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Abstract: The failure modes, ultimate load, stiffness performance, and their influencing factors
of a composite sandwich laminated box beam under three-point bending load are studied by an
experiment, finite element model, and analytical method. The three-point bending experiment
was carried out on three different core composite sandwich laminated box beams, and the failure
modes and bearing capacity were studied. With the use of composite progressive damage analysis
and the core elastoplastic constitutive model, the finite element model of the composite sandwich
laminated box beam was established, and the three-point bending failure process and failure modes
were analyzed. The analytical model was established based on the Timoshenko beam theory.
The overall bending stiffness and shear stiffness of the composite sandwich laminated box beam
were calculated by the internal force–displacement relationship. The results show that the composite
sandwich laminated box beam mainly suffers from local crushing failure, and the errors between
the finite element simulation and the experiment result were within 7%. The analytical model of the
composite sandwich laminated box beam can approximately predict the overall stiffness parameters,
while the maximum error between theoretic results and experimental values was 5.2%. For composite
aluminum honeycomb sandwich laminated box beams with a ratio of span to height less than 10,
the additional deflection caused by shear deformation has an error of more than 25%. With the ratio
of circumferential layers to longitudinal layers increasing, the three-point bending ultimate load
of the composite sandwich laminated box beam increases, but the ratio of the overall stiffness to
mass reduces. The use of low-density aluminum foam and smaller-wall-thickness cell aluminum
honeycombs allows for the more obvious benefits of light weight.

Keywords: composite sandwich laminated box beam; three-point bending; ultimate load; stiffness
performance; deflection analysis

1. Introduction

Sandwich structures are formed by two layers of panels and an intermediate core material
through a glue layer. The panels are generally selected from a resin-based fiber-reinforced composite
material having a high specific modulus and specific strength, and they can withstand large bending
normal stress; the core materials generally adopt lightweight materials such as a honeycomb structure,
grid structure, and low-density foam to fix, transfer load, and resist shear deformation [1,2]. A laminated
box beam with composite sandwich structure wall panels can not only exert the advantages of the
box beam such as good bending resistance, stable bearing on the side, and availability of internal
space, but also achieve the purpose of reducing weight and improving shear resistance. As a kind
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of lightweight structure with superior comprehensive performance, composite sandwich laminated
box beam structures are widely used in aircraft wings, helicopter rotors, wind turbine blades, bridges,
and many other large structures. Studying the stiffness performance, ultimate load, and bending
failure mechanism of the composite sandwich laminated box beam structure can provide guidance for
structural design and engineering applications of composite sandwich laminated box beams.

A large number of studies were carried out by scholars on the mechanical properties of composite
sandwich laminated box beams. Mai et al. [3] established an analytical model for the overall stiffness
of a three-point bending laminated box beam considering shear deformation, analyzing the structural
response of a composite box beam with a wall filled by aluminum square honeycomb, corrugated
board, and foam; the relationship between mass and overall stiffness was studied. Wenming et al. [4]
calculated the bending stiffness of a composite aluminum honeycomb sandwich laminated box beam
using Euler–Bernoulli classical beam theory, and analyzed the shear lag effects of flanges through finite
element analysis. Qiang et al. [5] studied the bending response and failure process of a carbon fiber
reinforced plastic square tube filled with aluminum honeycomb by three-point bending experiment
and finite element analysis.

In summary, the existing analytical models of composite sandwich laminated box beams are based
on classical beam theory, without considering non-classical effects such as lateral shear deformation,
warping, and three-dimensional strain. There is no overall force analysis in this method, which reduces
the accuracy of calculation. It is also rare to study the three-point bending ultimate load and failure
modes of composite sandwich laminated box beams using finite element simulations. In this paper,
three-point bending experiments were carried out on composite sandwich laminated box beams of
three different core materials. The failure process, overall bending stiffness, and ultimate load of the
three different core composite sandwich laminated box beams were compared. The progressive damage
analysis model of the composite material and the elastoplastic constitutive model of core material were
introduced, and the three-point bending finite element models of the composite sandwich laminated
box beam with a wall filled with aluminum honeycomb and aluminum foam was established to
predict the ultimate load. Then, an analytical model of a composite sandwich laminated box beam was
established based on the Timoshenko beam theory. The analytical formulas of the overall stiffnesses
of the composite sandwich laminated box beams were derived from internal force–displacement
equations. Finally, the analytical model and the finite element model were used to study the effects of
the ratio of circumferential layers to longitudinal layers and the ply angle on the ultimate load and
on the maximum deflection at the mid-span. The effects of aluminum foam density and aluminum
honeycomb cell wall thickness on the ratio of the overall stiffness to mass and the ratio of ultimate load
to mass were also studied.

