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Abstract: This paper presents a theoretical investigation on the safety evaluation, stability evaluation,
and service life prediction of concrete-filled steel tube (CFST) structures in a Northern China area
with acid rain. The finite element software ABAQUS was used to establish a numerical model, which
was used to simulate the axial compression behavior of CFST columns subjected to the combined
actions of freeze–thaw cycles and acid rain corrosion. The model performance was validated using
the experimental results of the evaluation of mechanical properties, including the failure mode and
load–displacement curve. Then, the effects of the section size, material strength, steel ratio, and
combined times on the residual capacity were studied. The results show that the section size has
a smaller influence on the residual strength than the other parameters and can be neglected in the
design procedure. However, the other parameters, including the material strength, steel ratio, and
combined times have relatively large influences on the axial compressive performance of CFST stub
columns subjected to a combination of freeze–thaw cycles and acid rain corrosion. Finally, design
formulae for predicting the residual strength of CFST stub columns that are under axial compression
and the combined effect of freeze–thaw cycles and acid rain corrosion are proposed, and their results
agree well with the numerical results.

Keywords: Concrete-filled steel tube stub column; combined freeze–thaw cycle and acid rain
corrosion; residual capacity; finite element analysis

1. Introduction

Concrete-filled steel tube (CFST) structures are widely used in real engineering applications in
many countries because of their high bearing capacity and good seismic performance [1–7]. With the
rapid development of research and applications, many countries worldwide have promulgated
technical specifications for CFST structures [8–13]. To date, the main research in this area has focused
on the static performance [14–17], seismic performance [18–20], and fire resistance [21,22] of CFST
structures, including studies on their structural durability after acid rain corrosion [23] and freeze–thaw
cycles [24]. However, previous research on the durability of CFST structures has been limited to
a single environmental factor. Few studies have been conducted on the effects of dual or multiple
environmental factors on the mechanical properties of CFST structures. For instance, combined changes

Materials 2019, 12, 3070; doi:10.3390/ma12193070 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://dx.doi.org/10.3390/ma12193070
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/12/19/3070?type=check_update&version=2


Materials 2019, 12, 3070 2 of 21

in positive and negative temperatures are frequent in Northern China, and structures often suffer
from frost damage due to low temperatures in winter [25–27]. Additionally, acid rain pollution in
summer is becoming increasingly serious in the coastal areas, and it can result in the corrosion of steel
structures [28,29]. These problems have greatly affected the mechanical properties of CFST structures
that experience freeze–thaw cycles and acid rain corrosion, as well as other environmental factors.

This study aims to develop a theoretical solution to the above problems related to the safety
evaluation, stability evaluation, and service life prediction of CFST structures subjected to acid rain
in Northern China. First, squared CFST (SCFST) stub columns were selected as the research object.
On the basis of modifications to the ultimate stress of the core concrete and the yield strength of
the external steel tube, the mechanical behaviors of structures subjected to the combined action of
freeze–thaw cycles and acid rain corrosion were analyzed by finite element (FE) modeling. Then,
the stress mechanism and parameters that affect the residual bearing capacity, together with the
corresponding influence rule, were studied. The outcomes of this research can provide theoretical
guidance for the design of CFST structures located in areas with acid rain, which is of great significance
to practical engineering applications.

The rest of this paper is organized as follows. Section 2 develops numerical models, and their
performances are validated using experimental results from the published literature. In Section 3,
the whole process of the load–displacement relationship of the specimen during axial compression is
analyzed, including the analyses of the failure mode, load–displacement curve, and bearing capacity.
Section 4 analyzes the influences of different parameters on the bearing capacity of the specimen and
proposes two design formulae as theoretical references for practical engineering applications. Finally,
conclusions are drawn in Section 5.

2. Development and Validation of the Finite Element Model

2.1. Stress–Strain Relationships of Materials

A square CFST column is generally composed of steel and concrete materials. The influence of
acid rain includes the corrosion of the exterior steel tube, and corrosion is able to reduce not only the
effective thickness but also the mechanical properties of the steel tube. In this study, the stress–strain
relationship of the steel was adopted from [30], and this relationship accounts for effects due to the
corrosion of the steel tube. Freezing and thawing effects can cause the core concrete to become frozen,
which can cause internal cracks and weaken the strength of the column. Accordingly, the uniaxial
stress–strain relationship model of core concrete from [24], which considers the effect of freeze–thaw
cycles, was used in this study. The relevant mathematical expressions are provided below.

(1) The Stress–Strain Relationship Model of Steel:

σs =



Eseεs, εs ≤ εe

−Aε2
s + Bεs + C, εe < εs ≤ εe1

fye, εe1 < εs ≤ εe2

fye
[
1 + 0.6 εs−εe2

εe3−εe2

]
, εe2 < εs ≤ εe3

1.6 fye, εs > εe3

(1)

εe = 0.8f ye/Ese (2)

εe1 = 1.5εe (3)

εe2 = 10εe1 (4)

εe3 = 100εe1 (5)

A = 0.2f y(εe1−εe)2 (6)

B = 2Aεe1 (7)
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C = 0.8f ye+Aεe
2
− Bεe (8)

Ese = (1 − 0.955γ)Es (9)

f ye = (1 − 1.007γ)f y (10)

γ = ∆t/t (11)

∆t = t − te (12)

where Es denotes the initial elastic modulus of steel, Ese denotes the effective elastic modulus of
corroded steel, fy denotes the initial yield strength of steel, fye denotes the effective yield strength of
corroded steel, γ denotes the corrosion rate, ∆t denotes the decreasing value of the wall thickness of
the corroded steel tube, t denotes the initial wall thickness of the steel tube, and te denotes the effective
wall thickness of the corroded steel tube.

