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Abstract: The penetration enhancement behaviors of a reactive material double-layered liner
(RM-DLL) shaped charge against thick steel targets are investigated. The RM-DLL comprises
an inner copper liner, coupled with an outer PTFE (polytetrafluoroethylene)/Al reactive material
liner, fabricated via a cold pressing/sintering process. This RM-DLL shaped charge presents a novel
defeat mechanism that incorporates the penetration capability of a precursor copper jet and the
chemical energy release of a follow-thru reactive material penetrator. Experimental results showed
that, compared with the single reactive liner shaped charge jet, a deeper penetration depth was
produced by the reactive material-copper jet, whereas the penetration performance and reactive
material mass entering the penetrated target strongly depended on the reactive liner thickness and
standoff. To further illustrate the penetration enhancement mechanism, numerical simulations based
on AUTODYN-2D code were conducted. Numerical results indicated that, with increasing reactive
liner thickness, the initiation delay time of the reactive materials increased significantly, which caused
the penetration depth and the follow-thru reactive material mass to increase for a given standoff.
This new RM-DLL shaped charge configuration provides an extremely efficient method to enhance
the penetration damage to various potential targets, such as armored fighting vehicles, naval vessels,
and concrete targets.
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1. Introduction

In general, PTFE-based reactive materials are formed by mixing active metal powders within the
fluoropolymer binder and then are consolidated via a pressing/sintering process, such as PTFE/Al [1,2],
PTFE/Ti [3], and PTFE/Cu [4]. These reactive materials are a class of energetic materials that are
formulated to release their chemical energy under intense dynamic loadings or high pressures and high
strain rates [5,6]. Recently, studies on these reactive materials have mainly examined the energy release
characteristics [7,8], the impact initiation behaviors [9,10], and the microstructural and mechanical
performance [11,12]. In particular, the penetration performance and enhanced damage effects of
reactive material projectiles impacting aluminum plates [13–15], covered explosives [16], and fuel-filled
tanks [17], as well as the interval rupturing damage effects of reactive-materials filled projectiles to
multi-spaced aluminum plates [18].

Additionally, shaped charges with reactive material liners are a novel application of reactive
materials; they can form a high-velocity jet or an explosively formed projectile (EFP) to achieve
enhanced structural damage to concrete and steel targets, or greater behind-armor effects [19,20].
Compared with the traditional metal jet, which penetrates the target using only kinetic energy, the
reactive material jet first penetrates the target with its kinetic energy and then releases its chemical
energy when inside of the target, thus producing extremely large amounts of damage to the desired
targets. Owing to the unique and excellent performance, shaped charges with reactive material liners
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have been studied extensively over the past twenty years. Baker and Daniels investigated the reactive
jet formation behavior by using an X-ray pulse and discussed the influence of the explosive type
and shape on jet formation properties; they also experimentally analyzed the effects of standoff on
penetration performance [21]. EFP with reactive materials, which can achieve enhanced behind-armor
effects, was analyzed by experiments and numerical simulations [20]. Further studies on reactive
liner shaped charges indicated that the reactive material mass entering the penetration hole and the
initiation location of the reactive jet significantly influenced the overpressure inside the targets or the
damage mechanism of concrete and steel targets [22–24]. In addition to PTFE/Al reactive materials, the
jet formation and penetration behaviors of PTFE and PTFE/Cu reactive liner shaped charges have also
been researched by experiments and simulations [4,25,26].

However, although this class of reactive material jet can form a larger hole-diameter on the
target, and its deflagration reaction inside of the target will produce enhanced structural damage,
its penetration depth is always lower, which makes it difficult for a reactive liner shaped charge to
efficiently penetrate a thicker steel target [27,28]. This is mainly because the chemical reaction of the
reactive materials occurs before the jet perforates the thick steel casing of targets, resulting in the
reactive materials not entering the target and not producing enhanced behind-armor effects. In contrast,
the traditional inert metal jet (such as a copper jet, tantalum jet, or tungsten jet) can produce deeper
penetration, yet the subsequent residual jet cannot effectively damage weaponry when inside of the
target, as it uses only kinetic energy. Therefore, enhancing the behind-armor damage to a thicker target
by incorporating the penetration capability of a metal jet and the chemical energy release of reactive
materials is an extremely urgent and important engineering problem.

Compared with the traditional single-layered liner shaped charge, the energy conversion and
absorption mechanism of a double-layered liner shaped charge, as well as its utilization of explosive
chemical energy, is more reasonable and sufficient, thus improving penetration performance [29–32].
Hence, based on a traditional single-layered reactive liner shaped charge, we added a copper liner
to the inner side of a reactive material liner to form a novel reactive material-copper liner (RM-CL)
shaped charge. Presently, research on the jet formation of this double-layered liner shaped charge and
its penetration enhancement damage for thick steel targets is scarce. In particular, the influence of the
reactive materials’ chemical response on the penetration performance and damage mechanism is not
well understood.