2. Experimental Study

2.1. Introduction of Specimens and Experimental Methods

In this paper, composite sandwich laminated box beams with cores of aluminum honeycomb,
aluminum foam, and polyurethane elastomer were designed. The cross-sections of the specimens are
shown in Figure 1. The inner and outer laminates of the sandwich panel were made of T300/QY8911
grade carbon-fiber composite material; the order of the layup was [04/90]s, the thickness of the prepreg
single layer was 0.15 mm, and the length of all three specimens, l, was 200 mm. The cross-sectional
geometric dimensions are shown in Figure 2. The composite specimens adopted an overall secondary
solidification molding process. The core material was bonded to the prepreg placed on the steel inner
layer by layer, and then the first solidification was performed by vacuum bag pressing. After the first
molding, the prepreg was rolled on the outside of the core material, and then subjected to secondary
solidification. The composite sandwich laminated box beam specimens had better integrity and higher
geometric dimensional accuracy. The specimen numbers and parameters are shown in Table 1.
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Table 1. The number and mass of the three different composite sandwich laminated box beams.

No. Type of Core Total Mass m (g)

B1 Aluminum honeycomb 109.4
B2 Aluminum foam 197.6
B3 Polyurethane elastomer 349.8
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2.2. Three-Point Bending Experiment Process and Results

The three-point bending experiment was carried out on an INSTRON 5982 universal experimenting
machine (Instron (Shanghai) Testing Equipment Trading Co., Ltd., Shanghai, China) with a load range
of 100 kN. The strain gauge was attached to the bottom of the mid-span, and the strain data were
recorded by a DH8303 strain acquisition analyzer. (Jiangsu Donghua Testing Technology Co., Ltd.,
Jingjiang City, Jiangsu Province, China). The whole experiment process was recorded by a digital
camera (Canon (China) Co., Ltd., Beijing, China), as shown in Figure 3.
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Figure 3. Schematic of the three-point bending experiment.

Figure 4 shows the three-point bending experiment process of the three composite sandwich
laminated box beam beams. Figure 5 shows the load–displacement curves recorded by the experiment
machine. It can be found that, at the beginning of the experiment, the specimen was bent and deformed,
and the load increased with the displacement. When the ultimate load was reached, there was an
auditory cracking sound. The upper flanges of the three composite sandwich laminated box beams
all recessed downwards, indicating that nonlinear strength failure occurred in the action area of the
indenter, and the structural bearing capacity started to fall. As the displacement of the experimenting
machine increased, the breaking sound became more and more sharp and dense. Cracks appeared at the
intersection of the webs and the upper flanges of the three composite sandwich laminated box beams,
and out-of-plane bulging deformation occurred. For the composite polyurethane elastomer sandwich
laminated box beam, the crack gradually expanded in the longitudinal direction, local buckling
instability occurred on both webs, and the structural bearing capacity tended to be stable. For the
composite aluminum honeycomb and the aluminum foam sandwich laminated box beams, vertical
cracks were generated on the sides of the webs, and the cracks gradually expanded to the lower side
of the web as the load increased. In general, the composite laminated box beams with the cores of
aluminum honeycomb and aluminum foam had a small decrease in bearing capacity after strength
failure, and the bearing capacity was stable within a certain range.

Figure 6 shows the load–mid-span strain curves of the composite sandwich laminated box beams
in the linear elastic stage, and the overall bending stiffness Kb of the composite sandwich laminated
box beams could be calculated using the following formula [6,7]:

Kb =
PLH
8ε

, (1)

where P is the concentrated load, L is the distance between the two seats, and ε is the mid-span strain.
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Figure 5. Load–displacement curves of the three composite sandwich laminated box beams.

According to the data of Figures 5 and 6, the Kb of the three kinds of specimens was calculated
using Equation (1). In order to measure the benefits of light weight, the ratio of the ultimate load Pu

to the total mass m was defined as Pmu, and the ratio of the overall bending stiffness Kb to the total
mass m was defined as Kmb; the results are shown in Table 2. It can be found that the Pu and Kb of the
composite aluminum foam sandwich laminated box beam was largest, while the Pmu and Kmb of the
composite aluminum honeycomb sandwich laminated box beam was largest.
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Table 2. Bending experiment data of the composite sandwich laminated box beams.