Figure 1 shows the stress–strain relationship of a typical steel tube after it is subjected to acid rain
corrosion, as calculated by the model proposed above. The related parameter setting for the numerical
simulation is f y = 345 MPa, and the range of γ is 0–50%.

Figure 1. The stress–strain relationship of a steel tube after acid rain corrosion.

(2) The Stress–Strain Relationship Model of Concrete:

y =

 2x− x2, x ≤ 1
x

β(x−1)η+x , x > 1 (13)

x = ε/ε0 (14)

y = σ/σ0 (15)

σ0 = f ′c(1− 0.065Nft/100) (16)

ε0 =
(
1300 + 12.5 f ′c + 800ζ0.2

e

)
× 10−6 (17)

η = 1.6 + 1.5/x (18)

β =
(

f ′c
)0.1

/
[
1.2

√
1 + ζe

]
(19)

f ′c =
[
0.76 + 0.2 + log10

[
fcu

19.6

]]
fcu (20)

ζe = αe · fye/ fck (21)

fck = 0.88× 0.76× fcu (22)

αe = Ase/Ac (23)
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Ec = 4700
√

f ′c) (24)

ψ =

 56.3(1− ζe), ζe ≤ 0.5

6.672e
7.4

4.64+ζe , ζe > 0.5
(25)

Kc =
5.5

5 + 2
(

f ′c
)0.075 (26)

fb0/ fc0 = 1.5
(

f ′c
)−0.075

(27)

where σ0 and ε0 denote the peak stress and peak strain of the stress–strain relationship of concrete,
respectively; fc′ denotes the cylinder compressive strength of concrete; fcu denotes the cube compressive
strength of concrete; fck denotes the standard value of the axial compressive strength of concrete; ξe

denotes the effective restraint coefficient of CFST; αe denotes the effective steel ratio of the steel tube;
Ase denotes the effective area of the steel tube; Ac denotes the area of a concrete section; and Nft denotes
the number of freeze–thaw cycles.

Figure 2 shows the typical stress–strain relationship of core concrete after it is subjected to
freeze–thaw cycles. The corresponding numerical parameters are fcu = 40 MPa, ζe = 1.0, and the range
of Nft is 0–500.

Figure 2. The stress–strain relationship of core concrete after freeze–thaw cycles.

In this study, the Poisson’s ratio of concrete was set to 0.2. The elastic modulus of concrete
(Ec), dilation angle (ψ), the ratio of the second stress invariant on the tensile meridian to that on the
compressive meridian (Kc), and the ratio of the initial biaxial compressive yield stress to the initial
uniaxial compressive yield stress (fb0/fc0) were set according to the corresponding parameter values
in [31]. The relevant equations are

Ec = 4700
√

f ′c (28)

ψ =

 56.3(1− ζe), ζe ≤ 0.5

6.672e
7.4

4.64+ζe , ζe > 0.5
(29)

Kc =
5.5

5 + 2
(

f ′c
)0.075 (30)

fb0/ fc0 = 1.5
(

f ′c
)−0.075

. (31)

Furthermore, the eccentricity was set to 0.1, and the viscosity parameter was set to 0.0001 according
to [32].
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2.2. Numerical Modeling

In this numerical simulation, the FE software ABAQUS 6.13 was employed for modeling and
analysis. The steel tube was simulated by the three-dimensional shell element S4R. The Simpson
integral method with nine integral points was adopted in the thickness direction of the shell element to
ensure calculation accuracy. Concrete was simulated by the three-dimensional solid element C3D8R.
Surface-to-surface contact was utilized in the contact mode between the steel tube and concrete. Since
the stiffness of the concrete is larger than that of the steel tube, the outer surface of the concrete was set
to the main surface, and the inner surface of the steel tube was set to the slave surface. The contact
between them was divided into the contacts in the normal direction and tangent direction. In the
normal direction, this contact was designated as hard. The tangential friction coefficient was set to 0.6
according to [33]. In the simulation, there was no limit to the contact pressure on the surface between
them. For the boundary conditions, one end of the column was set as a fixed constraint to constrain
all six degrees of freedom. The other end was loaded with the displacement and only limited in its
horizontal leveling ability, which is shown in Figure 3. It is clear that vertical displacement was applied
in the U3-direction, with the other two degrees of freedom constrained. Both ends of the model were set
as the rigid body to improve the calculation convergence and avoid stress concentration. The geometric
center points RP-1 and RP-2 of both ends were taken as reference points. The end corresponding to
each reference point was selected as the region type. The calculation cost and accuracy were balanced
by taking the mesh size as 1/10 of the width of the cross-section of the column [34]. The meshing and
boundary conditions of the FE model are also described in Figure 3.

Figure 3. Finite element model meshing and boundary conditions.

2.3. Verification of the FE Model

The experimental results of the SCFST members from [24,30,35,36] subjected to the combined
action of freeze–thaw cycles and acid rain corrosion were employed to validate the effectiveness of the
developed FE model. The detailed analysis and discussion are presented in the following parts.

