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Abstract: The 7N01 aluminum alloys are always used in vehicles, but heat treatment can deteriorate
mechanical properties and corrosion resistance, which limits its utilization. In this paper, the influences
of the temperature of heat straightening on the corrosion behavior and mechanical properties of
7N01 aluminum alloy are investigated. Most of the initial Guinier Preston (GP) zones dissolve into
the matrix during heat treatment process, while the grain boundary precipitates have no obvious
change. The precipitates of the samples after heat treatment mainly consist of high density GP
zones due to the natural aging effect, which result in the recovery of micro-hardness. Although heat
treatment decreases the mechanical properties of 7N01 aluminum alloy, there is no obvious difference
in mechanical properties of the specimens after different heat treatment conditions. The corrosion
resistance of heat treatment samples decreases significantly compared with the base metal, which is
attributed to enhancing the difference between the potential of the alloy matrix and the grain boundary.
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1. Introduction

Al–Zn–Mg alloy is a typical aging strengthening, medium-strength aluminum alloy, which is
widely applied in high-speed railway, automobile and other transportation vehicle structural parts,
because of its acceptable specific strength, good weldability and corrosion resistance [1,2]. There
are lots of methods to connect the aluminum alloy, while welding is widely applied, owing to its
advantages of simple operation and low cost, especially the metal inert-gas (MIG) arc welding [3,4].
The aluminum alloys will undergo thermal cycling during the welding process, then the welding
deformation occurs. The welding deformation is inevitable for the welded structural parts due to
the thermal expansion and contraction effect of metal parts, especially for the aluminum alloy, which
always affect the dimensional accuracy and appearance of weldment. Consequently, some measures
are often taken to control welding deformation, such as post-weld correction.

Generally speaking, the post-weld correction consists of mechanical straightening and heat
straightening [5,6]. The mechanical correction method mainly refers to the use of external force
to promote the deformation of the structural parts in the opposite direction of the welding
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deformation; then the new mechanical correction deformation offsets the welding deformation.
Basically, large-tonnage presses or flange straightening machines are often used for batch correction
in the industry and the mechanical correction has the advantages of high efficiency and low cost.
The heat straightening can be divided into two types: integral heating and local heating. The integral
heating can be used when the welding deformation is large. However, the disadvantage of this
method is that the whole heating after welding tends to produce metallurgical side effects. Local
heating is often performed by oxy-acetylene flame. The welding deformation zone is heated by the
moving oxy-acetylene flame and then quenched with water immediately. Since heating makes metallic
materials expand and cold makes them contract, in the high temperature places, the thermal expansion
of the material is restricted by the rigidity of the structural member, resulting in local compression
deformation [5,6]. Then, the new contractive plastic deformation counteracts the former welding
deformation. Thanks to the advantages of simple equipment and flexibility, the local flame correction
is always applied in post-weld structural parts.

Lots of investigations have pointed out that the mechanical properties and corrosion behavior of
Al–Zn–Mg(Cu) alloy are mainly related to the heat treatment process [1,7,8]. The heat straightening
will induce the transformation of microstructure and properties of aluminum alloy. At present,
the investigations of heat straightening mainly focus on heat straightening temperature, the number
of heat straightenings, and quenching process during heat straightening. Jiang et al. [9] and Lu et
at. [10] used a direct oxy-acetylene flame and investigated the corrosion susceptibility and mechanical
properties of Al–Zn–Mg alloys under different heat correction temperatures. The main problem of this
experimental method is that the thermal correction process cannot be controlled accurately, because
the heat straightening process is mainly based on the workers’ experience and has less repeatability
than is desirable. Li et al. [1] and Dong et al. [11] investigated the number of heat straightenings on
the corrosion susceptibility and mechanical properties of Al–Zn–Mg alloy, based on the method of
heat treatment simulation, and pointed out that the corrosion resistance decreased with an increase of
the number of heat straightenings. Li et al. [12] investigated the influence of the quenching process
during flame correction on the microstructure and performances of Al–Zn–Mg alloy and revealed
that the Al–Zn–Mg alloy has the lowest corrosion resistance when the air quenching process is
conducted. The specimens got better corrosion resistance when treated with air cooling for 5 min,
followed by the water quenching process. In this paper, the heat straightening process was simulated
through non-isothermal heat treatment (NIHT) process. The aim was to investigate the evolution of
microstructure and corrosion behavior under the actual heat straightening temperature of 300 ◦C and
350 ◦C and provide a basis for optimizing heat straightening parameters.