This paper presents such research, beginning with a description of the penetration process of
the RM-CL shaped charge impacting thick steel targets. Subsequently, a series of experiments are
conducted to investigate its penetration performance and damage effects on the targets. Finally, the
influence of reactive liner thickness on the initiation delay time of the reactive materials was discussed,
and the initiation delay time affecting the penetration performance and the damage enhancement
mechanism were analyzed further.

2. Description of Penetration Behavior

The RM-DLL shaped charge is comprised of three basic parts: The case, the explosive, and a
double-layered liner. This double-layered liner consists of two elements: An outer liner made of
reactive materials and an inner liner (away from the explosive) made of high-density metal materials.
The penetration enhancement behaviors of the RM-DLL shaped charge against a steel target are
significantly influenced by the action condition of the projectile and target; specifically, the thickness
ratios of the reactive material liner to the metal liner, the material of high-density metal liner, and the
standoff. However, different conditions always involve the same penetration process. Therefore, this
phenomenon can be explained using one example for all conditions. This simulated condition is that
the double-layered liner is composed of an outer reactive material liner and an inner copper liner, with
corresponding wall thicknesses of 4 mm and 1 mm, respectively, as shown in Figure 1. The RM-CL
shaped charge impacts a 250-mm-thick steel target when the standoff is 2.0 CD (charge diameter).
Figure 2 shows the simulated results based on AUTODYN-2D code.
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Figure 1. Typical configuration of a reactive material-copper liner (RM-CL) shaped charge. 
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energy to achieve an extremely efficient damage technology for thick steel targets. This enhanced 
damage process can be divided into three main stages: The jet formation, the jet penetrating target, 
and the reactive materials releasing their chemical energy during or at the termination of the 
penetration process. 

During the jet formation stage, under the detonation pressure of the main charge, the outer 
reactive material liner first compresses the inner copper liner, resulting in the copper liner mainly 
forming a high-velocity precursor jet. In this stage, the high-density metal materials of the inner liner 
and the thickness of the reactive liner that is used are irrelevant, as the reactive materials do not enter 
the precursor jet but become a major part of the slug, as seen in Figure 2a. At the stage of open 
cratering and quasi-static penetrating, it is the precursor copper jet that mainly penetrates the steel 
target, as illustrated in Figure 2b. As the precursor jet continues to penetrate the target, the reactive 
material penetrator follows the copper jet into the penetration hole, as shown in Figure 2c,d. Figure 
2e indicates that, at this time, all reactive materials enter the penetrated target, and the copper jet is 
basically consumed and piled up at the bottom of the penetration hole. As the penetration time 
progresses, the reactive material penetrator begins to impact the target until the termination of the 
penetration, as depicted in Figure 2f. Thus, according to the numerical simulations, the reactive 
material penetrator has a negligible effect on the penetration performance, whereas the entrance hole-
diameter and penetration depth are predominantly determined by the precursor copper jet. 

However, under the high-pressure of the explosive detonation, the temperature inside the 
reactive materials rises during the compressed and closed process of the liner, which can activate the 
high-polymer PTFE molecules to decompose and release C2F4. As time passes, the metal powder Al 
will experience a redox reaction with the fluoride, releasing a large number of reactive heat and gas 
products. Under the oxygen deficient system, the main reactions include: 

[–C2F4–] n → n C2F4 (g) (1) 

4Al + 3C2F4 → 4AlF3 (g) + 6C (2) 

Based on the platform of REAL/ASTD, for the 73.5 wt.% PTFE/26.5 wt.% Al composite, PTFE 
and Al will mainly react to form AlF3 and C. The reactions between Al and C2F4 release large amounts 
of chemical energy, and the theoretical value of the reactive heat is approximately 5949 kJ/kg, whereas 
that for the amount of deflagration gas products is approximately 3.84 L/g. It should be noted that 
the process will take some time to be achieved, including the temperature rise of the reactive liner, 
the PTFE decomposition, and the final violent deflagration reaction; the period of time from 
activation to violent initiation is called the initiation delay time of the reactive materials (τ).  

Figure 1. Typical configuration of a reactive material-copper liner (RM-CL) shaped charge.

The penetration enhancement behavior of the RM-CL shaped charge against the steel target is very
complex, and it incorporates the damage mechanisms of both kinetic energy and chemical energy to
achieve an extremely efficient damage technology for thick steel targets. This enhanced damage process
can be divided into three main stages: The jet formation, the jet penetrating target, and the reactive
materials releasing their chemical energy during or at the termination of the penetration process.