2.3.1. Experimental Validation of the Freeze–Thaw Cycle Case

(1) Failure Mode

Figure 4 compares the experimental results in [24,35,36] with the numerical results from the
developed FE model. The subfigures show that the failure mode from the numerical analysis results
agrees well with that from experimental observation under the same condition. In particular, outward
buckling appeared at the end and center of the steel tube, which further validates the effectiveness of
the proposed FE model in portraying the failure mode under the freeze–thaw cycle condition.
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Figure 4. Comparison of failure modes between the numerical results and experimental results in the
literature. (a) Sc1-300 specimen in [24]; (b) S2-100 specimen in [35]; and (c) SC30-T2.5-N100 specimen
in [36].

(2) Bearing Capacity

The numerical results of the axial bearing capacity of the specimens are provided in Table 1,
in which B and t denote the width of the specimen section and the thickness of the steel tube,
respectively. Nue denotes the experimental result of the bearing capacity of the specimen; Nce denotes
the corresponding bearing capacity simulation result in the literature; and Nbe denotes the result of the
bearing capacity of the specimen calculated by the FE model in this study. The comparison results
reveal that the prediction errors of Nue/Nbe of almost all the specimens were within ±10%, except for the
S3-100, S3-300, S3.9-200, and S3.9-300 specimens. Moreover, the mean value of Nue/Nbe was lower than
that of Nue/Nbe; this finding indicates that numerical results of the FE model developed in this study
are closer to the corresponding experimental results than the numerical results from the literature.
Therefore, it can be concluded that the developed FE model can effectively predict the bearing capacity
of SCFST members subjected to freeze–thaw cycles.

Table 1. Bearing capacity comparisons between the numerical results and experimental results of
specimens exposed to freeze–thaw cycles.

Specimen ID B × t
(mm)

Nue
(kN)

Nce
(kN)

Nbe
(kN) Nue/Nce Nue/Nbe

Literature
Sources

Sc1-50 100 × 2.06 604.5 618.3 646.4 0.977 0.934

[24]

Sc1-200 100 × 2.06 606.4 580.1 614.4 1.044 0.985
Sc1-300 100 × 2.06 593.7 555.7 588.1 1.068 1.010
Sc2-50 100 × 2.06 810.2 715.0 756.7 1.133 1.064

Sc2-200 100 × 2.06 803.5 668.2 750.4 1.202 1.071
Sc2-300 100 × 2.06 757.0 636.7 748.2 1.189 1.012

Mean value 1.102 1.013
Standard deviation 0.008 0.003

S2-0 100 × 2 867.3 779.7 863.7 1.112 1.004

[35]

S2-50 100 × 2 810.3 751.7 801.6 1.078 1.001
S2-100 100 × 2 753.9 731.1 789.7 1.031 0.955
S2-200 100 × 2 779.1 692.9 745.4 1.124 1.045
S2-300 100 × 2 673.0 668.6 717.8 1.007 0.938

S3-0 100 × 3 891.3 818.3 917.6 1.089 0.971
S3-50 100 × 3 818.0 736.0 898.4 1.111 0.911
S3-100 100 × 3 754.7 787.2 876.4 0.959 0.861
S3-200 100 × 3 830.0 739.2 837.4 1.123 0.991
S3-300 100 × 3 696.9 691.1 792.2 1.008 0.880



Materials 2019, 12, 3070 7 of 21

Table 1. Cont.

Specimen ID B × t
(mm)

Nue
(kN)

Nce
(kN)

Nbe
(kN) Nue/Nce Nue/Nbe

Literature
Sources

S3.9-0 100 × 3.9 1068.0 840.0 1028.5 1.271 1.038
S3.9-50 100 × 3.9 1095.0 940.5 1011.9 1.164 1.082
S3.9-100 100 × 3.9 1127.0 950.0 1026.2 1.186 1.098
S3.9-200 100 × 3.9 1134.0 938.3 959.6 1.209 1.182
S3.9-300 100×3.9 1126.0 956.3 922.3 1.177 1.221

Mean value 1.110 1.013
Standard deviation 0.007 0.011

SC30-T2.5-N0 80 × 2.5 460.5 431.8 1.067

[36]

SC30-T2.5-N60 80 × 2.5 468.7 431.2 1.087
SC30-T2.5-N80 80 × 2.5 458.2 430.9 1.063

SC30-T2.5-N100 80 × 2.5 420.4 430.7 0.976
Mean value 1.048

Standard deviation 0.002

(3) Axial Load–Displacement (or Strain) Curve

Figures 5–7 compare the axial load–displacement (or strain) curves between numerical and
experimental results. In the figures, the dark yellow dot-dash line denotes the experimental result, the
blue dotted line denotes the numerical result from the literature, and the red straight line denotes the
numerical result from the FE model developed in this study. It can be observed that the increasing
tendencies of the axial load–displacement (or strain) from the numerical results are generally consistent
with those from experimental results. However, it is noted that the initial stiffness values of some
specimens from the numerical results are different from those of the experimental results. The main
reason for this phenomenon is that all the materials were assumed to be in the ideal condition in the
numerical simulation. Additionally, measurement error may have resulted in a discrepancy of the
initial stiffness. The specimens sometimes had different degrees of initial defects, which could also
cause a deviation in the initial stiffness. Furthermore, the descending section of the curves indicates
that, compared with the numerical results in the literature, the results calculated from the FE model
developed in this study were closer to the experimental values: This sufficiently proves the ability of
the proposed model to predict the axial load–displacement (or strain) curves of the specimens subjected
to freeze–thaw cycles.

