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Abstract: Hysteretic behavior of random particulate composite was analyzed using the stochastic
finite element method and three independent probabilistic formulations, i.e., generalized iterative
stochastic perturbation technique of the tenth order, Monte-Carlo simulation, and semi-analytical
method. This study was based on computational homogenization of the representative volume
element (RVE), and its main focus was to demonstrate an influence of random stress in constitutive
relation to the matrix on the deformation energies stored in the effective (homogenized) medium.
This was done numerically for an increasing uncertainty of random matrix admissible stress with a
Gaussian probability density function, for which the relations to the energies of the entire composite
were approximated via the weighted least squares method algorithm. This composite was made
of two phases, a hyper-elastic matrix exhibiting hysteretic behavior and a linear elastic spherical
reinforcing particle located centrally in the RVE. The RVE was subjected to a cyclic stretch with an
increasing amplitude, and computations of deformation energies were carried out using the finite
element method system ABAQUS. A stress–strain history of the homogenized medium has been
presented for the extreme and for the mean mechanical properties of the matrix to illustrate the
random hysteresis of the given composite. The first four probabilistic moments and coefficients of the
RVE deformation energy were determined and have been presented in addition to the input statistical
scattering of the admissible stresses.

Keywords: particulate composites; hyper-elasticity; hysteresis; stochastic perturbation technique;
homogenization method

1. Introduction

Modeling of multi-phase composites is a very demanding and complex challenge because of
the multiple scales in composites, relatively high anisotropy, and many sources of uncertainty in the
material and geometrical parameters. This is why a multiscale approach [1] has been widely applied
in contemporary computational mechanics. One of the most common implementations involves
the homogenization method, which employs the representative volume element (RVE), effectively
describing the composite material at its macro scale. An exemplary problem of such an approach
was applied in Reference [2], where three different geometrical scales included interfacial defects,
interphase, and the entire RVE. The defects constituted a micro level and were further aggregated into
an interphase around a particle, which when included in the RVE enabled computation of the effective
stochastic stiffness tensor of this composite. Bear in mind that the first approaches to homogenization
problems started from the linear elastic and isotropic response of the constituents, and exact periodicity
of the RVE was required to obtain any analytical solution [3–5]. Elasticity of composites is still
considered for several problems, as, for instance, a packing effect [6] or second strain gradient theory
of elasticity [7], but it is now done with the aid of numerical approaches. The composites in nonlinear
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regimes are also numerically modeled [8], including multi-particle RVEs even with very complex
micro-geometry, where analytical solutions are simply unavailable; accurate generation [9] and the
size effect [10] in FEM models has recently become a research topic to minimize numerical error in
the homogenization procedure. A leading method for homogenization in continuous materials is still
the traditional finite element method (FEM), due to accessibility of academic or commercial software
and the relatively small modeling error, where 2D and 3D first or second order finite elements play
a crucial role. Other methods are also considered, such as some meshfree formulations [11], fast
Fourier transform (FFT)-based methods [12], or even the discrete element method [13], which seems
to be perfect for the cases where reinforcing or filling particles are densely packed into the matrix.
There also exist plenty of various approaches for reducing the effort of FEM computations at the
expense of accuracy. These aim to achieve a proper balance between the two mentioned factors for
a specific multiscale problem. Some examples include clustering of the heterogeneous medium to
several subdomains [14], usage of the artificial neural networks, machine learning approaches [15,16],
and reduction of dimensionality of microscopic strain fields by manifold-learning methods [17].
A very contemporary problem under extensive research is the hyper-elastic response of elastomeric
composite materials [18], especially for incompressible or almost incompressible composite solids with
a huge contrast of mechanical properties between their components, where even an elastic reversible
response is a complex problem [19]. Homogenization of composite materials with some nonlinearities
is especially challenging in cases of some uncertainty source, and may be tackled with the use of
stochastic [20,21] or polynomial chaos [22] approaches, where in addition to a complex mechanical
behavior, a variety of random parameters are considered in the internal composition of the RVE or the
constitutive law itself; some heat or electrical conductivity problems are still considered [23]. Therefore,
the main objective of this study was to analyze a particle-reinforced composite with a hyper-elastic
matrix (filler) and linearly elastic particle reinforcement, where both materials are isotropic. The
first four probabilistic moments and coefficients of the deformation energy stored in the RVE of this
composite under uniform cyclic stretch were computed. Numerical experiments were carried out
here using the FEM system ABAQUS and computer algebra system MAPLE, where all probabilistic
computations, together with the weighted least squares method fittings, were done. Probabilistic
hysteresis and deformation energies were determined, starting from randomization of the matrix
admissible stresses according to the Gaussian distribution, which showed that effective stiffness of this
composite cannot be modeled by the Gaussian probability distribution function.

