerated as the temperature parameter
and radiation parameter increased. Analysis also showed that the temperature of the coating material
decreased with increasing radiation and temperature parameters.

Keywords: wire coating; third-grade fluid; heat transfer; non-linear thermal radiation; joule heating;
pressure-type die

1. Introduction

Wire coating is an extrusion process commonly used in the polymer industry for the insulation
of wires and cables. In this process, either a bare preheated wire is dragged through the extruded
melted polymer or the melted polymer is extruded continuously over an axially moving wire. There
are five units in a typical wire coating apparatus namely, a pay-off device, a wire preheater, an extruder
equipped with an across-head die, a cooling trough, and a takeoff device. There are two kinds of
cross-sectional dies that are commonly used in the wire coating analysis—the tubing-type die and the
pressure-type die. The latter type of die is commonly used for wire coating. The pressure-type die
closely resembles an annulus and therefore flow through this type of die has an analogy with the flow
through the annular region formed by the two coaxial cylinders, out of which the inner cylinder is
moving in the axial direction while the outer cylinder is fixed.
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Studies on the wire coating for Newtonain as well as non-Newtonain fluids in a pressure-type
coating die were carried out by pioneer researchers including Bernhardt [1], McKelvey [2], Bagley and
Storey [3], Carleyeet et al. [4], and Han [5], who used the power-law and Newtonian models to describe
the rheology of the melted polymers. The textbooks of Middleman [6] and Zeeshan et al. [7] also
presented the analysis of the wire coating for pressure-type dies using the Newtonian and power-law
fluid models. Later studies on this subject were carried out by Kasajima and Ito [8], Tadmor and Bird [9],
Zeeshan et al. [10], and Wagner and Mitsoulis [11]. A detailed review of the literature on the flow of
fluid and heat transfer in wire coatings up to 1986 was given by Mitsoulis [12]. A theoretical model to
predict the pressure distribution within a stepped parallel bore wire coating unit was developed by
Akter and Hashmi [13]. In a later study, Akter and Hashmi [14] simulated the polymer flow during
the wire coating using a conical unit. Akter and Hashim [15] also presented the comparisons of
experimental and theoretical results based on a non-Newtonian plastic–hydrodynamic model for wire
drawing in a parallel and tapered bore unit.

One of the best qualities of non-Newtonian fluid is its viscoelastic property. Caswell and
Tanner [16], Tucker [17], and Basu [18] described an operation in which either the polymer was
extruded on an axially moving wire or the wire was dragged inside a die filled with the molten
polymer. In this process of coating, the continuum of velocity and the melted polymer develops a
high pressure in a specific region, which in turn produces a strong bond and imparts fast coating. The
experimental set-up of a typical wire coating process is shown in Figure 1. In this set-up, the uncoated
wire unwinds at the payoff reel and passes through a straightener, a preheater, and a crossshead die.
Then the wire meets the melted polymer, emerges from the extruder, and gets coated. This coated
wire then passes through a cooling trough, a capstan, and a tester to finally end on the rotating
take-up reel. The co-extrusion process is simple to apply, time efficient and economical in the view of
industrial applications.