Figure 5. Cont.
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Figure 5. Comparisons between numerical results in this study and the results (both experimental and
numerical) in [24].

Figure 6. Cont.
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Figure 6. Comparisons between the numerical results in this study and the results (both experimental
and numerical) in [35].

Figure 7. Cont.
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Figure 7. Comparisons between the numerical results in this study and the experimental results in [36].

2.3.2. Experimental Validation of the Acid Rain Corrosion Case

In this section, the experimental results for four specimens in [30] are used to verify the developed
FE model’s performance in forecasting the ultimate bearing capacity of the specimen subjected to acid
rain corrosion. The results of the comparison between the simulation and experimental values of the
ultimate bearing capacity are shown in Table 2, in which B and t denote the side length of the specimen
section and the initial thickness of the steel tube, respectively; ∆t denotes the reduction value of the
wall thickness of the corroded steel tube; γ denotes the corrosion rate; Nue denotes the experimental
value of the bearing capacity of the specimens; Nce denotes the corresponding numerical results in [30];
Nbe denotes the numerical results calculated by the developed FE model; and α denotes the initial steel
ratio of the specimens. The mathematical expression of α is shown in Equation (32):

α =
As

Ac
(32)

where As and Ac denote the cross-sectional areas of the steel tube and concrete in the initial state,
respectively. The comparison results in the table show that the values of Nue/Nbe of all the specimens
were less than 5%, which indicates the high prediction accuracy of the developed FE model. For each
specimen, the experimental value is closer to the simulation result in this study than the simulation
result in the literature. Therefore, it can be concluded that the established FE model is able to accurately
predict the mechanical properties of SCFST specimens subjected to acid rain corrosion.

Table 2. Bearing capacity comparisons between the numerical results and experimental results of
specimens exposed to acid rain corrosion.

Specimen ID B × t
(mm)

∆t
(mm)

γ
(%) α

Nue
(kN)

Nce
(kN)

Nbe
(kN) Nue/Nce Nue/Nbe

S-114-0 114.00 × 2.97 0.00 0.0 0.113 950.0 912.0 921.2 1.042 1.031
S-114-1 113.42 × 2.97 0.24 9.6 0.102 970.0 997.0 985.0 0.973 0.985
S-114-2 112.78 × 2.97 0.51 20.5 0.089 950.0 900.1 902.5 1.055 1.041
S-114-3 112.20 × 2.97 0.76 30.2 0.078 850.0 814.7 846.3 1.043 1.004

Mean value 1.028 1.018
Standard deviation 0.002 0.001

2.3.3. Analysis of Validation Results

The numerical results for the bearing capacity in [24,30,35] were summarized and then compared
with the experimental results, as well as the numerical results in this study. Figure 8 shows the
comparison result, in which Nue and Nbe denote the simulation results for the bearing capacity from
the literature and this study, respectively, and Nce denotes the corresponding experimental results.
It is noted that, on the whole, the experimental results are closer to the simulation results of the
model developed in this study than the numerical values from the relevant literature. Furthermore,
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the relative errors between the simulation results in this study and the experimental values were
within 20%. Hence, the developed FE model is capable of characterizing the mechanical properties of
SCFST stub columns under axial compression and the combined action of freeze–thaw cycles and acid
rain corrosion.

Figure 8. Comparisons between experimental and simulation results.

3. Whole-Process Analysis of the Load–Displacement Relationship

3.1. Numerical Modeling for Axial Compression

The effect of the combined action of freeze–thaw cycles and acid rain corrosion on the bearing
capacity of SCFST stub columns under axial compression was investigated by designing a set of FE
models. The calculation parameters of the models are a cross-section width (B) of 400 mm, steel tube
thickness (t) of 10 mm, column length (L) of 1200 mm, compressive strength of the concrete cube (fcu)
of 40 MPa, yield strength of the steel tube (fy) of 235 MPa, Poisson’s ratios of concrete and steel of
0.2 and 0.3, respectively, and range of the combined frequency of freeze–thaw cycles and acid rain
corrosion (p) of 1–5. In the combined process, it was assumed that the freeze–thaw cycles (Nfn = 100)
were performed first and that acid rain corrosion (γ = 10%) followed. This process was repeated to
realize the combination of freeze–thaw cycles and acid rain corrosion. The detailed parameter values
of the developed FE model are listed in Table 3.

Table 3. Main design parameters of the models.

