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Abstract: Zeolitic Imidazolate Framework (ZIF-67) was prepared in two different solvents—water
and methanol. Nanoporous carbon was derived from ZIF-67 via pyrolysis in an inert atmosphere.
Anion exchange step of sulfidation on the synthesized material has a great influence on the
structure and properties. Structural morphology and thermal stability were characterized by X-ray
diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive x-ray spectroscopy (EDS),
Brunauer-Emmett-Teller (BET), and thermogravimetric (TG) analysis. The electrochemical analysis
was evaluated by cyclic voltammetry, chronopotentiometry, and impedance analysis. The as-prepared
nanoporous carbon and cobalt sulfide (NPC/CS) electrode material (water) in 2M KOH electrolyte
solution exhibit high specific capacitance of 677 F/g. The excellent electrochemical performance of the
NPC/CS was attributed to its hierarchical structure. This functionalized ZIF driven strategy paves
the way to the preparation of various metal oxide and metal sulfide-based nanoheterostructures by
varying the type of metal.
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1. Introduction

With the affluence of the energy industry, several countries have paid much attention to the
advancement of power sources. Presently, studies on supercapacitors are rare, compared to the energy
storage devices of batteries. As an alternative energy source, supercapacitors have the advantages of
high power density, long cyclic stability, and low-cost [1–3]. The main four parts of a supercapacitor
are electrode material, electrolyte, separator, and collector. Electrode material exhibits a primary role
in the performance of the supercapacitors [4,5].

Among the reported electrode materials for the supercapacitors, metallic oxides and metallic
hydroxides have very good theoretical specific capacity but they have very poor electrical conductivity
and poor cyclic stability [6]. At present, metallic sulfides have gained many attractions for the
applications in supercapacitors as they have very good specific capacitance and electrical conductivity,
supporting the improved electrochemical features [7]. Metalic sulfides electrode materials have a high
reversible Faradic reaction at the electrode/electrolyte interface that occurs during the charge transfer
process. A number of sulfides use supercapacitor applications, i.e., MnS [8], CuS [9], MoS [10], CoS [11],
NiS [12], as well as bimetallic sulfides such as NiCo2S4 [7]; although, the enhancement in surface area,
porosity, and mechanical support can improve the electrochemical properties of the metallic sulfides.
For that purpose, graphene/graphene oxide and metallic sulfide-based composed like NiS/reduced GO,
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Co3S4 growth on graphene have been reported as a promising electrode material for the applications
in supercapacitors [11].

The metal-organic frameworks (MOFs) have deployed a great sway in the development of
supercapacitors since the MOFs were formed in the late 1990s [13]. Excessive consideration was paid to
ZIF-67 just because of its polyhedral framework. Due to the number of porosities, considerable surface
area, small density, thermal, and chemical stabilities [1], ZIFs represent a breakthrough in the various
applications comprising adsorption/separation [14,15], sensors [16], catalysis [17], gas storage [18],
and drug delivery [19].

Metal-organic framework (MOF) (and by extension, ZIFs) is a class of nanoporous material that
is assembled by coordinated bonds between the two main components—metal ions and organic
linker—to shape a 3D porous assembly [4]. Tremendous porosity and surface area, exceptional pore
size, and chemical permanency, in ZIFs like ZIF-8 and ZIF-67, are extensively useful in numerous
applications such as gas storage [2], separation technologies [14], catalysis [16], and energy-related
fields [1]. ZIFs with particle-like morphology remained dominant in use so far, and it has been
an eye-catching task to control their framework. It is commonly believed that different structural
evaluation stages, like the first formation of nucleation, initiation crystallization, and then growth,
are tangled in the crystallization of ZIFs [2]. In recent times, a new 2D leaf-like structure was
prepared by using metal ions of zinc and the linker 2–methylimidazole. It is well acknowledged that
morphology and particle size have a great effect on both the extensive and intensive characteristics of
the material [20,21]. ZIFs derived nanoporous carbon (NPC) and metal oxide (MO) based material has
a synergistic effect of both carbon-based material and metallic oxide. Furthermore, in comparison with
the metal oxide-based material, metal sulfide-based electrode materials have superior electrocatalytic
activity [22,23].

In the present work, we synthesized cobalt sulfide onto the nanoporous carbon to positively
incorporate the synergistic effect towards the electrical conductivity and stability in two different
solvents. Here we demonstrated, the 2D leaf-like morphology exhibits the superior capacity and
the best electrochemical performance. Effect of solvent i.e., water and methanol, on the synthesis of
ZIF-67-derived nanoporous carbon and cobalt sulfide-based electrode, and then measured specific
capacitance, is also investigated for the application in supercapacitor.