2. Experimental Procedure

2.1. Heat Treatment Process

The 7N01 aluminum alloy specimens in T4 condition with the size of 150 × 40 × 5 mm3 were
prepared, and the chemical composition of the alloy is listed in Table 1. The T4 state related to solution
heat treatment at the temperature of 470 ◦C for 1 h, followed by quenching in water, and finally
natural aging. The non-isothermal heat treatment process was performed through air furnaces
(KSL-1200X, HeFei KeJing Materials Technology Co., LTD, Hefei, China) and a temperature recorder
(Yokogawa GP10, Yokogawa Electric Co., Musashino, Japan). The thermal cycle curves during the heat
treatment process was recorded by a K-thermocouple embedded in the geometric center of the samples.
The specimens with an embedded K-thermocouple were dealt with in the air furnace, then taken out
and quenched in water immediately when the peak temperature reached the preset values. The preset
temperatures were 300 ◦C and 350 ◦C; the corresponding heating times were set to 90 s and 120 s
according to actual process, respectively. The typical thermal cycle curves are shown in Figure 1. It is
noted that all experiment were performed on the 45th day after the heat treatment process, considering
natural aging [10].
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Table 1. Chemical composition of 7N01 aluminum alloy (wt.%).

Element Zn Mg Mn Cr Zr Fe Cu Ti Si V Al

Content 4.76 1.20 0.42 0.11 0.07 0.11 0.01 0.04 0.04 0.01 93.23
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Figure 1. The thermal cycle curves of 7N01 aluminum alloy under water quenching after (a) 300 ◦C
and (b) 350 ◦C heat treatment.

2.2. Mechanical Property Experiments

Figure 2 shows the sizes of the tensile specimens and the tensile test was performed on the DNS100
(Changchun Testing Machine Institute Co., Ltd., Changchun, China). The tensile speed was 5 mm/min
during tensile test. The micro-hardness test was carried out with an MVC-1000B (Shanghai Jimin
Testing Instrument Co., Ltd., Shanghai, China) apparatus with a load of 100 g for 15 s.
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Figure 2. Sample for mechanical property testing (mm).

2.3. Corrosion Experiment

The intergranular corrosion (IGC) test was carried out according to standard ASTM G110-92
with the mixed corrosion solution of 1.0 M NaCl + 0.01 M H2O2 [13]. The dimensions of the IGC
specimens were 40 × 25 × 5 mm3 and the experiment was conducted in a water bath with the DK-98-II
device (Tianjin TaiSiTe Instrument Co., Ltd., Tianjin, China) at the temperature of 35 ± 2 ◦C for 12 h.
The exfoliation corrosion test was carried out in the solution of 4 M NaCl + 0.5 M KNO3 + 0.1 M HNO3

with the sample sizes of 40 × 30 × 5 mm3 depending on the standard ASTM G34-01 [14].
The potentiodynamic polarization tests were carried out in an electrochemical workstation of type

CS350 (Wuhan Corrtest Instruments Corp., Ltd., Wuhan, China). Electrochemical experiments were
performed by using a typical three-electrode test system; namely, an Ag/AgCl electrode as a reference
electrode, a large platinum sheet as a counter electrode, and the studied alloy as the working electrode.
The range of the potentiodynamic polarization tests was ±200 mV (relative to open circuit potential)
with the scan speed of 1 mV/s. In order to keep the potential stable, the open circuit potential test was
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conducted for 30 min before the polarization curve test. All experiments were performed at room
temperature with the solution of 1.0 M NaCl, and the exposed area of the samples was 0.95 cm2.