Model ID B × L × t
(mm)

∆t
(mm)

f cu
(Mpa)

f y
(Mpa)

γ
(%) α Nfn p N

(kN)

S-40-235-0.11-0 400 × 1200 × 10 0 40 235 10 0.11 100 0 8657
S-40-235-0.11-1 400 × 1200 × 10 1 40 235 10 0.11 100 1 7672
S-40-235-0.11-2 400 × 1200 × 10 2 40 235 10 0.11 100 2 6718
S-40-235-0.11-3 400 × 1200 × 10 3 40 235 10 0.11 100 3 5808
S-40-235-0.11-4 400 × 1200 × 10 4 40 235 10 0.11 100 4 5011
S-40-235-0.11-5 400 × 1200 × 10 5 40 235 10 0.11 100 5 4242

Note: S means that the section of the specimen is square. The first number represents the compressive strength of
concrete cubes. The second number represents the yield strength of the steel tube. The third number represents the
initial steel ratio of the specimens (α = As/Ac, where As and Ac denote the areas of the steel tube and concrete in
the initial state, respectively). The fourth number represents the combined times of freeze–thaw cycles and acid
rain corrosion. For example, S-40-235-0.11-4 specifies square CFST specimens, compressive strength of concrete of
40 MPa, yield strength of the steel tube of 235 MPa, initial steel ratio of 0.11, and four alterations.

3.2. Failure Mode

Figure 9 shows the numerical results for the failure mode of SCFST stub columns subjected to
axial loading after suffering different cycles of freeze–thaw and acid rain corrosion. The figure shows
that the failure mode of the columns was similar to that of an axially loaded column without any action.
Buckling occurred at both ends and in the center of the column. In the real structures, the buckling
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directions of SCFST columns are all outward. The main reason for this phenomenon is that the inner
core concrete of the stub column is capable of providing more effective support to the outer steel tube.

Figure 9. Failure modes of squared concrete-filled steel tube (SCFST) stub columns with different
combined times of actions.

After the SCFST columns experienced different numbers of combined action, the columns were
compared. The influence of combination times on the failure mode of the column can be summarized
as follows: The larger the combination times, the more serious the local buckling of the steel tube.
For the specimen, when the value of p gradually increased from 0 to 5, the peak buckling displacement
increased from 0.027 to 0.037 m, which is a percentage increase of 37.04%. The peak value occurred
when the value of p was 3. After that, the maximum buckling displacement decreased to 0.035 and
0.032 m, and the values of p were 4 and 5, respectively. Even though the buckling displacement
decreased after the combined times exceeded 3, the buckling waves in the center part of the column
increased from one to two, which is noticeable in Figure 9f. The main reason for this phenomenon is
that the corrosion degree of the steel tube surface was almost the same because the corrosion of the
specimens is uniform. When the combined number was small, the corrosion area of the specimen
increased with the addition of combined times. Accordingly, there was an increased potential for local
defects on the surface of the steel tubes induced by acid rain corrosion, together with the buckling
degree at the defect location. Then, as the combined number continued to increase, the corrosion
effect of the specimen became more serious, which decreased the effective thickness of the steel tube.
Additionally, the buckling displacement also decreased when the steel tube was subjected to axial
loading. Since the defect area was enlarged by the increasing corrosion effect, the number of buckling
waves also increase.

Figure 10 shows the stress distribution nephogram of the steel tube and core concrete when
specimen S-40-235-0.11-3 was axially loaded. Since the specimen was uniformly corroded, the stresses
on the four surfaces were approximately the same. Hence, the buckling part of the steel tube and the
damaged part of the core concrete were concentrated. For the steel tube, the maximum stress region
could be found in the central section of the column, as shown in Figure 10a. The maximum stress at
the corner was 252 MPa, which was due to stress concentration. This result indicates that the force for
constraining the concrete was the largest at this location. Then, the stress of the steel tube decreased
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gradually from the central section to both ends along the column height. However, at the ends, the
stress slightly increased, and the corresponding value was around 190 MPa. The main reason for this
phenomenon is that external constraints in the end region of the column could cause the stress to
increase. The longitudinal stress distribution nephogram in the cross-section of the column for the core
concrete is depicted in Figure 10b. It is apparent that the maximum stress appeared at the corner of the
column with a value of around 26 MPa, followed by the central area with a stress value of around
15 MPa. The minimum stress occurred in the center of the column edge with a value of about 10 MPa.
This result indicates that the longitudinal stress distribution of the concrete in the center of the column
changed as a result of the constraint effect of the external steel tube.

Figure 10. Stress distribution nephogram of steel tube and concrete.

3.3. Load–Axial Displacement Relationship Curve

Figure 11 shows the relationship between the axial load and displacement of SCFST stub columns
after their exposure to freeze–thaw cycles and acid rain corrosion. The combined times of the three
curves O–A0–B0–C0–D0, O–A3–B3–C3–D3, and O–A5–B5–C5–D5 were p = 0 (Nft = 0, γ = 0), p = 3
(Nft =300, γ = 30%), and p = 5 (Nft = 550, γ = 50%), respectively. Overall, the increasing tendencies
of the load–displacement curves corresponding to different combined times were almost the same.
The stress process can be generally divided into four stages: The elastic stage (OAi), the elastic-plastic
stage (AiBi), the descending stage (BiCi), and the flat stage (CiDi). A detailed analysis of each stage is
reported below.

Figure 11. Load–axial displacement curve of specimens.
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(1) Elastic Stage (OAi)
In the elastic stage, the relationship between the load and axial displacement is linear. Since the

steel tube and concrete work independently, the interaction force between them is 0. Compared with
the specimens under the normal condition (without any action, p = 0), the specimens that experience the
combined action of freeze–thaw cycles and acid rain corrosion finish the elastic stage early. In addition,
with the increase in combined times, the elastic modulus of the specimens gradually decreases, and the
elastic phase ends increasingly earlier. This phenomenon is evident in Figure 11b: When p equals 0,
the elastic stage is 0-A0; when p equals 3, the elastic stage is 0-A3; and when p equals 5, the elastic stage
is 0-A5.