During the jet formation stage, under the detonation pressure of the main charge, the outer
reactive material liner first compresses the inner copper liner, resulting in the copper liner mainly
forming a high-velocity precursor jet. In this stage, the high-density metal materials of the inner liner
and the thickness of the reactive liner that is used are irrelevant, as the reactive materials do not enter
the precursor jet but become a major part of the slug, as seen in Figure 2a. At the stage of open cratering
and quasi-static penetrating, it is the precursor copper jet that mainly penetrates the steel target, as
illustrated in Figure 2b. As the precursor jet continues to penetrate the target, the reactive material
penetrator follows the copper jet into the penetration hole, as shown in Figure 2c,d. Figure 2e indicates
that, at this time, all reactive materials enter the penetrated target, and the copper jet is basically
consumed and piled up at the bottom of the penetration hole. As the penetration time progresses, the
reactive material penetrator begins to impact the target until the termination of the penetration, as
depicted in Figure 2f. Thus, according to the numerical simulations, the reactive material penetrator has
a negligible effect on the penetration performance, whereas the entrance hole-diameter and penetration
depth are predominantly determined by the precursor copper jet.

However, under the high-pressure of the explosive detonation, the temperature inside the
reactive materials rises during the compressed and closed process of the liner, which can activate the
high-polymer PTFE molecules to decompose and release C2F4. As time passes, the metal powder Al
will experience a redox reaction with the fluoride, releasing a large number of reactive heat and gas
products. Under the oxygen deficient system, the main reactions include:

[-C2F4-] n→ n C2F4 (g) (1)

4Al + 3C2F4→ 4AlF3 (g) + 6C (2)

Based on the platform of REAL/ASTD, for the 73.5 wt.% PTFE/26.5 wt.% Al composite, PTFE and
Al will mainly react to form AlF3 and C. The reactions between Al and C2F4 release large amounts of
chemical energy, and the theoretical value of the reactive heat is approximately 5949 kJ/kg, whereas
that for the amount of deflagration gas products is approximately 3.84 L/g. It should be noted that the
process will take some time to be achieved, including the temperature rise of the reactive liner, the
PTFE decomposition, and the final violent deflagration reaction; the period of time from activation to
violent initiation is called the initiation delay time of the reactive materials (τ).
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material-copper jet (RM-CJ) formation characteristic before impacting; (b) precursor copper jet begins 
to penetrate the target; (c) and (d) show the head and slug of the reactive material penetrator starting 
to enter the penetration hole, respectively; (e) copper jet piles up and all reactive materials enter the 
target; and (f) shows the penetration at the termination stage. 
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determinant for the terminal damage performance of the RM-CL shaped charge. If the second case 
causes the penetration termination, all the reactive materials have entered the penetrated target, so 
the copper jet characteristics, such as the jet tip-velocity, will be critical to the penetration 
performance. 

Thus, the RM-DLL shaped charge provides a novel defeat mechanism to enhance the terminal 
damage performance. For the traditional double-layered metal liner shaped charge used against 
armored fighting vehicles, the metal jet must perforate the thick steel casing with sufficient velocity, 
while the follow-thru jet must still achieve substantial residual velocity to guarantee effective damage 
inside of the target. In contrast, the RM-DLL shaped charge requires only the precursor metal jet to 
perforate the target casing and convey the follow-thru reactive material penetrator to enter the 
penetrated target, in which the reactive materials release large amounts of chemical energy to 
produce greater behind-armor effects. In addition, the charge caliber of the RM-DLL shaped charge 
can be engineered to decrease its size, which reduces the amount of explosive that must be carried 
by the warhead. Thus, the terminal damage performance of the RM-DLL shaped charge is not only 
strongly dependent on the precursor jet penetration capability but also on the blast effects of reactive 
materials, and the latter are dramatically affected by follow-thru reactive-material mass. 

Furthermore, Figure 2 indicates that the reactive-material mass entering the penetrated target is 
primarily determined by the initiation delay time (τ). If τ is less than the jet formation time, although 
the RM-CL shaped charge can form a jet, the chemical reaction will occur before penetrating the 
target, which makes the penetration depth and follow-thru reactive-material mass decrease to zero 
(see Figure 2a). If τ is relatively smaller, the jet can produce a deeper penetration depth, but the 
reactive materials will still not enter the penetration hole; thus, the deflagration reaction will not 
enhance the damage to the target effectively (see Figure 2b,c). As time (τ) progresses, the follow-thru 

Figure 2. Typical penetration process of a RM-CL shaped charge impacting steel target: (a) Reactive
material-copper jet (RM-CJ) formation characteristic before impacting; (b) precursor copper jet begins
to penetrate the target; (c) and (d) show the head and slug of the reactive material penetrator starting
to enter the penetration hole, respectively; (e) copper jet piles up and all reactive materials enter the
target; and (f) shows the penetration at the termination stage.