No. Kb (N·m2) Pu (N) Kmb (N·m2/g) Pmu (N/g)

B1 3686.56 7590.15 32.42 69.51
B2 3707.98 11,211.87 21.25 56.74
B3 3693.66 6670.07 10.46 19.07

Note: Kmb = Kb/m is the ratio of bending stiffness to total mass; Pmu = Pu/m, is the ratio of ultimate load Pu to
total mass.
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3. Model of Composite Sandwich Laminated Box Beam

3.1. Finite Element Model of Composite Sandwich Laminated Box Beam

3.1.1. Constitutive Model and Progressive Damage Analysis for Composite Panels

In Figure 7, (1, 2, 3) and (n, s, z) are the main axis and the off-axis coordinate systems of the
orthotropic composite material, respectively, whereas θ is the angle between 1 and the z-direction.
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When θ = 0◦, the three-dimensional constitutive equation of the composite is as follows:

σ1

σ2

σ3

τ23

τ13

τ12


=



C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66





ε1

ε2

ε3

γ23

γ13

γ12


(2)

Equation (2) can be written as
σ = Cε, (3)
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where C is the stiffness matrix of the main axis coordinate system, θ , 0◦, and the stiffness matrix of
the off-axis coordinate system can be obtained as follows:

σnsz = TCTTεnsz = Cεnsz, (4)

where T is the transformation matrix, calculated as follows:

T =



cos2 θ sin2 θ 0 0 0 −2 cosθ sinθ
sin2 θ cos2 θ 0 0 0 2 cosθ sinθ

0 0 1 0 0 0
0 0 0 cosθ sinθ 0
0 0 0 − sinθ cosθ 0

cosθ sinθ − cosθ sinθ 0 0 0 cos2 θ− sin2 θ


(5)

Substituting Equation (5) into Equation (4), the three-dimensional constitutive equation of the
composite under the off-axis coordinate system is obtained by

σz

σs

σn

τsn

τnz

τsz


=



C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66





εz

εs

εn

γsn

γnz

γsz


, (6)

where Ci j is the three-dimensional stiffness coefficient under the off-axis coordinate system. A more
detailed expressions can be found in Reference [7].

The Hashin criterion was used as the damage initiation criterion of the composite. The Hashin
criterion is a model correlation criterion, which can distinguish the four failure modes of fiber tensile,
fiber crush, matrix tensile, and matrix crush, defined below.

(1) Fiber tensile failure

F f t =
(
σ11

XT

)2
+ α

(
τ12

SL

)2
, σ11 ≥ 0, (7)

(2) Fiber crush failure

F f c =

(
σ11

XC

)2

, σ11 ≤ 0, (8)

(3) Matrix tensile failure

Fmt =
(
σ22

YT

)2
+ α

(
τ12

SL

)2
, σ22 ≥ 0, (9)

(4) Matrix crush failure

Fmc =
(
σ22

2ST

)2
+

[( YC
2ST

)2
− 1

]
σ22

YC
+

(
τ12

SL

)2
, σ22 ≥ 0, (10)

where Fi (i = ft, fc, mt, mc) are the damage parameters corresponding to the four failure modes.
When Fi ≥ 1, the composite material is destroyed; XT and XC are the longitudinal tensile strength and
compressive strength, respectively; YT and YC are the transverse tensile strength and compressive
strength; SL and ST are the shear strength. The engineering elastic constants and ultimate strength
values of the composite materials used in the panels are shown in Table 3.
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Table 3. Material mechanical properties for the specimens.

Parameter Value Parameter Value

E1 (GPa) 135 Xt (MPa) 1673
E2 = E3 (GPa) 8.8 Xc (MPa) 1160

G12 = G13 (GPa) 4.47 Yt (MPa) 68
G23 (GPa) 3.0 Yc (MPa) 210
v12 = v13 0.33 SL = ST (MPa) 112

v23 0.33 ρ (g/cm3) 1.58

When a single layer of the composite material is damaged in strength, its mechanical properties are
attenuated to some extent. In this paper, the stiffness degradation was based on the linear degradation
mode of fracture toughness, as shown in Figure 8, where σ0,i (i = ft, fc, mt, mc) is the initial damage
equivalent stress, δ0,i is the initial damage displacement, δf,i is the complete damage displacement, and
di is the damage state variable. It can be seen from Figure 8 that the equivalent strain energy of the
composite material under complete failure can be calculated as follows:

Ws =
σ0.iδ f ,i

2
(11)
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Table 4 shows the fracture energy parameters of the carbon-fiber composites used in the
specimens [8]. When the composite material fails completely, the equivalent strain energy Ws is
equal to its fracture energy GC

i . At this time, the complete damage displacement can be obtained as

δ f ,i =
2GC

i
σ0,i

(12)

Table 4. Composite material fracture energy parameters [8].