(2) Elastic-Plastic Stage (AiBi)
With the increase in axial load, microcracks in the concrete start to appear and continuously

develop. At this stage, the transverse deformation coefficient value of the core concrete is larger than
that of the steel tube, and the steel tube has transverse restraint on the core concrete. When the curve
arrives at point Bi, the specimens reach their ultimate bearing capacities. Compared with the specimens
under the normal condition (without any action, p = 0), the specimens subjected to the combined action
of freeze–thaw cycles and acid rain corrosion arrive at point Bi earlier. Furthermore, with the increase
in the combination times, the ultimate bearing capacity of the specimen gradually decreases, and the
time required to reach the ultimate bearing capacity decreases. When p equals 0, the corresponding
ultimate bearing capacity is at point B0; when p equals 3, the corresponding ultimate bearing capacity
is at point B3; and when p equals 5, the corresponding ultimate bearing capacity is at point B5.

(3) Descending Stage (BiCi)
After the specimens reach their ultimate bearing capacities, they cease working because of the

crushing of the core concrete and the yielding of the steel tube. Finally, the specimens undergo plastic
failure. Compared with the specimens under the normal condition (without any action, p = 0), the
specimens that experience the combined action of freeze–thaw cycles and acid rain corrosion finish the
descending stage earlier and then enter the stable phase. Moreover, with an increase in the combination
times, the time required to reach the stable phase decreases. When p equals 0, the corresponding
descending endpoint of the specimen is at point C0; when p equals 3, the corresponding descending
endpoint of the specimen is at point C3; and when p equals 5, the corresponding descending endpoint
of the specimen is at point C5.

(4) Stable Stage (CiDi)
Since the specimens are destroyed, the axial displacements of the specimens rapidly increase.

However, regardless of whether the specimens undergo the combined action of freeze–thaw cycles
and acid rain corrosion, they have a stable bearing capacity in the later stage, which indicates that the
failures of the specimens are plastic failures.

3.4. Bearing Capacity

Figure 12 describes the ultimate bearing capacities of the specimens for different times of combined
action of freeze–thaw cycles and acid rain corrosion. It is noted that the ultimate bearing capacity
gradually decreased as the combined times increased. Compared with that of the specimen under the
normal condition (p = 0), the ultimate bearing capacity of the specimen subjected to the combined action
was reduced by 11.4%, 22.4%, 32.9%, 42.1%, and 51.0% when p equaled 1, 2, 3, 4, and 5, respectively.
This result sufficiently shows that the combined actions of freeze–thaw cycles and acid rain corrosion
have a significant influence on the ultimate bearing capacity of SCFST columns.
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Figure 12. Influence of combined times on the ultimate bearing capacity of the specimen.

3.5. Interaction between the Steel Tube and Core Concrete

The normal contact stress (R)–axial displacement (∆) relationship between the steel tube and the
core concrete of the SCFST stub column is illustrated in Figure 13, in which the normal contact stress is
measured at the corner of the section along the center of the column height. The figure indicates that
when the axial displacement is initially applied, both the steel tube and core concrete are in the elastic
working state. Because the Poisson’s ratio of the steel is larger than that of the concrete, the transverse
deformation of the steel is larger than that of the concrete. Because of the gap between the steel tube
and core concrete, the normal contact stress between them is zero. As the axial displacement continues
to grow, the concrete begins to enter the elastic-plastic working state, and microcracks emerge on the
surface of the concrete. In this case, the Poisson’s ratio of the concrete increases more quickly than
that of the steel tube. When the transverse deformation of the concrete is larger than that of the steel
tube, the normal contact stress between them is generated. With the increase in external load, the
normal contact stress gradually rises. As the axial displacement continues to grow, the cracks in the
core concrete continue to develop, and the specimen reaches its ultimate bearing capacity. At this
time, the concrete surface is cracked and peeled off, the local buckling of the steel tube increases,
and the normal contact stress gradually decreases. As the ultimate bearing capacity of the specimen
gradually decreases, the axial displacement continues to increase, the core concrete is crushed, and
the corresponding transverse deformation rapidly expands. At this point, the external steel enters
the strengthening stage, and the restraint effect of the steel tube on the core concrete is enhanced.
As a consequence, the normal contact stress between the steel tube and core concrete starts to increase.
As observed in the figure, with the increase in combined times, the starting time of the interaction
between the steel tube and core concrete becomes progressively earlier. The main reason for this
phenomenon is that the more the core concrete is affected by the freeze–thaw cycles, the more the
strength decreases, the greater the occurrence of surface cracks, and, thus, the earlier the specimen
enters the plastic working stage. With the increase in combined times, the normal contact stress
between the steel tube and concrete decreases gradually.

Figure 13. The relationship between the normal contact stress and axial displacement.
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4. Parameter Analysis and Design Method of Bearing Capacity

According to [37], the parameter Ks is defined as the influence factor of the bearing capacity of
SCFST columns after axial compression and exposure to the combined action of freeze–thaw cycles
and acid rain corrosion. The detailed mathematical expression is given in Equation (33).