Based on the above description, one of the following situations will occur to cause the penetration
termination. One situation is that, if the initiation delay time is less than the maximum penetration time
(the time corresponding to Figure 2f, the reactive materials experience a deflagration reaction during
the jet formation or penetration process. The other is that, after the termination of the penetration
process, the reactive materials will experience a deflagration reaction. If the first situation leads to the
penetration termination; the initiation delay time of the reactive materials is the primary determinant
for the terminal damage performance of the RM-CL shaped charge. If the second case causes the
penetration termination, all the reactive materials have entered the penetrated target, so the copper jet
characteristics, such as the jet tip-velocity, will be critical to the penetration performance.

Thus, the RM-DLL shaped charge provides a novel defeat mechanism to enhance the terminal
damage performance. For the traditional double-layered metal liner shaped charge used against
armored fighting vehicles, the metal jet must perforate the thick steel casing with sufficient velocity,
while the follow-thru jet must still achieve substantial residual velocity to guarantee effective damage
inside of the target. In contrast, the RM-DLL shaped charge requires only the precursor metal jet
to perforate the target casing and convey the follow-thru reactive material penetrator to enter the
penetrated target, in which the reactive materials release large amounts of chemical energy to produce
greater behind-armor effects. In addition, the charge caliber of the RM-DLL shaped charge can be
engineered to decrease its size, which reduces the amount of explosive that must be carried by the
warhead. Thus, the terminal damage performance of the RM-DLL shaped charge is not only strongly
dependent on the precursor jet penetration capability but also on the blast effects of reactive materials,
and the latter are dramatically affected by follow-thru reactive-material mass.

Furthermore, Figure 2 indicates that the reactive-material mass entering the penetrated target is
primarily determined by the initiation delay time (τ). If τ is less than the jet formation time, although
the RM-CL shaped charge can form a jet, the chemical reaction will occur before penetrating the
target, which makes the penetration depth and follow-thru reactive-material mass decrease to zero
(see Figure 2a). If τ is relatively smaller, the jet can produce a deeper penetration depth, but the
reactive materials will still not enter the penetration hole; thus, the deflagration reaction will not
enhance the damage to the target effectively (see Figure 2b,c). As time (τ) progresses, the follow-thru
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reactive-material mass gradually increases (see Figure 2d,e). Nevertheless, if the initiation delay time
is sufficiently long, i.e., τ is larger than the maximum penetration time, the combined damage effects of
kinetic and chemical energy can be maximized.

3. Experiments of Penetration

3.1. Reactive Material-Copper Liner Specimens

The preparation process of the RM-CL mainly consisted of the following four steps: (1) the first
step was to machine designed the copper liner. (2) Second, the machined copper liner was placed
into the inner layer of the pre-pressed reactive material liner, and then the double-layered liner was
pressed at 300 MPa for 10 min to ensure that they fit closely. (3) The pressed liner sample was relaxed
at ambient pressure and temperature for not less than 24 h to remove the residual stress, and then
the specimen was sintered at a temperature of 380 ◦C in a vacuum oven. (4) Lastly, the sintered liner
specimen was reshaped to prevent the deformation of the liner during the sintering process from
affecting the jet-formation performance. For the specimen, the reactive liner materials were a mixture
of 73.5 wt.% PTFE and 26.5 wt.% Al powders by mass-matched ratios, and the density of the reactive
liner was approximately 2.3 g/cm3. The average sizes of the PTFE and Al particles were approximately
28 µm and 9 µm, respectively. The reactive material liner and copper liner had the same shape, with
base diameters of 50 mm and apex angles of 55◦. The thicknesses of the reactive material liners (b1)
were 3, 4, and 5 mm. The thickness of the copper liner (b2) was 1 mm. A typical liner specimen is
shown in Figure 3.
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Figure 3. Structure and photograph of the RM-CL specimen. (a) Structure of liner; (b) Liner specimen.

3.2. Experimental Setup

To investigate the penetration enhancement behaviors of the RM-CL shaped charge against
steel target, experiments were conducted according to the schematic diagram shown in Figure 4.
The complete warhead consisted of an outer reactive liner, an inner copper liner, explosive, a case, and
a detonator. The height of the main charge was 100 mm and the explosive was initiated by a detonator
placed on the center of the main charge. The case, which was machined by #45 steel, was 3 mm thick.
The target was made of multi-layered steel plates with a total thickness of 250 mm; i.e., 100 + 50 + 30 +

20 + 20 + 30 mm. In order to determine the influence of reactive liner thickness on the penetration
performance of RM-CL shaped charge, a series of experiments were carried out at standoffs of 1.0, 2.0,
and 2.5 CD, respectively.
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3.3. Experimental Results