GC
ft (N/mm) GC

fc(N/mm) GC
mt (N/mm) GC

mc (N/mm)

50.5 30.5 0.22 1.1

The degree of deterioration of the mechanical properties of the material is characterized by the
damage state variable di, and their expression is as follows:

di =
δ f ,i(δi − δ0,i)

δi(δ f ,i − δ0,i)
(13)

The constitutive equation of composite monolayers in the process of damage evolution is as follows:

σ = Cdε, (14)
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where Cd is the stiffness matrix considering the damage, calculated as

Cd =
1
D


(1− d f )E1 (1− d f )(1− dm)v21E1 0

(1− d f )(1− dm)v21E1 (1− dm)v21E2 0
0 0 D(1− ds)G12

 (15)

where D = 1 − (1 − d f )(1 − dm); df, dm, and ds are state variables of fiber damage, matrix damage,
and in-plane shear damage, respectively, which can be expressed as follows

d f =

{
d f t σ11 ≥ 0
d f c σ11 < 0

, (16)

dm =

{
dmt σ11 ≥ 0
dmc σ11 < 0

, (17)

ds = 1− (1− d f t)(1− d f c)(1− dmt)(1− dmc) (18)

The relationship between the effective stress matrix and the real stress matrix is as follows:

σ = Mσ (19)

M is the damage coefficient matrix and is calculated by

M =


1

1−d f
0 0

0 1
1−dm

0
0 0 1

1−ds

 (20)

3.1.2. Elastoplastic Constitutive Model of Core Material

For aluminum honeycomb and aluminum foam core materials, an ideal elastoplastic model was
used. The aluminum honeycomb core substrate used in this paper was pure aluminum with a modulus
of elasticity of 67 GPa, a yield strength of 108 MPa, and a Poisson’s ratio of 0.3. The stress–strain
relationship of pure aluminum is shown in Figure 9 [9]. The density of the aluminum foam core
material was 0.5 g/cm3, and the aluminum foam constitutive model considering the effect of density
can be represented by Equation (21) [10].

σ = 20.34ρ1.69 e94.58ρ0.08ε
− 1

1 + e94.41ρ0.08ε
+ e12.34ρ−10.55

[
e(−8.6ρ+14.68)ε

− 1
]

(21)

The stress–strain curves of aluminum foam with different densities are shown in Figure 10.
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3.1.3. Adhesive Interface Element Damage Analysis Model

The interface performance was simulated by placing interface elements of COH3D8. COH3D8 is
a three-dimensional eight-node interface element with thickness as shown in Figure 11 [11].
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The constitutive equation of COH3D8 in the linear elastic range is as follows [11]:

t =


tn

ts

tt




Knn 0 0
0 Kss 0
0 0 Ktt



εn

εs

εt

 = Kε (22)

where tn, ts, and tt are the normal stress and the two shear stresses of the adhesive interface element
respectively, εi = δi/T0 (i = n, s, t), T0 is the thickness actually calculated for the adhesive element, δi is
the relative displacement of the top surface and the bottom surface of the cohesive element in the
corresponding direction, and Kii is a stiffness factor. The secondary stress criterion was used as the
starting criterion, shown in Equation (23).(

tn

t0
n

)2

+

(
ts

t0
s

)2

+

 tt

t0
t

2

= 1 (23)

The damage evolution of COH3D8 elements was based on the mixed mode Benzeggagh–Kenane
energy criterion [12], shown below.

GC
n + (GC

s −GC
n )

( Gs + Gt

Gn + Gs + Gt

)η
= GC, (24)

where Gi (i = n, s, t) represents the strain energy release rates corresponding to open, slip, and tear
cracks, respectively, GC

i represents the critical strain energy release rates of the three kinds of cracks,
GC is the damage evolution variable (the layers are fully stratified when GC = 1), and η is the damage
factor. For carbon-fiber epoxy materials, η is generally between 1 and 2. The material parameters of
the adhesive element layer are shown in Table 5 [13].
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Table 5. Material parameters of composite adhesive interface layer [13].

Parameter Value Parameter Value

t0
n (MPa) 30 Knn (GPa) 1000

t0
s (MPa) 60 Kss (GPa) 1000

t0
t (MPa) 60 Ktt (GPa) 1000

GC
n (N/mm) 0.2 η 1.5

GC
s (N/mm) 1.0 ρ (g/m3) 1.2

GC
t (N/mm) 1.002

3.1.4. Geometric Model

The inner and outer panels were cut into 10 layers in the thickness direction. Each layer was
simulated by an SC8R continuous shell element with a thickness of 0.15 mm. The “composite layup”
function in ABAQUS was used to grant material properties to the inner and outer panels. The S4R
common shell element and the C3D8R three-dimensional stress element were used to simulate the
aluminum honeycomb and the aluminum foam core material. A layer of COH3D8 interface element
with zero thickness was arranged between the core material and the inner and the outer panels to
simulate degumming damage. A universal contact with a tangential friction coefficient of 0.1 and a
normal “hard” contact [14] was established. A 38 mm × 10 mm node area was created in the middle of
the upper flange to establish a coupling constraint between the node area and the reference point RP1.
The displacement load on RP1 was applied, and a historical output of U2 and RF2 was established.
The geometric model of the two supports was also established and defined as a rigid body; then, a fully
fixed constraint was applied. The finite element models of the two composite sandwich laminated box
beams are shown in Figure 12.
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3.2. Analytical Model of Composite Sandwich Laminated Box Beam