2.4. Microstructural Investigations

After grinding and polishing, the metallographic samples were put into the mixed
solution—HF:HCl:HNO3:H2O = 1:1.5:2.5:95. The optical metallographic photos of heat treatment
samples were captured with a Leica MEF4 optical microscope (OM, Wetzlar, Germany). The fracture
and corrosion morphology were observed by ZEISS SUPRA 55 field emission scanning electron
microscopy (SEM, Oberkochen, Germany). The heat treatment samples were prepared for transmission
electron microscope (TEM) observation. First, the samples were polished carefully to around 30 µm
in thickness by SiC sandpaper, and stamped to 3 mm in diameter. Afterwards, the thin foils were
handled by twin-jet electropolishing with the voltage of 20 V at the temperature of −30 ◦C, and the
solution was prepared by 30% HNO3 and 70% CH3OH. The evolution of precipitation in the alloy
after heat treatment process was observed through Tecnai G220s-twin TEM (Waltham, MA, USA) with
the operating voltage of 200 kV.

2.5. Differential Scanning Calorimetry (DSC) Analysis

The evolution of precipitation of 7N01 aluminum alloys with different heat treatment conditions
were analyzed by a TA Q20 differential scanning calorimeter (DSC, New Castle, DE, USA) and the
weight of a DSC sample was about 20 mg. The temperature range was set as 25–500 ◦C at the heating
rate of 10 ◦C/min, with pure aluminum as reference sample.

3. Results

3.1. Mechanical Properties

The hardness evolution of 7N01 aluminum alloy after heat treatment is shown in Figure 3. It is
obvious that the natural aging phenomenon occurred for the heat-treated 7N01 aluminum alloy,
judging from the evolution of hardness. The hardness curve can be divided into three stages: the
hardness increases rapidly in the first 5 days of natural aging, then gradually slows down from 5 days
to 30 days, and finally, tends to be stable after 45 days. The hardness of the sample treated at 350 ◦C is
slightly higher than that of the specimen treated at 300 ◦C after stabilization. The natural aging effect
nearly disappears after 45 days, so all the experiments in the paper were carried out after 45 days of
natural aging.
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Figure 4 shows the tensile properties of 7N01 aluminum alloy under different heat treatment
peak temperatures. For the base metal, the tensile strength and elongation rate are 435 MPa and
16.9%, respectively. The tensile strength and elongation rate decrease after the heat treatment process
compared with the base metal. After heat treatment at the peak temperature of 300 ◦C, the tensile
strength of the 7N01 aluminum alloy reaches 406 MPa, which is slightly lower than 410 MPa obtained
at the peak temperature of 350 ◦C. Additionally, the heat treatment peak temperature has nearly no
influence on the elongation.
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The fracture surface morphology of the samples after different heat treatments are displayed in
Figure 5. The fracture surface of the base metal exhibits a relatively uniform small dimples, which
is dominated by ductile fracture, as shown in Figure 5a,b. For the heat treatment samples, the local
areas of fracture morphology display smooth planar features at a low magnification and a lamellar
tearing characteristics appears at the edge of plane. It also can be seen that very small and shallow
dimples exist in local areas of the plane in high magnification, as shown in Figure 5c–f. Consequently,
the tensile specimens after heat treatment exhibit mixed fracture characteristics.