2. Materials and Methods

2.1. Chemicals

Metal ion used is cobalt nitrate hexahydrate (Co(NO3)2·6H2O, 99%), and the linker is
2–Methylimidazole (99%) were used. All the chemicals were purchased from Sigma Aldrich/Merck,
have analytical purity and used as received.

2.2. Synthesis of ZIF-67

For the synthesis of ZIF-67, the following scheme was used; 0.873 g of cobalt nitrate hexahydrate
was dissolved in 30 mL of methanol to form a clear solution; 0.984 g of organic linker 2–Methylimidazole
was dissolved in 10 mL of methanol to make another clear solution. The two solutions mixed with
a vigorous shake of a few minutes. The mixed solution was kept overnight at room temperature.
Thenceforth, centrifugation is used to collect the precipitates followed by multiple washes using
methanol and dried up at 80 ◦C for 6 hours. The same experimental procedure was used to synthesis
ZIF-67 using deionized water.

2.3. Preparation of Nanoporous Carbon (NPC) and Cobalt Oxide (CO)

The dried powder ZIF-67 particles were heated at 350 ◦C for 1.5 hours, raised to 700 ◦C at a ramp
rate of 4 ◦C per minute, followed by pyrolysis for 3.5 hours under a flowing argon atmosphere. Next,
the prepared black fluffy powder was cooled to room temperature naturally.
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2.4. Preparation of Nanoporous Carbon (NPC) and Cobalt Sulfide (CS)

Aqueous suspension of nanoporous carbon-containing cobalt oxide was stirred in 0.015M sodium
sulfide for 30 minutes, and then solution mixture transferred to a stainless steel autoclave of Teflon-lined
and heated at 120 ◦C for 6 hours. As obtained precipitates washed and dried.

2.5. Material Characterization

The surface morphological analysis of the polyhedral structure was described by field emission
scanning electron microscopy (VEGA3, 51–ADD0007) (Tescan, Brno, Czech Republic). The identification
of a crystalline structure was elucidated by X-ray diffraction on a diffractometer (D8 Advance, CuKR,
λ = 1.54Å) (Bruker, Karlsruhe, Germany). The thermogravimetric analysis was conducted on a
DTG–60H (Shimadzu, Kyoto, Japan) instrument in the temperature range of room temperature to
800 ◦C. The surface areas and porous structure of synthesized NPC/CO and NPC/CS were measured
by Brunauer–Emmett–Teller analysis using NovaWin 20e (Quantachrome, Virginia, USA) instrument
at a relative pressure p/po = 0–1.0 and the samples were degassed at 160 ◦C under the vacuum.

2.6. Electrochemical Testing

The electrochemical measurements of the prepared samples were performed on an electrochemical
workstation CHI 760E (CH Instrument, Texas, USA) with a setup of three electrodes. A reference
electrode Ag/AgCl (SC) and a counter electrode of a platinum coil are used. To prepare the ink for the
working electrode (GC), the following scheme was used; catalyst (2 mg) was dispersed ultrasonically
for 1 to 2 hours in 0.08 mL of ethanol solution with 0.02 mL of Nafion solution (5 wt. %) to form
a homogeneous ink. Then, the polished glassy carbon electrode (3 mm diameter) was coated by
dropping the suspension (5 µL).

Electrochemical impedance spectroscopy (EIS) used a frequency field of 1 to 100 kHz in 2 M
KOH solution. Cyclic voltammetry was performed within the potential window of 0.5 V in 2 M KOH
solution with various sweep rates of 10, 20, 50, 80, and 100 mV s−1. The chronopotentiometry technique
is used to measure the charge-discharge curve at 0.01 mA cathodic current to obtain the discharge time
in the potential window of 0.35 V.

3. Results

3.1. Morphology/Structural Analysis

The framework and surface morphology of the as-prepared specimen were explored on SEM
(Figure 1). Metal-organic framework (MOF) ZIF-67 displayed a different framework of structure
with a different solvent. ZIF-67 prepared in methanol exhibits well-defined polyhedrons with a
smooth surface. The shape of ZIF-67 showed typical and uniform rhombic dodecahedron assembly,
which is consistent with the morphology of ZIF-67 in the literature [4]. The synthesized product with
water as a solvent (Figure 1a) showed 2D leaf-like morphology, and the side length of this leaf-like
morphology is approximately 2.498 micron. In Figure 1d, in the rhombic face, the side length is
~430 nm. The appearance of each rhombic face is smooth, proposing high purity of the as-prepared
product ZIF-67. Furthermore, the sharp edges and clear-cut corners of ZIF-67 particles (see Figure 1d)
demonstrate the ascertaining of the crystallography characteristics.