3.2.1. Simplification of Constitutive Equation for Composite Panels and Core Materials

In order to describe the deformation geometry of the composite sandwich laminated box beams,
the Cartesian coordinate system (x, y, z) was used for the overall coordinates, whereby the coordinate
origin was located in the cross-section centroid; the curvilinear coordinate system (z, s, n) was used for
the local coordinates, whereby the origin of the coordinates was in the midline of the cross-section;
n and s represent the normal direction and the tangential direction of the middle line, respectively.
The core material and the panels were all symmetric about the middle line, as shown in Figure 13.
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The inner and outer panels were composite laminate structures, and the three-dimensional
constitutive equation of an arbitrary k-th composite single layer is shown in Equation (6). The stress
components σn, σs, and τsn outside the cross-section were much smaller than the in-plane stress
components σz, τnz, and τsz, where it can be assumed that σn = σs = τsn = 0.

σn = C31εz + C23εs + C33εn + C36γsz = 0
σs = C21εz + C22εs + C23εn + C26γsz = 0
τsn = C44γsn + C45εnz = 0

(25)

Equation (25) was substituted into Equation (6), which could be simplified as follows:
σz

τsz

τnz

 =


C∗11 C∗12 0
C∗12 C∗22 0
0 0 C∗33



εz

γsz

γnz

 (26)

The formulas for calculating the three-dimensional converted stiffness coefficient C∗i j in
Equation (26) were as follows:

C∗11 = Q11 −
Q12

2

Q22
, C∗12 = Q16 −

Q12Q26

Q22
,

C∗22 = Q66 −
Q26

2

Q22
, C∗33 = Q55 −

Q45
2

Q44

(27)

where Qi j is the two-dimensional converted modulus component in the classical laminate theory.
The aluminum honeycomb core material is also an orthotropic material, but it does not have a

change in ply angle like the single layer of the composite material. The main axis coordinate system
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(1, 2, 3) and the local coordinate system (s, n, z) of aluminum honeycomb were parallel, reducing
Equation (27) to

C∗11 =
E1

1− v2
12

(1−
v2

12E1

E2
), C∗12 = 0, C∗22= G12, C∗33 = G13 (28)

E1, E2, G12, and G13 in Equation (28) are the equivalent elastic parameters of aluminum honeycomb,
the calculation method of which is detailed in Reference [15]. It can be found that the aluminum
honeycomb core material has no tensile–shear coupling effect.

For isotropic materials such as aluminum foam and polyurethane elastomers, Equation (28) can
be further simplified as

C∗11 = E, C∗12 = 0, C∗22 = C∗33 = G (29)

It can be seen that, whether it is a laminated wall or a core material, the constitutive equation can
be represented by Equation (26). The orthotropic, isotropic core material can be equivalent to a single
layer of composite material. There is no tensile–shear coupling effect in the constitutive equation of
isotropic materials. Subsequent calculations can be simplified by equating the sandwich panels to
common laminates.

3.2.2. Calculation of Bending Stiffness of Composite Sandwich Laminated Box Beam

It was assumed that the panel, the core material, and the neighboring layers were all firmly
bonded, and no relative slip occurred between them. By integrating the normal stress σz and the
two shear stresses τsz and τnz along the section, the internal force and the internal moment could be
obtained as follows [16]: 

Nz =
∫

A σzdsdn
Vx =

∫
A (τsz cosφ+ τnz sinφ)dsdn

Vy =
∫

A (τsz sinφ− τnz cosφ)dsdn
Mx =

∫
A σz(y− n cosφ)dsdn

My =
∫

A σz(x + n sinφ)dsdn
Mz =

∫
A τszψ(s)dsdn

Mω =
∫

A σz[Fw(s) + na(s)]dsdn

(30)

where Nz is the axial force, Vx and Vy are the shear forces in the x and y directions, respectively, Mx,
My, and Mz are the bending moments around the x, y, and z axes, respectively, Mw is the bi-moment
generated by the torsional normal stress, φ is the angle between the n and the x directions, a(s) is
the height of the right triangle in the geometric relationship, Fw(s) is the generalized fan coordinate,
and ψ(s) is the warping function.

The relationship between internal force and displacement can be obtained by simplifying
Equation (30) [16]. 