The experimental results of the RM-CL shaped charges against steel targets are summarized in
Table 1, in which H, Pd, and D0 refer to the standoff, penetration depth, and hole-diameter, respectively.
Table 1 indicates that the largest penetration depth is approximately 3.72 CD when the reactive liner
thickness is 5 mm at a standoff of 2.5 CD. When b1 is 3 mm and 4 mm, the maximum Pd is approximately
2.90 CD and 3.40 CD, which correspond to standoffs of 2.0 CD and 2.5 CD, respectively. Accordingly,
for a given copper liner thickness, with increasing reactive liner thickness, the maximum Pd of the
reactive material-copper jet (RM-CJ) improves and the corresponding optimum standoff increases
slightly. However, for the traditional single reactive liner shaped charge jet in the reference [24], the
penetration depths of this reactive jet at the standoff of 1.0 CD, 1.5 CD, and 2.0 CD were 1.18 CD, 1.22
CD, and 0.95 CD, respectively. Thus, these experimental results indicate that, compared with the single
reactive jet [24], the penetration depths of RM-CJ significantly increase.

Table 1. Experimental results of RM-CJ penetrating steel targets.

No. b1
(mm)

H (CD) Pd
(CD)

D0 (mm)

#1 #2 #3 #4

Entrance Exit Entrance Exit Entrance Exit Entrance

1 3 1.0 2.71 Φ25.7 Φ10 7 × 9 - - - -
2 3 2.0 2.90 25 × 29 Φ6.5 5 × 6.5 - - - -
3 3 2.5 2.78 24 × 31 6 × 7 5 × 6 - - - -
4 4 1.0 2.92 Φ26 Φ12 9 × 11 - - - -
5 4 2.0 3.24 Φ25 Φ6.5 Φ6.5 Φ6 Φ6 - -
6 4 2.5 3.40 Φ25 Φ8 Φ5.5 Φ6 Φ6 - -
7 5 1.0 3.06 Φ27 Φ7.5 12 × 13 Φ12 Φ14 - -
8 5 2.0 3.44 Φ26 Φ6 Φ6 Φ6 Φ9 - -
9 5 2.5 3.72 Φ26 Φ6 Φ6 Φ5 7.5 × 8.6 Φ6 Φ7

In addition, it also can be seen that, for the same standoff, the penetration depth of the RM-CJ
grows remarkably with the increase in reactive liner thickness. Particularly, compared with the
aluminum-copper jet penetrating steel target, this is an unusual experimental phenomenon. This is
because, for a given 2-mm double-layered liner, the penetration capability of the aluminum-copper jet
decreases with increasing thickness of the aluminum liner when the thickness exceeds 1 mm [32].

According to Table 1, the reactive liner thickness and standoff have a negligible effect on the
entrance hole-diameter of the #1 steel plate. The average entrance hole-diameters of #1 steel plates are
approximately 0.53 CD for the RM-CJs, which are smaller than those of the single reactive jets (the
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average entrance hole-diameters were 0.72 CD, 0.67 CD, and 0.58 CD for the standoff of 1.0 CD, 1.5
CD, and 2.0 CD, respectively) [24], whereas they are larger than those of the single copper jets (the
average entrance hole-diameters are approximately 0.4 CD) [32,33]. Nevertheless, when the standoff is
1.0 CD, the entrance hole-diameters of #2 and #3 steel plates are superior to those for other standoffs.
In particular, when the reactive liner thickness is 5 mm, its entrance aperture area for #2 steel plate
increases by approximately 60% compared with that of 3-mm reactive liner.

Figures 5–7 show typical experimental pictures of the front and back surfaces of steel plates
impacted by the RM-CJ. There are black detonation products of reactive materials (namely, the black
marks on the steel plates) on the front and back surfaces of each penetrated steel plate. In particular,
the front surface of #1 steel plate is almost completely covered by black detonation products, and there
are some small cracks at the entrance hole of #1 steel plate. In fact, the extent of the black marks on the
target surfaces is proportional to the reactive material mass entering the penetrated target, and the
reactive-material mass will significantly influence the damage mode of steel plates or the behind-armor
damage effects based on the references of [22] and [24]. Moreover, when b1 is 3 mm, the back surface of
#1 steel plate and the front surface of #2 steel plate are covered by some black marks at the standoff of
1.0 CD (see Figure 5a), while the black marks become increasingly less obvious at the standoff of 2.0
and 2.5 CD (see Figure 5b,c). When b1 is 4 mm, some black detonation product on the back surface of
#1 steel plate and the front surface of #2 steel plate was present at a standoff of 1.0 CD and 2.0 CD.
When the standoff is 2.0 CD, there are almost no black marks on the back surface of #2 steel plate or
the front surface of #3 steel plate (see Figure 6b right), which may be owing to the poor symmetry of
the double-layered liner affecting the follow-thru capability of reactive materials. However, when the
standoff is 2.5 CD, only a small amount of black detonation product is observed on the back surface of
#1 steel plate (see Figure 6c). In addition, when b1 is 5 mm, the black detonation product on the front
surfaces of #3 steel plates are still obvious. However, compared with other standoffs, the black marks
on the front surface of #3 steel plate is most obvious at a standoff of 1.0 CD (see Figure 7a).
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These experimental phenomena have verified that the deflagration reaction of reactive materials
may not occur during the process of jet formation, and the reactive materials can follow the precursor
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copper jet into the penetrated target, releasing its chemical energy inside the target during or after the
termination of the penetration process. The penetration depth and reactive material mass entering the
penetrated target strongly depend upon the reactive liner thickness and standoff. It is clear that the
RM-CL shaped charge presents a novel defeat mechanism that incorporates the penetration capability
of precursor copper jet and chemical energy release of the follow-thru reactive material penetrator,
which eventually could enhance the penetration and open-cratering performance of the reactive
material shaped charge.