Many researchers including Tadmor and Gagos [19], Mitsoulis [20], and Roy and Dutt [21] have
contributed to this field of study. Siddiquiiet et al. [22] also analyzed wire coating using third-grade
fluid and fourth-grade fluid. The third-grade fluid considered here represents a viscoelastic fluid of
industrial importance. Many fluids used in wire coating exhibit the characteristics of third-grade
fluid. Recently, a viscoelastic fluid model known as the Phan-Thien–Tanner (PTT) model is widely
used for wire coating. Many authors have contributed to enrich the field of heat transfer in the
post-treatment analysis of wire coating. Winter [23] extended the thermal analysis inside as well as
outside the die. Symmons et al. [24] have studied plasto-hydrodynamic die-less wire drawing. Fenner
and Williams [25] carried out an analysis of the flow in the tapering section of a pressure-type die. They
obtained numerical solutions for the pressure and velocity profiles in the die. Further explanations
were provided by Fenner [26], and these types of analyses were employed by the wire coating industry
for tapered pressure-type dies. The properties of the final product greatly depended on the rate of
cooling in the manufacturing processes. The central cooling system is beneficial to facilitate the process
for a designed product. An electrically conducting polymeric liquid seemed to be a good candidate
for some industrial applications such as in polymer technology and extrusion processes because the
flow could be regulated by external means through a magnetic field. Applying a magnetic field may
play an important role in controlling the flow momentum and heat transfer in the boundary layer of
different fluids in the process of wire coating. In view of this, many authors have explored the effect of
a transverse magnetic field on Newtonian and non-Newtonian fluids. Liu [27] considered the effect of
subjecting an electrically conducting second-grade fluid to a transverse magnetic field past a stretching
sheet. Salem [28] used a shooting technique to numerically study the effects of variable viscosities
and thermal conductivities on the MHD flow and heat transfer of a viscoelastic fluid over a stretching
sheet with a variable temperature. Shaheet et al. [29] have considered a third-grade fluid as a coating
material in wire coating analyses in the absence of a magnetic field and used the perturbation method
for obtaining an analytical solution. Further, Aksoyaand Pakdemirli [30], Siddiquieet et al. [31], and
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Siddiquieet et al. [32] have used a third-grade fluid in their study. Mishra [33] has considered the flow
of a viscoelastic liquid in a circular cylinder.

Shadloo et al. [34] used a viscoelastic fluid in the presence of a magnetohydrodynamic flow in
the converging and diverging channel. A series simulation was obtained by applying the homotopy
perturbation method. Maleki et al. [35] studied the heat transfer of non-Newtonian nanofluids
imbedded in a porous medium. Shadloo et al. [36] studied the heat transfer of the series solution over a
stretching sheet using the Homotropy Analysis Method (HAM). Zeeshan et al. [37] studied the effect of
thermal radiation on non-Newtonain fluid through a porous medium and the analytical solution was
obtained using HAM. Zeeshan et al. [38] obtained a numerical simulation using the Oldroyd 8-constant
fluid as a coating material for wires. Mabood et al. [39] analyzed the magnetohydrodynamic boundary
layer flow and heat transfer of nanofluids and a numerical simulation was obtained. Anuar et al. [40]
investigated the flow of the boundary layer along with the slip condition over a moving plate of carbon
nanotubes. Maleki et al. [41] observed the heat transfer and viscous dissipation of the pseudo-plastic
nanofluid over an embedded porous plate.

Nayak et al. [42] explored the influence of a transverse magnetic field on the wire coating using a
third-grade fluid as the coating material. This is one of the major 20th century contributions, regarding
the flow as well as the heat transfer of a third-grade fluid on wire coating, to the development of a
better-quality final product (coated wire), due to the better controlled rate of cooling. However, they
did not investigate the influence of the linear as well as non-linear thermal radiation in their study.

The objective of the present study is to analyze the influence of linear as well as non-linear thermal
radiation in the wire coating process, wherein a coating material is modeled as a third-grade fluid
(non-Newtonian fluid) viz. melted polymer, and includes the temperature dependent viscosity in
response to the Reynolds’ and Vogel’s models. The modeled non-linear equations were solved using
HAM [34–37]. The effect of emerging parameters of Reynolds’ and Vogel’s models on the velocity and
temperature profiles has been discussed through graphs. For the sake of validity and accuracy, the
problem was also solved by applying a numerical technique [38,40] and a comparison was done with
the published work [43].