Ks =
Nn

N0
(33)

where Nn denotes the ultimate bearing capacity of the specimen subjected to the combined action
of freeze–thaw cycles and acid rain corrosion, and N0 denotes the ultimate bearing capacity of the
specimen under the normal condition.

4.1. Parameter Analysis

In this section, the developed FE model is used to analyze the effects of the section size (B),
steel ratio (α), cubic compressive strength of concrete (fcu), yield strength of the steel tube (fy), and
combined times (p) on the influence factor Ks. In order to facilitate the parameter analysis and
propose the design method, it was assumed that a whole combination (p) consists of freeze–thaw
cycles (Nft = 100) and acid rain corrosion (γ = 10%). The mathematical relationship between p, Nft,
and γ is provided in Equations (34) and (35). The basic parameters of the specimen were set to
B × t × L = 400 × 10 × 1200 mm, α = 0.11, f cu = 40 MPa, and f y = 235 MPa. The ranges of the calculated
parameters were set to B = 200–500 mm, α = 0.07–0.23, f cu = 30–60 MPa, f y = 235–420 MPa, and p = 0–5.

[
p, N f t, γ

]
=



0 0 0
1 100 10%
2 200 20%
3 300 30%
4 400 40%
5 500 50%


(34)

p = 0.00375N f t + 6.25γ (35)

Figure 14 portrays the influences of different parameters on the influence factor Ks. As indicated
by the four subfigures, the relationship between Ks and the combination times (p) is approximately
linear for all the parameters. With the increase in combination times, the value of Ks decreases, with
different decreasing rates corresponding to different parameters. The maximum reduction in Ks can
reach as high as 60%. Figure 14a shows the influence of section size (B) on Ks. The four curves, which
correspond to different values of B, almost overlap, which indicates that the width of the cross-section
has little effect on Ks. Figure 14b,c demonstrates the influences of the cubic compressive strength of
concrete (fcu) and the yield strength of the steel tube (fy) on the value of Ks, respectively. With the
increase in combination times, the descending rates of the curves corresponding to different parameter
values differ. Compared with B, f cu and f y have large influences on Ks and can be considered the main
factors. Notably, after experiencing the same combined times, the larger the value of f y or the smaller
the value of f cu, the smaller the value of Ks. For instance, in the analysis range, when p equaled 3, the
value of f y increased from 235 to 420 MPa and the value of Ks decreased from 0.671 to 0.640. When the
value of f cu decreased from 60 to 30 MPa, the value of Ks decreased from 0.732 to 0.671. Figure 14d
depicts the influence of the steel ratio (α) on Ks. Similar to f cu and f y, α has a significant influence on Ks

and is also a major factor. In particular, for the same combination times, the higher the value of α, the
faster the decrease in the value of Ks. For example, when p equaled 3, the value of α increased from 0.07
to 0.23 and the value of Ks decreased from 0.716 to 0.575. The main reason for this result is that the steel
tube contributes more to the bearing capacity of the specimen than to the core concrete. Consequently,
when the thickness and strength of the steel tube are reduced as a result of acid rain corrosion, the
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influence factor Ks of the residual bearing capacity of the specimens significantly decreases. According
to the definition of the constraint effect coefficient ζ, whose mathematical expression is given in
Equation (36), if the values of α and f y are larger and the value of f cu is smaller, then the value of Ks is
smaller. As a result, it can be concluded that the main factor that affects Ks is ζ.

ζ = α·
fy

fcu
(36)

Figure 14. Influences of different parameters on Ks (defined as the influence factor of the bearing
capacity of SCFST columns after axial compression and exposure to the combined action of freeze–thaw
cycles and acid rain corrosion) of the specimen.

4.2. Design Formulae

According to the parameter analysis result in Section 4.1, the parameters ζ and p are the main
factors affecting Ks. The influence of ζ on Ks is clearly illustrated in Figure 15, in which the value of ζ
ranges from 0.59 to 2.06. Hence, the mathematical relationship between Ks, ζ, and p can be obtained
by using the regression method. According to the commonly used parameter ranges in a practical
engineering application, the ranges of ζ and p are [0.5, 2] and [0, 5], respectively. Figure 15 shows that
the relationships between Ks and p for different values of ζ are approximately linear. Accordingly, the
following mathematical expression can be obtained:

Ks = 1 + k·p (37)

where k is the function of ζ. From the numerical results, a simplified formula for Ks can be obtained
as follows.

Ks = 1.08− 0.0667ζ− 0.105p (38)
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Figure 15. Influence of the constraint effect constraint effect coefficient ζ and combination times p on Ks

of the specimen.

Currently, the specification GB50936-2014 [8] is commonly used to calculate the bearing capacity
of SCFST stub columns in China. The formula for calculating the bearing capacity of SCFST stub
columns under axial compression in the specification is given below:

N0 = (1.212 + Dζ + Eζ2) Asc fck (39)

B1 = 0.131f y/213 + 0.723 (40)

C = −0.070f ck/14.4 + 0.026 (41)

where Asc denotes the combined cross-section area and B1 and C denote the restraint coefficients of the
sectional shape. The substitution of Equations (38)–(41) into Equation (33) results in the equation for
the residual bearing capacity Nn of SCFST stub columns under the combined action of freeze–thaw
cycles and acid rain corrosion, as shown in Equation (42):

Nn = (1.08 − 0.0667ζ−0.105p] · [1.212 + (0.131f y/213 + 0.723)ζ + (−0.070f ck/14.4 + 0.026)ζ2] Asc fck (42)

where the ranges of the parameters ζ, p, f y, and f ck are [0.5, 2], [0, 5], [0, 500], and [20, 40] MPa,
respectively.