2. Governing Equations

Let us consider a heterogeneous and continuous solid body Ω, and let as assume that this body is
composed of two distinct components—a linear elastic reinforcement occupying the domain Ωp and a
hyper-elastic matrix contained in the region Ωm, where neither geometrical nor material imperfections
are considered, so that

Ω = Ωm + Ωp (1)

The representative volume element (RVE) includes a single spherical particle centrally located
into the cubic volume of the matrix. A contact between the two components is perfect and ensured
by a surface-based tie constraint, which eliminates the nodes on the slave surface with multi-point
constraints. Interfacial defects may, however, be introduced with relatively small additional expense.
This could be done by positioning the third thin phase in between the two main ones and varying
its elastic properties, as in Reference [24]. A strain energy of the reinforcing particle phase can be
computed as follows:

Up = µε÷ ε+
λ
2
(tr(ε))2 (2)
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where ε = 1
2

(
∇u +∇uT +∇u∇uT

)
denotes the strain tensor, and where the coefficients λ and µ are

Lame constants and are related to the Young modulus Y and Poisson ratio ν:

µL =
Y

2(1 + E)
,λL =

Yν
(1 + ν)(1− 2ν)

(3)

The first Piola–Kirchoff stress was then calculated here as σ = 2µLε + λLtr(ε)I. Next,
the hyper-elastic strain energy in the matrix was defined by the van der Waals model:

Um = µL
{
−

(
λL2

m − 3
)
[ln(1− η) + η] −

2
3

a
(

Ĩ− 3
2

)}
+

1
D

 J2
el − 1

2
− ln(Jel)

 (4)

where Ĩ =
(
1− βV

)
I1 + βVI2, η =

√
Ĩ−3
λL2

m −3
, and where [I1, I2] are of course the first and the second

deviatoric strain invariants. The entire deformation process has been considered here at constant room
temperature, and the hysteretic behavior is governed by the following Equation:

.
ε

cr
B = A

[
λL,cr

B − 1 + Y
]C
(σB)

m (5)

where
.
ε

cr
B is the effective creep strain rate in network B, λL,cr

B − 1 defines the nominal creep strain, and
σB represents the effective stress in this network.

The effective constitutive tensor makes the deformation energies of the real and homogenized
RVE equal to each other, so that∫

Ω
Cαβχδε

′

αβε
′

χδ
dΩ =

∫
Ω

C(e f f )
αβχδ

εαβεχδdΩ, α, β,χ, δ = 1, 2, 3 (6)

The strain energy of a real composite could be decomposed into that of the matrix and that of the
particle, and, also, into the elastic (el) and creep-dissipation (cd) counterparts, and therefore:∫

Ω
C(e f f )
αβχδ

ε′αβε
′

χδ
dΩ =

∫
Ω

C(p)
αβχδ

ε′αβε
′

χδ
dΩ +

∫
Ω

C(m)
αβχδ

ε′αβε
′

χδ
dΩ = U(p,m)

el + U(m)

cd (7)