Nz

My

Mx

Vx

Vy

Mω

Mz


=



a11 a12 a13 a14 a15 a16 a17

a22 a23 a24 a25 a26 a27

a33 a34 a35 a36 a37

a44 a45 a46 a47

a55 a56 a57

a66 a67

sym a77





w′0
θ′y
θ′x

u′0 + θy

v′0 + θx

ϕ′′

ϕ′


, (31)

where u, v, and w are displacements along the coordinate axes x, y, and z, respectively, θx(z), θx(z),
andϕ(z) are rotation angles around the coordinate axes x, y, and z respectively, and u0(z), v0(z), and w0(z)
are rigid body displacements in the three directions. The direction of the displacement components
and the internal force components in Equation (31) are shown in Figure 14.
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From the relationship between internal force and displacement in Equation (32), the stiffnesses 
of the composite laminated box beams can be obtained: axial stiffness (EA); bending stiffness (EI)y, 
(EI)x for the y and x axes; shear stiffness (GA)y, (GA)x for the y and x axes; the section warping stiffness 
(GI)w; the section torsional stiffness (GJ). The calculation formulas of the stiffnesses mentioned above 
are as follows: 

[ ]

[ ]

[ ]

[ ]

2
12

11 11
22

2 2
2 212 12 12 12

22 11 11 11
22 22 22
2 2

2 212 12 12 12
33 11 11 11

22 22 22

2
226

44 66
22

[ 2( ) sin ( )sin ]

[ 2 ( )cos ( )cos ]

[ cos

s

y s

x s

x

AEA a A ds
A

A A B BEI a x A B x D ds
A A A
A A B BEI a y A y B D ds
A A A

A
GA a A

A

θ θ

θ θ

θ

 
= = − 

 

= = − + − + −

= = − − − + −

 
= = − + 

 







（ ）

（ ）

[ ]

[ ]

[ ]

2
245

55
44

2 2
2 226 45

55 66 55
22 44

2 2
66 11 11 11

2
226

77 66
22

sin ]

[ sin cos ]

( 2 )

( )

s

y s

w s

s

A
A ds

A

A A
GA a A A ds

A A

EI a A F B F a D a ds

A
GJ a A s ds

A

ω ω

θ

θ θ

ψ

 
− 

 
   

= = − + −   
   

= = + +

 
= = − 

 









, (33) 

where Aij, Bij, and Dij are the in-plane stiffness coefficients, coupling stiffness coefficients, and bending 
stiffness coefficients in the classical laminate theory. 

3.3. Results, Discussion, and Comparative Analysis 

3.3.1. Model Validity Verification 

The bending stiffnesses of the composite sandwich laminated box beams were calculated by 
Equation (33) and compared with the experiment results, as shown in Table 6. It can be found that 

Figure 14. Internal force and displacement components of composite sandwich laminated box beam.

When the laminated panel adopts balanced oblique symmetric, balanced antisymmetric,
and orthogonal layups, aij = 0 (i , j), the elastic coupling effects between different deformations
are all cancelled [16,17]; thus, Equation (31) can be reduced to

w′0 = Nz
a11

, θ′y =
My
a22

, θ′x = Mx
a33

, u′0 + θy = Vx
a44

v′0 + θx =
Vy
a55

, φ′′ = Mω
a66

, φ′ = Mz
a77

(32)

From the relationship between internal force and displacement in Equation (32), the stiffnesses
of the composite laminated box beams can be obtained: axial stiffness (EA); bending stiffness (EI)y,
(EI)x for the y and x axes; shear stiffness (GA)y, (GA)x for the y and x axes; the section warping stiffness
(GI)w; the section torsional stiffness (GJ). The calculation formulas of the stiffnesses mentioned above
are as follows:

[EA] = a11 =
∫

s

(
A11 −

A2
12

A22

)
ds

[EI]y = a22 =
∫

s [x
2(A11 −

A2
12

A22
) + 2(B11 −

A12B12
A22

)x sinθ+ (D11 −
B2

12
A22

) sin2 θ]ds

[EI]x = a33 =
∫

s [y
2(A11 −

A2
12

A22
) − 2y(B11 −

A12B12
A22

) cosθ+ (D11 −
B2

12
A22

) cos2 θ]ds

[GA]x = a44 =
∫

s [
(
A66 −

A2
26

A22

)
cos2 θ+

(
A55 −

A2
45

A44

)
sin2 θ]ds

[GA]y = a55 =
∫

s [
(
A66 −

A2
26

A22

)
sin2 θ+

(
A55 −

A2
45

A44

)
cos2 θ]ds

[EI]w = a66 =
∫

s (A11F2
ω + 2B11Fωa + D11a2)ds

[GJ] = a77 =
∫

s

(
A66 −

A2
26

A22

)
ψ2(s)ds

(33)

where Aij, Bij, and Dij are the in-plane stiffness coefficients, coupling stiffness coefficients, and bending
stiffness coefficients in the classical laminate theory.