2. Formulation of the Problem

Consider the boundary layerrflow of an incompressible third-grade fluid such as a molten polymer
like polyvinyl chloride (PVC), inside a stationary pressure-type die of finite length L having radius Rd
and temperature Θd. Suppose a wire of radius Rw is extruded along the axis of the die with velocity
Uw and temperature ΘR as shown in Figure 1. Let us make the following assumptions—(1) the flow is
steady; (2) the melted polymer flows through a suitably long cylindrical die in which a wire moves
axially at a constant speed; (3) the flow is laminar; (4) the velocity in the radial direction is negligibly
small compared to that in the axial direction; (5) the inertial effect is negligibly small compared to
viscous effect that is reasonably large due to the extremely high viscosity of the melted polymer; (7) the
excessive wall shear stress is avoided as it may lead to elongation or frequent breakage of the wire in
the coating operation, and may also cause uneven and rough extruded coating; (8) heat conduction in
the direction of flow is negligibly small compared to that in the radial direction; (9) the melted density,
specific heat, and thermal conductivity are independent of temperature, while the viscosity depends
on temperature; (10) the no-slip boundary conditions are subjected to the moving wire as well as the
stationary die wall; (11) the gravitational effect is negligible; and (12) the fluid is acted upon by a
constant pressure gradient dp

dz in the axial direction.
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Figure 1. Geometry of the wire coating analysis.

The wire and die are concentric and a cylindrical co-ordinate system (r,z) was chosen at the center
of the wire to analyze the flow situation where z- and r-axes were taken along and perpendicular to the
direction of flow respectively. The design of the wire-coating die was of primary importance since it
significantly affected the quality of the final product. The pressure-type die was considered because
within this die, the melted polymer met the wire at a location where a complex flow field existed, and
its understanding was vital for the better design of dies with optimum performance. Considering
the above-mentioned frame of reference and assumptions, the fluid velocity, extra stress tensor, and
temperature field was defined as:

V = [0, 0, w(r)], S = S(r) and Θ = Θ(r). (1)

The equations of the continuity, momentum, and energy governing the flow of an incompressible
fluid are:

∇·V = 0, (2)

ρ
DV
Dt

= −∇p +∇ · S + J × B, (3)

ρCp
DΘ
Dt

= k∇2Θ + φ− q′r + Jh, (4)

where ∇ · S is the viscous force, φ = S : ∇V is the viscous dissipation, q′r is the radiative heat flux so that
q′r is the derivative of qr with respect to r, Jh is the joule heating term, and D

Dt is the material derivative.
The relevant boundary conditions were:

w = Uw, Θ = Θw at r = Rw,
w = 0, Θ = Θd at r = Rd

}
. (5)

The extra stress tensor S was defined as:

S = −pI + µA1 + α1A2 + α2A2
1 + β1A3 + β2(A1A2 + A2A1) + β3

(
trA2

1

)
A1. (6)

where p is the pressure, I is the identity tensor, and µ = µ(Θ) is the coefficient of viscosity
(
kgm−1s−1

)
.

Here α1 and α2 are the second order material constants
(
kgm−1

)
, the symbols β1, β2, and β3 are the

third order material constants
(
kgm−1s−1

)
, and tr is the trace operator. The quantities Ai(i = 1, 2, 3) are

the Rivlin-Ericksen tensors, which were defined by the recursive relation as follows:

A0 = I, A1 = LT + L and An = An−1LT + LAn−1 +
DAn−1

Dt
, n = 2, 3, (7)

where T denotes the transpose of the matrix and L = gradV.
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Because of interaction of the conducting fluid with the magnetic field, a body force of retarding
nature, i.e., J × B was attained. This drag force acting along the z -axis was given by:

J × B =
(
0, 0,−σB2

0w
)
, (8)

where B0 is the uniform magnetic field applied along the positive radial direction.
Considering Equation (1), Equation (2) was satisfied indicating that the fluid flow is possible.

The non-zero components of the extra tensor S are:

Srr = (2α1 + α2)

(
dw
dr

)2

, Szz = α2

(
dw
dr

)2

, Srz = Szr = (β2 + β3)

(
dw
dr

)3

+ µΘr

(
dw
dr

)
. (9)

Making substitution of Equations (8) and (9), the equation of the balance of momentum (Equation (3))
becomes:

−∂p
∂r

=
1
r

d
dr

(2α1 + α2)r
(

dw
dr

)2, (10)

∂p
∂θ

= 0, (11)