A statistical dispersion of maximum admissible stress in the matrix σ11,max was considered further,
and such an approach was applied here to represent an uncertainty in matrix strength by a single
equivalent parameter. This choice was well motivated by the experimental techniques, where one may
exactly adjust the deformation and its rate, but the given material response may fluctuate in some
uncertain way, which may be bounded by the hysteresis limits. It enabled relatively easy interpretation
of this hysteretic behavior of the entire composite (Figure 4), which may periodically continue within
the interval [E(σ11,max)− 3σ(σ11,max), E(σ11,max) + 3σ(σ11,max)]; σ stands here for the standard deviation
and E for the expected value of the input uncertain parameter due to the assumed Gaussian probability
distribution function of this admissible stress:

pσ11,max(σ11,max) =
1

σ(σ11,max)
√

2π
exp

− (σ11,max − E(σ11,max))
2

2σ2(σ11,max)

; σ11,max ∈ R (8)

This particular choice of the input probability density function (PDF) came from the relatively
wide usage of this function in various engineering applications. Furthermore, we recalled the following
definitions of the probabilistic moments and coefficients as well as their statistical estimators (where M
is the total number of random realizations and pw is the probability density function for the random
parameter):
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• expected value:

E(σ11,max) =

∫ +∞

−∞

σ11,maxpw(σ11,max)dx ≡
1
M

M∑
i=1

σ11,max
(i) (9)

• variance of this stress:

Var(σ11,max) =
∫ +∞

−∞
(σ11,max − E(σ11,max))

2pw(σ11,max)dx

≡
1

M−1

M∑
i=1

(σ11,max − E[σ11,max])
2 (10)

• coefficient of variation:

α(σ11,max) =

√
Var(σ11,max)

E(σ11,max)
(11)

• skewness β and kurtosis κ could be computed in the following way:

β(σ11,max) =
µ3(σ11,max)

σ3(σ11,max)
; κ(σmax) =

µ4(σ11,max)

σ4(σ11,max)
− 3 (12)

where µn signifies the nth central moment.

Obviously, an uncertainty of this stress induces in turn the statistical dispersion of the composite
response and the computed energies of hyper-elastic stretch, which were the main objective of this
study. A probabilistic framework of these computational experiments was completed using the
iterative stochastic finite element method (ISFEM) according to the 10th order Taylor expansion [25],
and was based upon the 6th order polynomial response function of the elastic and dissipated energies
in relation to the input uncertain parameter σ11,max. In this framework, the objective function was
first formulated. It was aimed at connecting the uncertain parameter with a variable of which the
stochastic characteristics are sought (here, the energies of the RVE). This connection could be either
purely analytical, e.g., the constitutive relation, or it could be represented in a form of a response
function. Since analytical connection between the sought variable and the uncertain parameter could
be rarely established, within the ISFEM framework, a response function is preferred. This function
was founded on the basis of numerical data, where the finite element method (FEM) is used in a way
close to a parametric study. It is run with respect to the uncertain parameter in direct vicinity of its
expected value, usually ±5% or ±10% from this value, with an equal spacing between each realization.
The discrete results of the FEM are replaced with a continuous relation by means of a function of a
specified class—a polynomial (called here the response function); other classes of function could also
be used and the FEM could be replaced by a set of laboratory results or boundary element method
results, to name a few. Further, this function was replaced with its Taylor expansion:

U(σ11,max) = U0
(
σ11,max

0
)
+ ε

∂U(σ11,max)
∂σ11,max

∣∣∣∣σ11,max=σ11,max0 ∆σ11,max + . . .

+ εn

n!
∂nU(σ11,max)
∂σ11,maxn

∣∣∣∣σ11,max=σ11,max0 ∆σ11,max
n

(13)

where n stands for the order of expansion and also for an order of the ISFEM. Parameter ε is the
perturbation coefficient, U0

(
σ11,max

0
)

constitutes the expected value of the uncertain parameter, and
the nth order variation is following εn∆σ11,max

n.
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The expected value of the uncertain parameter is calculated iteratively in the following manner:

E(U) = U0
(
σ11,max

0
)
+ ε2

n!
∂2U(σ11,max)
∂σ11,max2 µ2(σ11,max) + . . .