3.2. Corrosion Behavior

The immersion corrosion experiment of the specimens after heat treatment with different peak
temperatures was carried out according to the standard of ASTM G110-92, and the results are shown
in Figure 6. The corrosion morphology of all samples is dominated by pitting corrosion and exfoliation
corrosion. There is no typical network-like intergranular corrosion characteristic, because grain
boundary precipitates discontinuously distribute.
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The evolution of the exfoliation corrosion morphology of specimens with different thermal cycling
conditions is displayed in Figure 7. In the early stage of exfoliation corrosion, the surface of the 7N01
aluminum alloy loses its metallic luster gradually; then corrosion types develop from pitting corrosion
to more serious overall corrosion gradually. The exfoliation corrosion resistances of specimens after
thermal cycling are worse than that of base metal, and the sample after heat treatment with the peak
temperature of 350 ◦C shows the worst exfoliation corrosion resistance among the three samples,
when the immersion time is less than 12 h. Moreover, for the heat treatment samples, the metal layer
lift-up phenomenon occurs when the immersion time is 12 h, while the same phenomenon appears
for the base metal in the period between 12 h and 24 h. Consequently, in the early stage of actual
exfoliation corrosion tests, the exfoliation corrosion resistance of 7N01 aluminum alloy is ranked in the
following order: base metal > 300 ◦C > 350 ◦C. All the specimens display overall corrosion features
and the different of exfoliation corrosion morphology is not obvious when the immersion time is more
than 12 h. The detailed variation of the exfoliation corrosion grade of 7N01 aluminum alloy with the
immersion time is listed in Table 2.
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Table 2. Evolution of exfoliation corrosion grade with immersion times for 7N01 aluminum alloy in
different conditions.

Condition
Immersion Time (h)

6 12 24 36 48

Base metal N PB EB EC EC
300 ◦C N PC EB EC EC
350 ◦C N PC EB EC EC

Notes: No serious corrosion N; pitting PA (slight pitting in surface) against PC (severe pitting on surface) (with PA
weak and PC strong pitting); exfoliation EA (apparent surface layering) to ED (Surface stratification is more serious)
(with EA weak and ED strong exfoliation).

The open circuit potentials of samples in Figure 8 with different heat treatment conditions was
tested with the solution of 1 M NaCl. It can be seen that the open-circuit potential reaches a relatively
stable state at around 30 min. The relevant investigations revealed that the difference of open-circuit
potential is mainly determined by the distribution of grain boundary precipitates. Figure 9 shows
the typical polarization curves of the specimens after different heat treatment process and the related
parameters are listed in Table 3. The anodic and cathode cures were considered and the Tafel-type fit
of the data was obtained to estimate the corrosion potential (Ecorr) and corrosion current density (icorr)
from the polarization curves. The corrosion potential is an electrochemical thermodynamic parameter,
which reflects the difficulty of corrosion. The more negative the corrosion potential, the greater the
tendency of the alloy to be corroded [15]. The corrosion current density is an electrochemical kinetic
parameter, indicating the rate of corrosion. The higher the value, the faster the corrosion proceeds.
The electrochemical parameters in Table 3 indicate that the corrosion tendency of the 7N01 aluminum
alloy improves after heat treatment, and the corrosion potential of the sample after heat treatment at
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the temperature of 350 ◦C is the lowest. Meanwhile the corrosion current density and corrosion rate of
samples with different heat treatment conditions have an opposite change trend with the corrosion
potential. The main reason lies in that the fitting zones from the polarization curves are subjective. It
is also noted that the difference of corrosion current density and corrosion rate of the samples with
different thermal cycling conditions is small.Materials 2019, 12, x FOR PEER REVIEW 6 of 17 
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Table 3. Electrochemistry corrosion parameters of 7N01 aluminum alloy in a 1 M NaCl aqueous solution.