∂p
∂z

=
1
r

d
dr

(
rµ(θ)

dw
dr

)
+

1
r

d
dr

2(β2 + β3)r
(

dw
dr

)3− σB2
0w, (12)

Equation (12) describes the flow due to the pressure gradient. As the drag of the wire prevails
outside the die, the pressure gradient is assumed to be zero i.e., ∂p

∂z = 0. So Equation (12) takes the form:

2β0
1
r

d
dr

r(dw
dr

)3+ 1
r

d
dr

(
rµ(Θ)

(
dw
dr

))
− σB2

0w = 0, (13)

where β0 = β1 + β2.
The viscous dissipation term was:

φ = S : ∇V = µ(Θ)

(
dw
dr

)2

+ 2β0

(
dw
dr

)4

. (14)

Using the Rosseland approximation for thermal radiation [42] the radiative heat flux was
modeled as:

qr = −
4σ1

3k1

dΘ4

dr
. (15)

Following Pantokratoras and Fang [43], Equation (15) can be written as:

qr = −
16σ1

3k1
Θ3 dΘ

dr
. (16)

Using Equations (14)–(16), the energy equation (Equation (4)) reads:

k
[

d2Θ
dr2 +

1
r

dΘ
dr

]
+ µ(Θ)

[
dw
dr

]2

+ 2β0

[
dw
dr

]4

+
d
dr

[
16σ1

3k1
Θ3 dΘ

dr

]
+ σB2

0w2 = 0. (17)

Let us introduce the dimensionless parameters as:

r =
r

Rw
, w =

w
Uw

, Θ =
Θ −Θw

Θd −Θw
, M2 =

σB2
0R2

w

µ0
, β0 =

u2
wβ0

µ0R2
w

, BR =
µ0u2

w

kΘw
, δ =

Rd
Rw

, R =
16σ1Θ3

w
3kk1

(18)
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3. Temperature-Dependent Viscosity

For the temperature-dependent viscosity we used Reynolds’ and Vogel’s model.

3.1. Reynolds’ Model

This is a model that accounts for the temperature-dependent viscosity. For this model, the
expression for the temperature dependent viscosity was:

µ(Θ) = µ0e−β0mΘ, (19)

where m is a non-dimensional viscosity parameter associated with the Reynolds’ model.
Using the Equations (18) and (19) in the Equations (13) and (17), and dropping the bar for simplicity,

we get the non-dimensional momentum, and energy equations along with the reduced boundary
conditions as:

e−β0mΘ
(
r

d2w
dr2 +

dw
dr
−mrβ0

dΘ
dr

dw
dr

)
+ 2β0

3r
(

dw
dr

)2(d2w
dr2

)
+

(
dw
dr

)3−M2wr = 0, (20)

w(1) = 0 and Θ(δ) = 0, (21)

(ΘR − 1)
(
r d2Θ

dr2 + dΘ
dr

)
+ rBre−β0mΘ

(
dw
dr

)2
+ 2rBrβ0

(
dw
dr

)4

+rBr(θR − 1) d
dr

{
[1 + Θ(ΘR − 1)]3 dΘ

dr

}
+ M2Brw2 = 0,

(22)

Θ(1) = 0 and Θ(δ) = 1. (23)

3.2. Vogel’s Model

In this model, the expression for the temperature-dependent viscosity was:

µ(Θ) = µ1e−Θwe
D

B1+Θ = µ0e
D

B1+Θ , (24)

where D and B1 are the viscosity parameters affiliated with the Vogel’s model and µ0 = µ1e−Θw . Here
it is remarkable to note that the previous authors had considered the first order approximation of
the Taylor’s series expansion in Equations (19) and (24). However, we have considered the higher
order approximations in Equations (19) and (24) so as to accomplish the characteristic behavior of
higher order terms involving the parameters β0, m, Θ, D, Bi, Θw. Using the Equations (18) and (24) in the
Equations (13) and (17) and dropping the bar for simplicity we get the non-dimensional momentum,
and energy equations along with the reduced boundary conditions as:

e
D

B1+Θ

r
d2w
dr2 +

dw
dr
− r

 D

(B1 + Θ)2

dΘ
dr

dw
dr

+ 2β0

3r
(

dw
dr

)2(d2w
dr2

)
+

(
dw
dr

)3−M2wr = 0, (25)

w(1) = 1 and w(δ) = 0, (26)