+ εn

n!
∂nU(σ11,max)
∂σ11,max2 µn(σ11,max)

(14)

until a convergence of U(σ11,max).
Since the Taylor expansion converges with an increase of terms, accuracy of the ISFEM also

increases with an increase of the order of this expansion. This happens at the expense of computational
cost. The central moment for the Gaussian PDF has a closed form, different for even and odd orders of
this moment p, which has a following form:

µp(σ11,max) =

 0; p = 2k + 1(
σ(σ11,max)

p(p− 1)!!; p = 2k
) (15)

The closed form formulae of the higher order characteristics of the ISFEM for various PDFs,
together with a detailed description of this approach, are available in References [25,26]. The major
gain of the ISFEM in relation to the purely analytical approach consisting of direct integrations is the
replacement of this apparatus with derivations, which are computationally inexpensive, and, what is
even more important, always exist.

The expected values, coefficients of variation, skewness, and kurtosis computing using this
technique were validated by Monte-Carlo simulation, and, independently, with the semi-analytical
technique. These techniques are both based on the same polynomial as the ISFEM. The semi-analytical
technique consists of a symbolic integration according to the aforementioned probability theory
definitions. Its major limitation is the possibility of integration of this response, or objective function
being one of the reasons for choosing a class of polynomials for the response function. The major
shortcoming of the Monte-Carlo simulation is the computational cost required for an acceptable
convergence—usually more than 100,000 trials.

3. Composite Material Model

Determinations of the uncertainty level in the strain, dissipated, and internal energies of the
particulate composite subjected to biaxial cyclic stretch were carried out for the hexagonal representative
volume element (RVE) of the hyper-elastic two-phase composite made from Laripur LPR5020 filled
with C60 fullerenes powder of 99.5% purity. The micro-structure of this composite is presented in
Figure 1, where particles are randomly distributed within a spatial sample. A numerical model of this
composite with a single spherical particle located centrally in the RVE is shown in Figure 2. This particle
is linearly elastic and its material parameters are equal to Y = 10GPa and µ = 0.3, while the second
component is the hyper-elastic polymeric matrix occupying 95% of the RVE. It has parameterized
material properties χi = [µi,λm, i, ai, βi, Di], i ∈ 1, 2 . . . , 11, which correspond to a set of uncertain
σ11,max,i with a mean value of 9.5 MPa. The hysteretic properties of the matrix include the stress scaling
factor S = 1, creep parameter A = 0.1225, effective stress exponent m = 1, and creep strain exponent
c = −1. Numerical FEM model together with a principle deformation mode is given in Figure 3.
Minimum, maximum and intermediate stress–strain curves for this matrix are presented in Figure 4,
and they illustrate a spectrum of uncertain response of this matrix under the uniaxial stretch of the
given RVE with free perpendicular surfaces, which is governed by the van der Waals hyper-elastic law.
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The stretching level of the two-phase RVE applied in computations increased together within each
of four stretch cycles until ε11 = 0.6 and returned to zero at the end of this analysis. The detailed external
strain cycles applied on the outer edges in biaxial tension are presented in Figure 5, and have been
plotted versus the non-dimensional computational time ct, representing the entire deformation cycle in
these computations. The boundary conditions applied included a fixed strain on two outer surfaces
perpendicular to x1 in direction x1 with strain history according to Figure 5 and free perpendicular edges
in direction x2 and x3. The finite element method computations were carried out in an implicit scheme
in the ABAQUS 6.14 Standard system manufactured by Dassault Systèmes SE (more information on
the algorithm could be found in Reference [27]). (Paris, France) The static general step procedure
was used with approximately 50,000 20-noded quadratic brick elements, where C3D20 finite elements
were applied to mesh the particle and the hybrid linear pressure C3D20H finite elements were used
to discretize the matrix phase. This discretization was optimized during the initial numerical error
verification to minimize the computational effort necessary for satisfactory efficiency of the resulting
deformation energies. A direct sparse solver with multi-front technique was used and implemented
together with the full Newton algorithm. The finite element method (FEM) equations are presented
in the Appendix A for interested readers. The initial increment size was 0.0005, minimum allowed
increment size was 10−5, and maximum increment size was 0.01. The field and history outputs were
written in 860 equally spaced intervals along the time, 170 per cycle; time incrementation was set as
automatic, where initial increment was applied and then its initial size was either reduced or increased
based on the number of required equilibrium iterations for the current increment. Specifically, when
fewer than 4 equilibrium iterations were required in two consecutive increments, the time increment
was increased by a factor of 1.5, and when more than 10 iterations were required for the current
increment, the next increment was reduced by factor of 0.75. The increment surpassing time of this
interval was reduced to exactly the size required to match its time when numerical analysis got close
to one of the space intervals where the outputs were expected.
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The computational experiment started from determination of the input parameters of the matrix’s
hyper-elastic potentialχi = [µi,λm, i, ai, βi, Di] by ensuring its response crossing through a set of 11 points
σ11,max,i(ε11 = 0.6), i ∈ 〈1, 2 . . . , 11〉 corresponding to an uncertain parameters of this analysis. This
was done by minimization of the following functions Φi(µi,λm, i, ai, βi, Di) = σ11,max,i(ε11 = 0.6) −
σ11,i(ε11 = 0.6), where σ11, i(ε11) was determined on a single FEM element, stress–strain history of
the matrix presented in Figure 4. These material parameters remained constant for each discrete
value σ11,max,i. Furthermore, we proceeded with numerical determination of the energies in the
homogenized medium—it was completed for the set of 11 discrete points U(σ11,max) about a mean
value of σ11,max = 9.5 MPa, and was done for three various energies Uel, Ucd and Ui. A set of U(σ11,max)