4. Penetration Enhancement Mechanism

4.1. Numerical Method and Material Model

To analyze the influence of the reactive liner thickness on jet formation and penetration performance
of the RM-CL shaped charge an against steel target under different standoffs, a Lagrange-Eulerian
model was developed based on the platform of the AUTODYN-2D code (Figure 8). The explosive, case,
reactive liner, and copper liner were meshed using the Eulerian algorithm to reduce large deformation,
while the target was meshed using the Lagrangian algorithm for fracture and fragmentation. The mesh
used a smaller size of 0.5 mm × 0.5 mm per cell for the 50 mm × 500 mm Euler domain, and the mesh
size of the steel target was 1.0 mm × 1.0 mm. The boundary condition of the air (Euler) domain was set
as “Flow out (ALL EQUAL)” to eliminate the boundary effect. As shown in Figure 9, several moving
gauges were set along with the generatrix on the inner and outer walls of the reactive liner to record
the history of temperature. Detailed material strength models and equation of states (EOSs) of each
part of RM-CL shaped charge are shown in Table 2.
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Table 2. Material strength models and EOSs of each part of RM-CL shaped charge.

Part Materials EOS Strength Model Erosion

Air Air Ideal Gas None None
Outer liner Reactive materials Shock Johnson Cook None
Inner liner Copper Shock Johnson Cook None
Explosive 8701 JWL None None

Case #45 steel Shock Johnson Cook None
Steel target #45 steel Shock Johnson Cook Geometric Strain 1.5
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The reactive liner materials were modeled using a shock equation of state. The relationship
between the velocity (Us) and the particle velocity (up) can be approximated by [34], as follows:

Us = c0 + Sup (3)

where c0 and S are based on data from plate-on-plate impact tests performed on the material. The
Grüneisen parameter, Γ, was treated as a constant.

The reactive liner materials were described by the Johnson–Cook strength model [34], which
expresses the behavior of materials subjected to high strains, high strain rates, and high temperatures.
This material model can be expressed as follows:

σy = [A + B
(
εP

)n
][1 + C ln

( .
ε
∗
)
]

[
1−

( T − Troom

Tm − Troom

)m]
(4)

where A, B, C, M, and N are material constants, εP is the effective plastic strain,
.
ε
∗ is the dimensionless

strain rate, Tm is the melting temperature of the material, and T and Troom are the ambient temperature
and room temperature, respectively.

The materials of the copper and #45 steel were also used for the shock equation of state incorporating
the Johnson–Cook strength model. The main material parameters of reactive liner, copper, and #45
steel are shown in Table 3. The main charge was the 8701 explosive with a nominal density of 1.71
g/cm3 and a detonation velocity of 8315 m/s [35], which was modeled using the Jones–Wilkins–Lee
(JWL) EOS, as shown in Table 4. The 8701 explosive mainly consisted of RDX, PVAC, DNT, and CS.
The material parameters of air were derived from and shown in Table 5.

Table 3. Parameters of the reactive liner [24,34], copper [35], and #45 steel [24] materials.

Materials ρ (kg/m3)
G

(GPa)
A

(MPa)
B

(MPa) n C m Tm
(K)

Troom
(K) Γ

c0
(m/s) S

Reactive liner 2.27 0.67 8.04 250.6 1.8 0.4 1 500 294 0.9 1450 2.2584
Copper 8.97 46.5 90 292 0.31 0.025 1.09 1356 293 2.02 3940 1.49
#45 steel 7.83 77 792 510 0.26 0.014 1.03 1793 300 2.17 4570 1.49

Table 4. Parameters of the 8701 explosive [24,35].

Material ρ
(kg/m3)

D
(km/s)

PCJ
(GPa)

E
(GPa)

A
(GPa)

B
(GPa) R1 R2 ω v0

Explosive 1.71 8.315 28.6 8.499 524.23 7.678 4.2 1.1 0.34 1.00

Table 5. Material parameters of air [24].