3.3. Results, Discussion, and Comparative Analysis

3.3.1. Model Validity Verification

The bending stiffnesses of the composite sandwich laminated box beams were calculated by
Equation (33) and compared with the experiment results, as shown in Table 6. It can be found
that the errors calculated by Equation (33) were within 6%, meeting the accuracy requirement of
engineering applications.
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Table 6. The theoretical and experimental bending stiffnesses of composite sandwich laminated
box beams.

No. Theoretical Calculation (N·m2) Experiment (N·m2) Error (%)

B1 3686.56 3495.26 −5.19
B2 3707.98 3529.02 −4.83
B3 3693.66 3544.75 −4.03

The load–displacement curves of the three-point bending process of the composite sandwich
laminated box beam obtained by the experiment and the finite element simulation are shown in
Figure 15. The overall change trend of the load–displacement curves obtained by the two methods was
similar. The numerical ultimate loads of the two different composite sandwich laminated box beams
were 7.59 kN and 11.2 kN. Compared with the experimental data in Table 2, the errors were 6.7% and
6.9%, respectively. The reliability of the finite element model is, therefore, illustrated.
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3.3.2. Failure Mechanism Analysis of Composite Sandwich Laminated Box Beams under
Three-Point Bending

Figure 16 shows the results of the finite element simulation; there were four failure modes of the
composite sandwich laminated box beams under ultimate load. According to the legend in Figure 16,
the scale from blue to red indicates that the damage is getting worse. Composite damages occurred in
areas of the circle, where the red area indicates that elements were completely destroyed. It can be seen
that, when the ultimate load was reached, the compression zone of the two composite sandwiches
began to undergo partial depression deformation, where the stress concentration at the top of the web
was the most serious. The collapse of the fiber and matrix in the compression zone of the upper flange
and the top of web was the main cause of the decline in bearing capacity.
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Figure 16. Failure modes of composite sandwich laminated box beam. (a) Aluminum honeycomb core;
(b) Aluminum foam core.

Figure 17 shows the stress cloud of the composite sandwich box beam and core material after
nonlinear deformation. A darker color denotes a more severe stress concentration. After the ultimate
load, as the displacement increased, the web near the compression zone of the outer panel underwent
out-of-plane bulging deformation, part of the failure element was removed, and the lower flange
was mainly subjected to tensile stress. Both the aluminum honeycomb and the aluminum foam core
materials underwent overall bending deformation and local plastic deformation. The panels and the
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core material were degummed and dislocated, and the deformation of the inner and outer panels
was uncoordinated.
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4. Analysis of Factors Affecting Mechanical Properties of Composite Sandwich Laminated
Box Beams

For composite sandwich laminated box beams subjected to concentrated loads at the mid-span,
the maximum mid-span deflection caused by the bending load [3] was calculated as follows:

δM =
PL3

48[EI]x
(34)

The additional deflection at the mid-span caused by the transverse shear force was calculated
as follows:

δV = α
PL

4[GA]y
, (35)

where P is the concentrated load, L is the distance between the two supports, α is the shear section
coefficient, and [EI]x, [GA]y are the bending stiffness and shear stiffness calculated by Equation (33).

The total deflection δ of the span was calculated as follows:

δ = δM + δV (36)
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Under the premise of considering lateral shear deformation and with the purpose of characterizing
the overall stiffness performance of the composite sandwich laminated box beam and measuring the
benefits of light weight, the overall stiffness coefficient K and the specific stiffness coefficient Km were
defined as follows:

K =
1
δ

, (37)

Km =
1

mδ
(38)

4.1. Influence of the Ratio of Span to Height

The composite aluminum honeycomb sandwich laminated box beam in Section 2.1 was taken
as an example. It was assumed that the cross-section dimensions of the laminated box beam and the
inner and outer panel layups were unchanged, and the concentrated load was P = 1000 N. Using
the laminated box beam span L as a variable, δM, δV, and δ were calculated by Equations (34)–(36),
respectively. The results are shown in Figure 18. It can be seen that the ratio of the shear additional
deflection δV to the total deflection δ decreased as the ratio of span to height L/H increased; when L/H
was less than 10, the ratio of δV to δ was above 25%, and, for the isotropic material laminated box
beam, the ratio of δV to δ was only 3%. The composite sandwiched box beam was more affected by
shear deformation.
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4.2. Influence of Layup Parameters