The crystal structure of ZIF-67 before and after pyrolysis was examined by XRD measurements.
The relative intensity and peak positions are well-matched with the literature [24], which shows that
ZIF-67 was successfully synthesized. The wide diffraction peak at 2θ =25◦ belongs to peak (002) of
graphite carbon. The diffraction peaks derived for the metallic cobalt at the (111) phase and (200) phase
were detected at 2θ= 45◦ and 52◦ (JCPDS card No. 15–0806). All diffraction peaks of nanoporous carbon
and cobalt sulfide, as shown in Figure 2, correspond well with the patterns reported in the previous
study [25,26]. Through the sulfidation treatment, CoO particles were successfully transformed into the
well-defined CoS2 cubic phase (JCPDS card No. 41–1471).
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pyrolysis, after pyrolysis; (b) NPC/CO (H2O) at 700 ◦C; (c) NPC/CS (H2O); (d) ZIF-67 prepared in
MeOH; (e) NPC/CO (MeOH) at 700 ◦C; and (f) NPC/CS (MeOH).
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The atomic ratio of C: Co:O:S is confirmed by the energy-dispersive X-ray spectroscopy (EDS)
analyses (Figure 3).
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Figure 3. EDS spectrum of (a) NPC/CS (H2O) and (b) NPC/CS (MeOH).

TGA curves of prepared ZIF-67, nanoporous carbon/cobalt oxide (NPC/CO), and nanoporous
carbon/cobalt sulfide (NPC/CS) under flowing nitrogen condition, as shown in Figure 4. The first stage
mass loss of approximately 11%, below 200 ◦C, and a 6% loss from 200 ◦C to 320 ◦C correspond to the
removal of guest water molecules, i.e., surface moisture, solvent, nitrates, and weekly bounded linker
molecules, respectively [27]. Next, the rapid degradation occurred with the mass losses from 320 ◦C
in H2O-based system and 316◦C MeOH-based system. Finally, no further weight loss was observed
after 530◦C of NPC/CS (H2O) and NPC/CS (MeOH), the quasistatic point, and the residual mass was
comprised of metal oxide [28].
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In the thermal analysis, Figure 4 curves indicate that nanoporous carbon and cobalt sulfide doped
samples have high thermal stability (Table 1).

Table 1. TGA thermal analysis of ZIF-derived nanoporous carbon and cobalt oxide/sulfide-
based materials.

Compound Temp. Range (◦C) Mass Loss or Residue (%)

ZIF-67 (MeOH) before pyrolysis
ZIF-67 (H2O) before pyrolysis

336–458
302–373

57
48

NPC/CO (MeOH)
NPC/CO (H2O)

314–492
297–414

28
40

NPC/CS (MeOH)
NPC/CS (H2O)

300–544
311–535

34
56

The N2 adsorption-desorption isotherms for as-prepared samples, which is characterized as
type I and type II hysteresis loops according to the IUPAC classification, indicating the microporous
characteristics of the synthesized sample. Nitrogen adsorption can be considered as the first stage
in the characterization of microporous and mesoporous solids. In the vision of the complexity of the
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condensation and evaporation mechanisms, one should not be supposed to be able to conclude a
reliable pore size distribution unless certain conditions are met. It is recommended that the shape and
location of the hysteresis loop should always be taken into account before any computation [29].

It can be identified that the specific surface areas of NPC/CS have increased largely with the
treatment of sulfidation, as the analysis is presented in Table 2. From the Figure 5, it can be clearly seen
Type I isotherm is given by all the materials except NPC/CS (MeOH). Type I isotherms are microporous
materials that acquire mostly wider micropores and possibly narrow mesopores. In the case of NPC/CS
(MeOH), type II isotherm materials are often disordered and the distribution of pore size and shape is
not well-defined [30]. The type II isotherm is the consequence of the open monolayer-to-multilayer
adsorption up to p/p0.

Table 2. Surface area, pore volume, and average pore size of NPC/CO and NPC/CS.

Electrode Material Surface Area (m2/g) Pore Volume (cm3/g) Average Pore Size (nm)

NPC/CO (MeOH) 726.3 0.273 1.277
NPC/CS (MeOH) 934.5 0.532 1.677
NPC/CO (H2O) 264.6 0.063 1.544
NPC/CS (H2O) 521.4 0.141 2.25
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The enhanced surface area can be attributed to smaller diameters and larger quantities of the
nanocrystals and nanopores. The total pore volume of NPC/CS showed an increment as compared to
parent NPC/CO.