The accuracy of the proposed simplified design formula based on GB50936-2014 (Equation (42))
was verified by a comparison with the numerical results obtained from the FE model. The comparison is
shown in Figure 16a, in which the results of simulating 72 SCFST stub columns under axial compression
are compared with those calculated from the proposed design formula based on GB50936-2014
(Equation (42)). Minor discrepancies are observed between the numerical results from the FE model
and the calculation results from the proposed design formula based on GB50936-2014. The mean
value of Nfn/Ncn for 72 specimens was 1.014, and the corresponding standard deviation was 0.002.
The relative errors could be controlled within ±15%.

In addition to the specification GB50936-2014, Eurocode 4 [11] also proposed a design formula
for calculating the bearing capacity of a CFST member under axial compression, as provided in
Equation (43):

N0 = f y As+ fc′ Ac. (43)

The substitution of Equations (38) and (43) into Equation (33) produces the equation for calculating
the residual bearing capacity Nn of SCFST stub columns under the combined action of freeze–thaw
cycles and acid rain corrosion:

Nn = (1.08 − 0.0667ζ−0.105p) · (f y As + fc′Ac) (44)

where the ranges of the parameters ζ, p, f y, and f c
′ are [0.5, 2], [0, 5], [0, 500], and [24, 51]

MPa, respectively.
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Similarly, the performance of the developed design formula based on Eurocode 4 was also
validated using the numerical results. The evaluation result is shown in Figure 16b, in which the
results of simulating 72 SCFST stub columns under axial compression are compared with the results
calculated from the proposed design formula based on Eurocode 4 (Equation (44)). Compared with
the design formula based on GB50936-2014, the formula based on Eurocode 4 performed better, with
a mean value of Nfn/Ncn of 1.007 and a standard deviation of 0.002. Furthermore, the relative errors
predicted by Equation (44) could also be controlled within 15%.

Consequently, from the comparison results, it can be proven that both simplified design formulae
are capable of predicting the residual bearing capacity of SCFST stub columns that are under axial
compression and subjected to the combined action of freeze–thaw cycles and acid rain corrosion.
Therefore, the outcome of this study can provide theoretical guidance for the safety evaluation, stability
evaluation, and service life prediction of CFST structures in cold and acid rain areas.

Figure 16. Comparisons between the simulation results from the finite element (FE) model and the
calculation results from design formulae for calculating bearing capacity.

5. Conclusions

This study numerically investigated the mechanical properties of the SCFST stub columns that
are under axial compression and subjected to the combined action of freeze–thaw cycles and acid
rain corrosion. An FE model was established using the software ABAQUS, and the model performance
was validated using the experimental data captured from the literature. The effects of different model
parameters on the residual capacity were studied, and design formulae were developed to evaluate the
residual strength of SCFST stub columns in practice. The detailed conclusions are provided in this section.

(1) The failure mode of SCFST stub columns subjected to freeze–thaw cycles and acid rain corrosion
is similar to that of columns without any action after they are axially loaded. Buckling occurs at
both ends and in the central height of the columns. With the increase in the combined times, the
local buckling amplitude of the steel tube increases.

(2) The load–displacement curves of SCFST stub columns under axial compression are basically the
same after the columns are subjected to the combined action of freeze–thaw cycles and acid rain
corrosion. All the curves include the elastic stage, elastic-plastic stage, descending stage, and
stable stage. Under the same conditions, as the combination times increase, the times at which
the specimens arrive at each stage are earlier. Regardless of whether the specimens undergo a
combination of freeze–thaw cycles and acid rain corrosion, they all have stable bearing capacities
in the later stage, and the failure type is a plastic failure.

(3) The parameters that influence the ultimate bearing capacity of the specimens after freeze–thaw
cycles and acid rain corrosion include the restraint effect coefficient (ζe) and combination times (p),
which cannot be neglected. Generally, the larger the restraint effect coefficient or the combination
times, the smaller the influence factor (Ks) of the residual bearing capacity.
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(4) From the result of parameter analysis, design formulae are proposed for predicting the bearing
capacity of the SCFST column that is under axial compression and subjected to the combined
action of freeze–thaw cycles and acid rain corrosion.

This paper reports a preliminary investigation into the effects of acid rain corrosion and freeze–thaw
cycles on the mechanical properties of SCFST columns from a simplified perspective. Only uniform
corrosion was considered in this study. In future work, the durability of CFST structures under local
corrosion and freeze–thaw cycles will be analyzed. In addition, the mechanical properties of CFST
structures due to other dual environmental factors and even multiple environmental factors will be
studied for practical applications. The interdependency of multiple effects should be incorporated
into the numerical analysis model to replicate the real-world situation. Related experiments will also
be conducted in the laboratory, and the results will be used to further evaluate the effectiveness of
the developed numerical model in predicting the mechanical properties of SCFST stub columns that
are under axial compression and subjected to the combined action of freeze–thaw cycles and acid
rain corrosion.
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