was obtained together with the stress-strain histories of the RVE for all σe f f
11,i(ε) (see Figure 6), where

the effective stress σe f f
11 represents the average value calculated on its entire domain. Next, a discrete

set of the energies was replaced with the continuous polynomial function by use of the weighted least
squares method. These polynomials, included into the Taylor expansion of the 10th order, served for a
final calculation of the basic probabilistic characteristics of the energies in relation to the uncertain stress
in the matrix (σ11,max), so that expectations, coefficients of variation, skewness, and kurtosis E(U),
α(U), β(U), κ(U) were determined. Each characteristic was computed with use of three independent
methods—stochastic perturbation, semi-analytical method, and Monte-Carlo simulation, and this was
done for three various energies under consideration—elastic strain energy Uel, dissipation energy Ucd,
and the total internal energy Ui.

4. Numerical Results

First, the response of the homogenized reinforced polymer to the uniaxial external strain σe f f
11 (ε11)

was considered and deterministic results have been discussed. The RVE was subjected to the same
strain history as the pure matrix, and the results are reported in Figures 6 and 7 for minimum (min),
maximum (max), and mean (med) properties of the matrix resulting from a dispersion of σ11,max.
An increase of the matrix properties improved strengthening effectiveness of reinforcement η calculated
as σe f f

11,max/σ11,max, from ηmin = 1.2 for the lowest σ11,max through to ηmax = 1.28 for the highest one
(see Figure 6). Figure 7 shows the strengthening ratio of the composite calculated as a ratio of the
reinforced polymer stress vs. the one for unreinforced polymer σe f f

11 /σu
11. This was calculated at a

certain strain for minimum, maximum, and mean properties of the matrix for the entire strain history.
It shows that this ratio was a little bit unpredictable for strains close to and less than 0, but in each



Materials 2019, 12, 2909 9 of 16

case, it converged to a certain value towards the maximum strain and increased toward a 0 value. This
means a steeper curve (higher stiffness) for the small strain region—ε11 ≤ 0.15—than for the high strain
region. Secondly, this ratio increased a little together with an increase of properties, and it depended
on the strain history and the direction of loading (loading or unloading).
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Furthermore, the composite stiffness defined as ∂σ11/∂ε11 and denoted by Ce f f
1111 is presented in