Material ρ (kg/m3) γ Cp (kJ/kg·K) Cv (kJ/kg·K) T (K) E0 (kJ/kg−1)

Air 1.225 1.4 1.005 0.718 288.2 2.068 × 105

4.2. Jet Formation Characteristics of RM-CL Shaped Charge

Figure 10a shows the RM-CJ formation characteristics of different reactive liner thicknesses before
impacting the target when the standoff is 1.0 CD, where vtip, lj0, and t0 denote the jet tip-velocity, jet
length, and jet formation time, respectively. The numerical results demonstrate that, for different
reactive liner thicknesses, the high-velocity precursor jets are formed by the inner copper liner, and
the major parts of the slugs are developed with the outer reactive material liners. With an increase
of reactive liner thickness, the mass of slug increases significantly, which causes the length of RM-CJ
to increase. As shown in Figure 10b, the RM-CJ tip-velocity decreases dramatically when increasing
the reactive liner thickness. This is mainly because, for the same configuration of the RM-CL shaped
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charge, the thicker the reactive liner, the larger the mass of the double-layered liner is, and the less the
mass of explosive, which results in a reduction of the jet-tip velocity to some extent.
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Figure 10. For different reactive liner thicknesses: (a) RM-CJ formation characteristics at standoff of 1.0
CD; (b) RM-CJ tip-velocity to time curves.

Figure 11 shows the pressure distribution on the reactive materials in Figure 10a. The high-pressure
areas all occur at the interfaces between the slugs of the reactive material and the copper, and the
high-pressure area and the peak pressure value decrease with increasing the reactive liner thickness.
Figure 12 presents the typical history temperature for gauges #3 to #12 under different reactive liner
thicknesses. The numerical simulations represent that when the time increases from 5 µs to 12 µs, the
temperature on the reactive material liner drops obviously with increasing reactive liner thickness, and
the maximum temperature values of gauge #3 for 3-mm, 4-mm, and 5-mm reactive liner are 1038 K,
950 K, and 878 K, respectively. According to the reference [3], the PTFE will decompose starting at 400
◦C with its peak at 562 ◦C; then, as the temperature continues to rise, the Al particles will participate
in the redox reaction with the decomposition product of PTFE. Therefore, the temperature results
demonstrate that, under the detonation shock wave of explosive, the PTFE/Al reactive materials were
activated in the jet formation process.
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Figure 12. Temperature–time curves of gauges for different reactive liner thicknesses. (a) b1 = 3 mm;
(b) b1 = 4 mm; (c) b1 = 5 mm.

4.3. Comparison of Simulated Results and Experimental Penetration Depth

To further analyze the penetration behaviors of the RM-CL shaped charge against a steel target,
the penetration results of the above experimental conditions were simulated using the AUTODYN-2D
code. When the numerical penetration depths fit well with the experimental results, the simulated
results of RM-CJ inside the penetrated steel target are illustrated in Figure 13. Figure 13 shows that, for
different reactive liner thicknesses and standoffs, it is always the high-velocity copper jets that penetrate
the steel targets, whereas the reactive jet penetrators can follow the copper jets into the penetration
holes but do not begin impacting the targets. Therefore, under the experimental conditions, the
penetration termination of the RM-CL shaped charge against steel target is that the reactive materials
undergo the deflagration reaction during the penetration process and produce large amounts of gas
and chemical energy, resulting in a serious instability of the precursor copper jet, which eventually
leads to the residual jet not being able to continue penetration; this leads to an early termination of the
penetration process.
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Furthermore, it is obvious from Figure 13, that if the deflagration reaction of reactive materials is
not considered, the precursor copper jets would continue to penetrate the steel targets. By means of
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the numerical simulation, if the thickness of reactive liner is zero (namely b1 = 0). The tip-velocity
of the single copper jet is approximately 7580 m/s, which is larger than that of the RM-CJ, and this
will produce the deeper penetration depth, as shown in Figure 14. However, for the RM-CL shaped
charge technology, its damage mechanism is different from the penetration by only kinetic energy
of the copper jet, and it is also different from the single reactive jet [24] that incorporates the kinetic
energy penetration of reactive jet and the chemical energy of reactive materials. The enhanced damage
mechanism of the RM-CL shaped charge combines the penetration capability of a precursor copper
jet and the chemical energy release of a follow-thru reactive material penetrator. Thus, compared
with the single reactive jet, the penetration enhancement of the RM-CJ strongly depends on the
penetration capability of the precursor jet, owing to the copper jet with high density and excellent
ductility. Although the penetration hole-diameter of RM-CJ is smaller than that of the single reactive
jet [24], the follow-thru reactive material penetrator will still produce extremely high pressure inside of
the penetrated target, into which the reactive materials will release the heat to the fullest, resulting in
efficient damage to various desired targets.Materials 2019, 12, x FOR PEER REVIEW 13 of 18 
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Figure 13 also shows that, for a given thickness of reactive liner, when the standoff increases from
1.0 CD to 2.5 CD, the mass of the reactive materials entering the penetration hole will dramatically
decrease. Especially, when the reactive liner thickness is 3 mm, all reactive materials are outside
the target at the standoff of 2.5 CD, as seen in Figure 13a (H = 2.5 CD), which cannot fully exert the
advantage of deflagration performance for the RM-CL shaped charge. Moreover, for the same standoff,
the mass of reactive materials entering the penetration hole increases significantly when increasing
the reactive liner thickness. However, compared with the 3-mm reactive liner, when the reactive liner
thickness is 4 and 5 mm, a few of reactive materials are blocked outside the penetration hole, resulting
in a reduction in the utilization rate of reactive liner (see Figure 13c). For the RM-CL shaped charge
technology, its excellent damage effects not only need to ensure that the jet can perforate the steel
casing of the target, but also allow more reactive materials to enter the penetrated target, which will
achieve greater devastating damage to the target. Therefore, the thicker the reactive liner thickness, the
larger the corresponding optimum standoff of RM-CJ is, which can fully exploit the combined defeat
mechanisms of kinetic energy and chemical energy of the RM-CL shaped charge to ensure sufficient
penetration capability, and more reactive materials undergoing deflagration inside of the target.