The composite aluminum honeycomb core (AHC) and aluminum foam core (AFC) laminated
box beams in Section 2.1 were taken as examples. It was assumed that the inner and outer panels
only adopted the layers of 0 degrees and 90 degrees, indicating that the layers of the composite
sandwich laminated box beams were only in the longitudinal and circumferential directions. The core
material was unchanged. The finite element model and the analytical model were used to calculate the
ultimate load and stiffness coefficients of the composite laminated box beams with different ratios of
circumferential layers to longitudinal layers, and the results are shown in Figure 19. It can be found
that the composite sandwich laminated box beam with AFC had relatively large ultimate load and
stiffness coefficients, which was due to the higher equivalent elastic modulus and yield strength of the
aluminum foam. When the panel had a pure 0-degree or a pure 90-degree layup, the ultimate load was
lower. Furthermore, the stiffness coefficient of the composite sandwich laminated box beam decreased
as the ratio of circumferential layers to longitudinal layers increased. This is because the 90-degree
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layers increased the lateral load-bearing capacity and the transverse stiffness of the web, but the small
number of 0-degree layers reduced the overall bending stiffness of the composite sandwich box beam.
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Figure 19. Curves of ultimate load Pu and stiffness coefficient K changing with the ratio of circumferential
layers to longitudinal layers.

The composite aluminum honeycomb sandwich laminated box beam was taken as an example.
It was assumed that the inner and outer wall both had a balanced obliquely symmetric layup, [θ/−θ]5;
the variations of [EI]x, [GA], δM, δV, and δ changing with the ply angle θ are shown in Figures 20 and 21.
It can be found that [EI]x, [GA], and K took maximum values at 0, 45, and 15 degrees, respectively.
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Figure 20. Bending stiffness [EI]x and shear stiffness [GA] of composite aluminum honeycomb sandwich
laminated box beam changing with the ply angle.
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Figure 21. Deflection δ and stiffness coefficient K of composite aluminum honeycomb sandwich
laminated box beam changing with the ply angle.

4.3. Influence of Core Material Parameters

It was assumed that the cross-sectional geometry, and the inner and outer panel layups of the
composite sandwich laminated box beam were unchanged, and the concentrated load was P = 1000 N.
The mechanical properties of the composite sandwich laminated box beam were analyzed with different
densities of aluminum foam and different wall thicknesses of the aluminum honeycomb cell. The results
are shown in Figures 22 and 23. It can be found that, as the density of aluminum foam and the wall
thickness of the aluminum honeycomb cell increased, the values of Km and Pum decreased, and the
benefits of light weight decreased.
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5. Conclusions 

(1) Composite sandwich laminated box beams with cores of aluminum honeycomb, aluminum 
foam, and polyurethane elastomer underwent localized crushing damage under three-point bending 
load. After the ultimate load, the first two kinds of composite sandwich laminated box beams still 
had a high load-carrying capacity within a certain range. The composite aluminum honeycomb 
sandwich box laminated beam had the highest ratios of overall stiffness to mass and ultimate load to 
mass, leading to a better benefit of light weight. 

(2) The finite element models of composite sandwich laminated box beams filled with aluminum 
honeycomb and aluminum foam, established by composite progressive damage analysis and the core 
elastoplastic constitutive equation, could approximately simulate the three-point bending failure 
process and predict the ultimate load. The analytical model of the composite sandwich laminated box 
beam established by the Timoshenko beam theory could approximately calculate the overall stiffness 
parameters of the composite sandwich laminated box beam. 

(3) For composite sandwich laminated box beams with a small ratio of span to height, the 
additional deflection caused by shear deformation must be considered in the deflection analysis. As 
the ratio of circumferential layers to longitudinal layers increased, the three-point bending ultimate 
load of the composite sandwich laminated box beam increased, and the overall bending stiffness 
decreased. The use of aluminum foam with low density and aluminum honeycomb with a small cell-
wall thickness as the core materials can achieve greater benefits of light weight. 
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load. After the ultimate load, the first two kinds of composite sandwich laminated box beams still
had a high load-carrying capacity within a certain range. The composite aluminum honeycomb
sandwich box laminated beam had the highest ratios of overall stiffness to mass and ultimate
load to mass, leading to a better benefit of light weight.

(2) The finite element models of composite sandwich laminated box beams filled with aluminum
honeycomb and aluminum foam, established by composite progressive damage analysis and the
core elastoplastic constitutive equation, could approximately simulate the three-point bending
failure process and predict the ultimate load. The analytical model of the composite sandwich
laminated box beam established by the Timoshenko beam theory could approximately calculate
the overall stiffness parameters of the composite sandwich laminated box beam.

(3) For composite sandwich laminated box beams with a small ratio of span to height, the additional
deflection caused by shear deformation must be considered in the deflection analysis. As the
ratio of circumferential layers to longitudinal layers increased, the three-point bending ultimate
load of the composite sandwich laminated box beam increased, and the overall bending stiffness
decreased. The use of aluminum foam with low density and aluminum honeycomb with a small
cell-wall thickness as the core materials can achieve greater benefits of light weight.
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