(ΘR − 1)
(
r d2Θ

dr2 + dΘ
dr

)
+ rBre

D
B1+Θ

(
dw
dr

)2
+ 2rBrβ0

(
dw
dr

)4
+

rR(ΘR − 1) d
dr

{
[1 + Θ(ΘR − 1)]3 dΘ

dr

}
+ BrM2w2 = 0,

(27)

Θ(1) = 0 and Θ(δ) = 1. (28)

4. Convergence of the Method

In order to validate the method, the convergence of the method is also necessary. For this, the
h-curve was drawn to ensure the convergence of the series solution. The calculations were carried
out on a personal computer with 4 GB RAM and 2.70 GHz CPU. The code was developed using the
computer software MATHEMATICA Zeeshan et at. [44]. To see the range of admissible values of these
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parameters, the h f and hθ are plotted in Figures 2 and 3 given by 20th order approximation which took
approximately less than a minute in execution. The suitable ranges for h f and hθ were −1.5 ≤ h f ≤ −0.3
and −1.7 ≤ hθ ≤ −0.3, respectively.Materials 2019, 11, x FOR PEER REVIEW  8 of 22 
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Validation of the Method

For validation of the results, a numerical method called the ND-solve method was applied. From
this method, we had good agreement as shown in Figures 4–7. In order to ensure the accuracy
of our results, the present results were also compared quantitatively with the published work of
Zeeshan et al. [44], as shown in Table 1. This comparison confirmed that our analytical results were in
excellent agreement for the proposed values of the parameter and therefore we are confident about the
accuracy and generality of our results.
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Table 1. Comparison of the present work with the published work of Zeeshan et al. [43]. ΘR = 1.0,
β0 = 0.01, Br = 10, R = 1, m = 5.

S. No Published Work Present Work

1 1 1
1.1 0.906702201 0.906702202
1.2 0.798963328 0.798963327
1.3 0.676887100 0.676887101
1.4 0.543737426 0.543774255
1.5 0.406571921 0.4065719210
1.6 0.275849318 0.275849317
1.7 0.163688021 0.1636880211
1.8 0.080480501 0.080480502
1.9 0.0296124455 0.0296124456
2.0 1.23245E-26 0.2138E-30

5. Results and Discussion

The influence of the radiative linear as well as non-linear heat transfer on the wire coating using
a third grade fluid has been investigated with variable viscosities subject to joule heating. For the
temperature dependent viscosity, the Reynolds’ model and Vogel’s model has been used. The modified
governing boundary layer equations along with the boundary conditions were solved using the
Homotopy Analysis Method (HAM). The analytical results revealed the effect of the thermal radiation
(linear as well as non-linear) on the velocity, temperature, and heat transfer in the process of wire
coating in the presence of a magnetic field and hence discussed in detail.

5.1. Reynolds’ Model

The effect of the magnetic parameter M on the velocity and temperature profiles has been shown
in Figures 8 and 9 respectively. The velocity profiles decreased as the magnetic parameter increased.
This was due to the resistive Lorentz’s force which came into play as a result of the interaction of the
magnetic field with the conducting fluid, used as coating material. Figure 9 shows that the magnetic
field had an accelerating effect on the temperature distribution with higher temperatures observed near
the surface of the wire and thereafter, decreased, showing the shear thickening effect. The variation of
fluid velocity for various values of the temperature parameter ΘR and radiation parameter R is shown
in Figures 10 and 11 respectively. It was observed that the velocity of the coating fluid accelerated
near the surface of the wire (r ≤ 1.4) when the temperature parameter increased, and a reverse trend
was observed towards the die surface as shown in Figure 10. The influence of the thermal radiation
parameter R on the velocity behavior is depicted in Figure 11. From this figure it is understood that
velocity of the polymer within the die increased significantly due to the increasing values of R in the
presence of a lower magnetic field and moderated viscous heating.

