


Supplementary Materials

Orientation-Independent Yield Stress and Activation Volume of Dislocation Nucleation in LiTaO₃ Single Crystal by Nanoindentation

Yi Ma¹, Xianwei Huang¹, Yuxuan Song¹, Wei Hang^{1,2,*}, Julong Yuan^{1,2} and Taihua Zhang^{3,*}

- ¹ College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- ² Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology Ministry of Education, Zhejiang University of Technology, Hangzhou 310027, China
- ³ Institute of Solid Mechanics, Beihang University, Beijing 100191, China
- * Correspondence: whang@zjut.edu.cn (H.W.); zhangth66@buaa.edu.cn (Z.T.H.)

LiTaO₃ single crystal is belonging to trigonal *R3c* space group with ion bonding structure and commonly depicted by hexagonal axes. Figure S1 shows the schematic illustration of atomic arrangement in LiTaO₃ single crystal and the typical orientations (1102), (1012) and (0112) i.e., X-112°, Y-36° and Y-42° were displayed in Fig. 1(a)-(c), respectively. Li atom lies in an oxygen layer that is c/4 away from the Ta atom, and Ta atom is centered between oxygen layers. The representative surface morphologies of three planes were also exhibited in Figure S1 below the lattice diagrams.

Figure S1. Schematic illustration of atomic arrangements for the typical orientations (a) X-112°, (b) Y-36° and (c) Y-42° in LiTaO₃ single crystal, and their surface morphologies by optical profile. See *Ma*, *Y*.; *Huang*, X.W.; *Song*, Y.X. *et al. Materials* 2019, *12*, *1683*.