Figure 8 for the smallest (min) and the largest (max) properties of the polymeric matrix. It shows a good
convergence for the given loading cycles, except for the strains close to 0—ε11 ∈ (−0.03 , 0.03),—where
it increased or decreased to ±∞. This was caused by stress and strain variations being very close to 0,
and, more importantly, by the computation accuracy. Figure 8 additionally shows a stabilization of
this stiffness for relatively high strain levels, i.e., ε11 > 0.15, where two clearly distinctive relations
of both loading and unloading existed, reflecting hysteretic behavior. These relations were highly
nonlinear around zero strain and linearized together with its increase—they became almost constant
with respect to ε for positive strain, and increased together with its decrease. A difference of the loading
to unloading curves decreased when the strain became more distant from 0, and, as expected, they
preserved common points when loading ended and unloading began. Finally, it is of note that the
effective stiffness tensor component Ce f f

1111 was of course higher for the maximum material properties of
the matrix than for its minimum values, and this difference reached 40% in some cases.
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The final results dealt with the probabilistic part of the study, and included the first four
probabilistic characteristics of the maximum values of three different energies, i.e., elastic strain energy
Uel, dissipation energy Ucd, and the total internal energy Ui, calculated for the entire RVE and presented
with respect to the input statistical scattering α(σ11,max). They were calculated using three various and
concurrent probabilistic techniques, i.e., iterative stochastic perturbation-based finite element method
(SPT), crude Monte-Carlo simulation with 400,000 trials (MCS), and semi-analytical method (AM)
implemented in the symbolic algebra system MAPLE 2017. As mentioned above, SPT and AM are
based on the same polynomial response functions determined by the weighted least squares method
(WLSM). These response functions, relating the deformation energy U with the Gaussian parameter
σmax, were obtained from a set of 11 equally spaced discrete FEM realizations of the RVE strain history
in the space of σ11,max. The discrete σ11,max values were within ±20% of the mean value of 9.5 MPa. The
weights in the WLSM are of the Dirac type with magnitudes of w ∈ [1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1], so that
the mean value has the highest impact on the polynomial basis coefficients.
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The expected values are presented in Figure 9, and show a moderate dependence on the α(σ11,max),
with a small decrease of all energies together with its increase. The internal energy expectation was the
largest one, followed by the dissipated energy, while the elastic one was more than four times smaller.
This is because of a cyclic stretch, where dissipated energy increased during each relaxation, while the
elastic energy depended on the stretch level only. The internal energy as a sum of these two was the
largest during the last cycle for the ultimate strain of 0.8, where elastic strain energy was maximized.
During comparison of the output coefficients of variation collected in Figure 10, it was clearly seen that
they were almost proportional and very close to the input uncertainty. The one for Uel was the largest,
while variation of Ucd exhibited minimum value; quite obviously, this difference increased together
with an increase of α(σ11,max), and reached approximately 30% for α(σ11,max) = 0.15. An output of the
three concurrent probabilistic methods showed a perfect agreement for the expected values was is a
little worse for the coefficients of variation; nevertheless, the results shown in Figure 10 were still very
close to each other and within 5% tolerance.
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Skewness trends β(U) presented in Figure 11 were the most sensitive to the input uncertainty
level—not only its magnitude, but the sign also depended upon the values of α(σ11,max). This highly
non-linear behavior resulted in a difficulty in precise determination of this parameter by any of the
probabilistic methods, which accidentally returned similar value. It was additionally seen that the
semi-analytical method returned relatively higher errors for smaller α(σ11,max), while the SPT seemed
to be inefficient for α(σ11,max) > 0.09. This was because of a high complexity of analytical calculus in
the AM technique, which may also have been a reason for its unavailability for determination of the
kurtosis κ(U). This kurtosis κ(U) (collected in Figure 12) always moderately increased together with
an additional increase of an input uncertainty level, and had a very similar magnitude for the SPT
and MCS. Interestingly, its variations were much more linear than for the skewness, and at the same
time very similar for all the energies. These two probabilistic characteristics remarkably differed from
0, so that the resulting probability distributions of internal energies under consideration were rather
distant from the Gaussian bell-shaped distribution. Therefore, they could not be simply and directly
approximated by their first two moments, and demanded significant computer power and higher
order stochastic analyses using the techniques employed above.
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5. Conclusions