Figure 12 is sketched to show the effect of the temperature parameter ΘR on the fluid temperature.
It is interesting to note that the fluid temperature decreased with increasing values of ΘR. The effect of
the radiation parameter R on the fluid temperature for different values of the temperature parameter
ΘR is shown in Figures 13–15. We can say that the temperature of the coating fluid decreased with
increasing R. It was also observed that the decrease in fluid temperature was prominent for ΘR = 1.2
as compared to ΘR = 1.6 and ΘR = 2.5. It was clear that the heat transfer rate was more for ΘR = 1.2
comparatively to ΘR = 1.6 and ΘR = 2.5.

5.2. Vogel’s Model

Figure 16 show the influence of the magnetic parameter M on the velocity. The effect of the
magnetic field was the same on the velocity profiles as discussed in Reynolds’ model. It has been
discussed that the fluid velocity varied in response to the linear as well as non-linear thermal radiation
in the presence of variable viscosity in the Reynolds’ model case. The influence of the radiation
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parameter as well as the temperature ratio parameter on the coating fluid is shown in Figures 17
and 18 respectively. It has been observed that the velocity of the fluid within the die increased as the
radiation parameter R and temperature parameter ΘR increased. The effect of magnetic parameter on
the temperature profile is same as discussed in Reynolds’ model case as shown in Figure 19. The effect
of temperature ratio parameter ΘR on the temperature distribution is displayed in Figure 20. It has
been clearly observed that fluid temperature decreased due to an increase in the temperature ratio
parameter ΘR.

The effect of the radiation parameter R on the temperature distribution is shown in Figures 21–23.
It was noticed from this observation that the fluid temperature decreased as R increased in response to
Vogel’s viscosity model. An important point to keep in mind in this regard is that the decreasing trend
in fluid temperature was prominent and symmetric at R = 1.4 for ΘR = 1.5 compared to ΘR = 1.2 and
ΘR = 2.5 as illustrated in Figures 21–23.
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6. Conclusions

The influence of the linear as well as non-linear thermal radiation along with the pertinent
parameter on the coating fluid in wire coating that was associated with joule heating has been discussed
with the help of graphs. In the recent study, the non-dimensional momentum and energy equation along
with the reduced boundary condition has been solved analytically using the Homotopy Asymptotic
Method (HAM). The analytical results achieved in the present study agree quantitatively with the
numerical results (ND-Solvem method) and previously published results. It has been observed that
the velocity of the coating fluid accelerated near the surface of the wire with an increase in ΘR. It is
interesting to note that the velocity of the coating fluid increased with an increase in R in the presence of
a lower magnetic field and moderate viscous heating. The fluid temperature decreased with increasing
values of R and ΘR, in both the Reynolds’ model and Vogel’s model cases.
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Nomenclature

Rw Wire radius (m) M Magnetic parameter (r, z) Co-ordinates system
Uw Dragging velocity (ms−1) θw Wire temperature (K) L Length of the die (m)

θR Temperature parameter σ1
Stefan-Boltzman

constant (Wm−2K−4)
µ0

Reference viscosity
(N sm−2)

R Radiation parameter dp
dz

Constant pressure
gradient

B0 Uniform magnetic field

Rd Radius of the die (m) β0
Non-Newtonian

Parameter
ρ Density of the fluid

qr
Radiative heat flux

(Wm−2)
φ

Dissipation function
(Wm−2)

w
Velocity of the fluid

(ms−1)
θ Fluid temperature (K) α1,α2, β1, β2 Material constants D

Dt Substantial derivative
p Pressure Br Brinkmen number Jh Joule heating

Θd Die temperature (k) m
Reynolds’ model

viscosity parameter
F

Viscous force per unit
volume (Nm−3)

θd Die temperature (K) k Thermal conductivity Cp
Specific heat at constant

pressure

δ Wire coating aspect ratio k1
Mean absorption
coefficient (m−1)

µ
Dynamic viscosity

(N sm−2)
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