3.2. Electrochemical Testing

The measurement and investigation of electrochemical behavior were explored by galvanostatic
charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS)
in 2M KOH solution.

By definition, capacitance = charge/voltage [31].
Capacitance value can be calculated from resulting cyclic voltammogram using the following

equation [32].

C =
Q

2∆Vm
(1)

where C is the specific capacitance in (Figure 1), Q is the average integral area under the curve, ∆V is the
potential window in volts, and m is the mass loading of the active material in the working electrode (g).
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The energy density (ED) uses the relation [32]:

ED =
1
2
·C

(V)2

3.6
(2)

where C is the value of specific capacitance and V is the voltage window.
The reversible process was observed in all cases. The linear trend across the whole range of scan

rates reveals that the process is reversible.
The electrochemical performance of ZIF-67-derived NPC/CO and NPC/CS were studied by varying

the scan rate ranging from 10mV/s to 100 mV/s CV curves and shown in Figure 6. The anodic peaks
and cathodic peaks, which are related to positive current and negative current, respectively, in the CV
curves, originate from the oxidation and reduction process of the cobalt cation, which indicates that
the capacitance aspects are primarily driven by Faradaic redox reaction.Materials 2019, 12, x FOR PEER REVIEW 8 of 12 
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It was observed that as the scan rate increases from 10mV/s to 100mV/s, the specific capacitance
increases. This variation in capacitance reveals that at low scan rate, inner parts and outer part of the
nanoporous material exhibited the redox reaction, whereas, for high scan rate, the only outer part of
the material involved redox reaction [33,34]. There are interfaces faces present in the case of oxides
that causes the limitation in the connectivity or the flow of electrons, while this is reported by many
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of authors that the deposition of sulfide on oxide containing composite reduces these interfaces and
produce connectivity in the flow. This will contribute to enhancing conductivity [11,35]. Thus the
specific capacitance and the energy density calculated is given in Table 3.

Table 3. Specific capacitance calculated from cyclic voltammetry.

Electrode Material Specific Capacitance (F/g) Energy Density (Wh/kg)

NPC/CO (MeOH) 159 5.520
NPC/CS (MeOH) 480 16.666
NPC/CS (H2O) 373 12.951
NPC/CS (H2O) 677 23.506

3.3. Cyclic Stability Study

One of the most essential and considerable parts in the achievement of a supercapacitor is cyclic
stability. Figure 7 shows the electrochemical performance of the nanoporous carbon; the cobalt
sulfide-based electrode recorded over 1600 cycles with a scan rate of 100 mV/s. The cyclic stability
study demonstrates the change in the specific capacitance of the NPC/CS electrode with the number of
cycles. The specific capacitance decreases with 86% retention capacity over 1600 cycles for the case of
NPC/CS (H2O) and noted as 74% over 1600 cycles for the NPC/CS (MeOH) systems. Zhu et al. [36]
presented nearly 74% stability aimed at the nickel sulfide electrode material by recording 1000
cycles in a potassium hydroxide electrolyte; a nearly identical method to that of the cinnamon-like
electrode. This decomposition was perceived in cycling stability. This might be expected because of the
disintegration of the active electrode material in the electrolyte and the capacity imbalances between
the electrochemical electrodes, which originates the instability of the electrode potential [37].
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3.4. Electrochemical Impedance Spectroscopy Study

To evaluate the frequency performance and confrontation attitude of any material, electrochemical
impedance spectroscopy is a robust engine [38]. The EIS spectra are recorded in a frequency ranging
from 100 kHz to 1 Hz and shown in Figure 8. The perfect supercapacitor has a greater slop in a
low-frequency region, which signifies electro–capacitive behavior [39,40].
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It can be seen from Figure 8 that the smaller arc diameter in the EIS spectrum of nanoporous
carbon and cobalt sulfide-based materials showed lower charge transfer resistance and more idealistic
properties as compared to nanoporous carbon and metal oxide electrodes [41]. The slop of NPC/CS
(water) approach has ideally straight line, inferring the superior accessibility of ions.

4. Conclusions

In summary, we have successfully fabricated ZIF-67-derived nanoporous carbon and metal
sulfide-based electrode material in a simple and economical method. SEM and XRD confirmed the
synthesis of nanoporous material with increased surface area and 2D morphology. The enhanced
electrochemical performance, due to sulfidation of cobalt oxide, was investigated by CV GCD and EIS.
The specific capacitance value has increased to 677 F/g in the case of NPC/CS (H2O). A novel and facile
route for the synthesis of nanoporous and binder-free electrode material is proposed with increased
specific capacitance for the energy storage application.
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