Deformation energies in the hyper-elastic RVE of a composite subjected to a cyclic stretch
demonstrated almost the same level of uncertainty as the input admissible stress in the hyper-elastic
matrix σ11,max. The analyzed expectations of deformation energies decreased a little bit together with
an increase of an input uncertainty; all three considered energies of the homogenized medium were
similarly affected by α(σ11,max), whereas the skewness as well as kurtosis differed both from zero,
demonstrating remarkable magnitudes and exhibiting that the resulting energy PDF was definitely
non-Gaussian. As the linear combination of this energy was included in the effective material tensor,
this tensor also exhibited non-Gaussian distribution in this case. This means that simple second order
second moment (SOSM) probabilistic analysis is inefficient for such study, and generalized higher
order stochastic study must be carried out to efficiently estimate the probabilistic moments of the
homogenized material. This result for the hyper-elastic composite was totally different than the elastic
one, where the resulting effective elasticity tensor was almost always Gaussian.

Moreover, it is necessary to underline that the correlation of the results coming from three
independent probabilistic methods was almost perfect for E(U), very high for α(U), conditional
for κ(U), and not fully achieved for β(U), where the semi-analytical method was ineffective for
small input uncertainties and the stochastic perturbation method, i.e., for high statistical scattering.
Further, we concluded that strengthening efficiency increased a little bit together with an increase of
hyper-elastic matrix properties. Effective stiffness of the composite also increased with an increasing
matrix properties, and it preserved two distinctive curves for loading and unloading. The relationship
of this effective stiffness to the strain level was highly nonlinear about zero strain, and linearized
together with its increase or decrease. The relationship of the maximum stress in pure polymer and
in the reinforced polymer was nonlinear. Further research will concern the effect of α(σ11,max) on the
effective constitutive law of the homogenized medium, and also the effect of random interface defects
on the hyper-elastic response of the effective medium in three-phase particulate composites consisting
of matrix, reinforcement, and an interphase.
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Appendix A

Let us consider the following boundary-value problem, where the displacement function u is to
be determined [28–31]: 

−div(σ(u)) = f in Ω
u = u on ΓD

σ(u)n = h on ΓN

(A1)

where suitable Dirichlet and Neumann boundary displacements u on ΓD and tractions h on ΓN are
prescribed. A weak formulation necessary in the FEM is proposed as:∫

Ω
σ(u)∇wdΩ =

∫
Ω

f udΩ +

∫
ΓN

h udΓ (A2)

where w and u also belong to the additional kinematically admissible spaces. Further, the FEM
complete partition of the domain Ω is provided, so that by introducing the finite element base functions
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ϕi (with N denoting the total number of degrees of freedom in the model), one defines a vector the of
internal forces:

fint
i (u) =

∫
Ω
σ(u) ∇ϕidΩ, i = 1 . . . , N (A3)

and also the vector of external forces:

fext
i (u) =

∫
Ω

f·ϕidΩ +

∫
ΓR

h·ϕidΓ, i = 1 . . . , N (A4)

So that Equation (9) can be represented as:

R(u) = fint(u) − fext = 0 (A5)

and this nonlinear system of equations is solved with the use of the Newton method, where such δu is
sought that the following Equation converges:

J
(
uk

)
δu = −R

(
uk

)
(A6)

J traditionally denotes the Jacobian matrix:

J(w)δu =
δfint

δu
(u) (A7)

This was completed for consecutive steps k = 1, 2 . . . , s until the desired convergence condition in
the FEM experiments was met, where the additional criterion was provided a priori.
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