Condition Corrosion Potential
(mV) Corrosion Current Density (mA/cm2)

Base metal −899 ± 3 (2.15 ± 0.02) × 10−6

300 ◦C −905 ± 2 (1.93 ± 0.03) × 10−6

350 ◦C −909 ± 3 (2.09 ± 0.05) × 10−6

The macro morphology and the corresponding SEM images of the samples with different heat
treatment conditions after polarized testing are shown in Figure 10. It can be seen that the surface
of the polarized area has a relatively uniform corrosion morphology, and the macroscopic image
has no significant difference. A large number of narrow and small corrosion grooves are randomly
distributed on the surface of the base metal through SEM observation; and the corrosion grooves on the
surface of samples after heat treatment under 300 ◦C become wider and longer, and the corresponding
area fraction of corrosion grooves become larger. For the sample after heat treatment with the peak
temperature of 350 ◦C, the long strips of corrosion pits gathered together and further developed into a
larger area of corrosion pits, and the characteristics of a single strip-shaped groove are not obvious,
which indicats more serious corrosion than those of the other two specimens.
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3.3. Microstructure Analysis

The typical optical metallurgical images of specimens after different heat treatment conditions are
shown in Figure 11. The base metal is featured with typical rolling microstructure, which consists of
deformed grains elongated in the rolling direction and fine recrystallized grains. There is no obvious
change of the optical metallurgical images of the samples after heat treatment, which is likely attributed
to the recrystallization in 7N01 aluminum alloy.
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Figure 11. Metallographic structure of 7N01 aluminum alloy for (a) base metal; (b) 300 ◦C and (c) 350 ◦C.

The 7N01 aluminum alloy in T4 state mainly consists of natural aging clusters formed by the
aggregation of solute atoms of the aluminum matrix. The strength effect of 7N01 aluminum alloy
in the T4 state is mainly associated with natural aging clusters; namely, GP zones. The distribution
of matrix precipitates of 7N01 aluminum alloy are shown in Figure 12. During the precipitation of
7N01 aluminum alloys, a GP zone forms from 20 to 120 ◦C, an η′ phase is generated from 120 to
250 ◦C, and an η phase develops during 150–300 ◦C [2,3]. It can be seen all the samples consist of
the high-density disc-shaped GP zones with the size of about 1 nm, which is mainly attributed to the
formation temperature range of GP zones and the initial state of 7N01 aluminum alloy, as shown in
Figure 12a–c.
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Figure 12. TEM images of matrix precipitate morphology in 7N01 aluminum alloy after different heat
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Figure 13 shows the evolution of grain boundary precipitates of the samples with different heat
treatment conditions. It can be seen that grain boundary precipitates MgZn2 are discontinuous [3]; the
size of precipitates is about 35 nm and no obvious grain boundary-free precipitation zone is observed,
as displayed in Figure 13a. In addition, the distribution morphology of the grain boundary precipitates
MgZn2 has no obvious change after heat treatment with a size of about 50 nm, as shown in Figure 13b,c.
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3.4. DSC Curve Analysis

The DSC curves of 7N01 aluminum alloy under different heat treatment conditions are shown in
Figure 14. It can be seen that the features of the curves of the base metal and heat treatment samples
are similar, all showing obvious three endothermic peaks (A, C, and E) and three exothermic peaks
(B, D, and F). The peak A with the temperature range of 100–160 ◦C implies the dissolution of the
GP zones; the smaller peak B (165–180 ◦C) is related to the formation of the η’ sub-stable phases; and
the peak C (180–210 ◦C) indicates partial dissolution of the precipitates. The appearance of peak D is
related to the formation of η phases. In addition, it is noted that the difference of the characteristics
of peak D is obvious, and the temperature range of peak D of the sample with heat treatment’s peak
temperature of 300 ◦C is larger. The peak E implies the dissolution of η phases and the appearance of
peak F is related to the high temperature precipitates. The relevant investigations have shown that the
features of DSC curves are related to many factors, including the size, volume fraction, and type of
precipitates in the initial state of the sample, and the dissolution and precipitation temperature range
of the GP, η, and η phases are coincident [16]. Additionally, in some temperature ranges, different
thermal reactions of multiple second phases may occur simultaneously.
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4. Discussion

The evolution of the microstructure for the Al–Zn–Mg alloy during non-isothermal heat treatment
is different compared with the traditional isothermal heat treatment. In the non-isothermal heat
treatment process, the precipitation, growth, and re-precipitation of the precipitates are involved.
Nicolas and Deschamps [17] studied the precipitation kinetics of Al–Zn–Mg alloy in T6 state during
non-isothermal heating systematically. They found out that most of the η’ phase dissolves into the
matrix during non-isothermal heat treatment. Considering the heating rate, peak temperature used in
the experiment, and the poor thermal stability of the GP zones, it is concluded that the evolution of the
microstructure of the base metal is mainly consists of the dissolution of GP zones; namely, most of GP
zones dissolve into the matrix, and result in the decrease of hardness, greatly. After heat treatment,
the supersaturated solid solution is formed; then, the GP zone is re-formed from the matrix during
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natural aging. Consequently, the hardness of the heat treatment samples increases gradually with time
until it reaches a steady state. The driving force of atomic segregation during natural aging is large
because the supersaturated solid solubility of the sample quenched from 350 ◦C to room temperature is
greater than that of the sample quenched from 300 ◦C to room temperature. Consequently, the volume
fraction and size of the GP zone will also increase correspondingly for the sample after heat treatment
with the peak temperature of 350 ◦C. The hardness and tensile strength of the sample after heat
treatment at the peak temperature of 350 ◦C are slightly greater than those of the sample after heat
treatment at the peak temperature of 300 ◦C. The dissolution temperature of stable MgZn2 phase is
around 340 ◦C [16]. In addition, the duration of the 7N01 aluminum alloy being exposed to 340 ◦C or
more for a very short time (a few seconds), and the MgZn2 phase, are too late to dissolve and diffuse.
Consequently, the grain boundary precipitates of the alloy did not change significantly at the two
peak temperatures.

The grain boundary precipitates become bigger and more discontinuous after the heat treatment
process compared with base metal. The reason is mainly related to the aggregation of grain boundary
precipitates during the heat treatment process. Lots of investigations have pointed out that the
difference of intergranular corrosion morphology is related to the distribution and micro-electrochemical
properties of grain boundary precipitates [16,18,19]. A higher peak temperature means a longer element
diffusion time. Furthermore, the potential difference between matrix and grain boundary increases
due to the diffusion of Mg, Zn, and the other active element. Consequently, the intergranular corrosion
resistance of the sample after heat treatment at the peak temperature of 350 ◦C is the lowest among the
three samples. In addition, the solute elements of the samples after different heat treatment conditions
exist in the matrix with two forms; namely, solid solution and GP zones. The difference in the degree of
supersaturation leads to the difference of solute elements’ contents in the matrix. The more the solute
content in the matrix, the lower the self-corrosion potential of the matrix, so the tendency to undergo
transgranular corrosion increases. Additionally, the difference in the corrosion susceptibility of the
samples with different heat treatment conditions is also associated with the value of residual stress,
which promotes the extension of corrosion cracking [20].

5. Conclusions

The effect of heat treatment peak temperature on the mechanical properties and corrosion behavior
of 7N01 aluminum alloy is investigated based on the experiments of micro-hardness, tensile strength,
corrosion behavior, and the evolution of microstructure. The main conclusions are as follows:

1. During heat treatment process, most of the initial GP zones dissolve into the matrix, while the
grain boundary precipitates have no obvious change. The precipitates of the samples after heat
treatment mainly consist of high density GP zones due to the natural aging effect.

2. The mechanical properties of 7N01 aluminum alloy decrease after thermal cycling, while there
is no obvious difference in the mechanical properties of the specimens after different heat
treatment conditions.

3. The corrosion resistance of heat treatment samples decrease significantly compared with the base
metal, which is mainly related to the change of potential difference between the matrix and grain
boundary. The recommended heat straightening temperature is 300 ◦C.
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