In addition, according to the experimental results, the average entrance hole-diameter of the #1
steel plate is approximately 0.53 CD for the RM-CJ, which is approximately 51.4% larger than that of
the single copper jet with a cone angle of 55◦ (0.35 CD) [33]. It is approximately 35.9% and 20.5% larger
than that of the single copper jet and aluminum-copper jet with a cone angle of 60◦ (0.39 CD and 0.44
CD, respectively) [32]. Simultaneously, compared with the simulated average hole-diameter of 0.46
CD (see Figure 13), the experimental results increase by approximately 15.2%. These data indicate that,
for the same cone angle of the liner, compared with the copper jet and the aluminum-copper jet, the
penetration hole-diameters of RM-CJ increase significantly, and the experiments also demonstrates that
the deflagration of reactive materials will produce secondary expansion cratering effects. In particular,
when the reactive liner thickness is 5 mm at a standoff of 1.0 CD, the re-expansion cratering effects will
obviously enhance. This is mainly because for the thicker reactive liner at a lower standoff, there is
more reactive-materials mass entering the penetration hole (see Figure 13, H = 1.0 CD), which leads to
the higher pressure produced by reactive materials deflagrating inside the initiated penetration hole.

Based on the above discussions, the enhanced damage effects of an RM-CL shaped charge against
steel target mainly embody in the following three aspects: (1) Compared with the traditional single
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reactive jet, the penetration depth of RM-CJ increases significantly; (2) compared with the copper jet
or the aluminum-copper jet, the penetration hole-diameter of RM-CJ greatly improves; and (3) the
experimental results show that the reactive materials can enter the penetrated steel plates. Therefore, it
is reasonable to infer that if the RM-CJ can perforate the steel plate with limited thickness, the reactive
materials entering inside the target will produce greater damage effects.

4.4. Initiation Delay Time Effects on Penetration Performance

According to numerical simulations, the penetration depths of different initiation delay times
(τ) are shown in Figure 15. For a given standoff, if the initiation delay time is long enough, the
penetration depth of the RM-CL shaped charge with a 3-mm reactive liner is always larger than that of
the 4-mm and 5-mm reactive liners, owing to the thinner reactive liner with a higher jet tip-velocity
(see Figure 10b). This is consistent with the penetration mechanism of the aluminum-copper jet against
a steel target [32]. However, according to the above experimental results, the penetration depth of
the RM-CL shaped charge increases with an increase in the reactive liner thickness. As such, for the
RM-CL shaped charge technology, compared with the jet’s characteristics, the initiation delay time of
reactive materials has a much greater influence on its penetration performance.
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When the penetration depths of the simulations are fit with the experimental results (see the
red circles in Figure 15), the initiation delay time can be calculated by averaging the three simulated
penetration times, and the initiation delay times of 3-mm, 4-mm, and 5-mm reactive liners are
approximately 94.7, 120.4, and 140.5 µs, respectively. The simulated and experimental results indicate
that the reactive liner thickness has a significant influence on the initiation delay time of reactive
materials, increasing markedly with increasing the reactive liner thickness. The key reason for the
result is that the thicker reactive liner will be subjected to a lower temperature during the jet formation
process (see Figure 12), eventually decreasing the decomposition and redox reaction rate of the reactive
materials, and resulting in an increase in the initiation delay time [5,7]. Another important consideration
is that, due to the smaller jet tip-velocity of the thicker reactive liner, the reactive materials are subjected
to a lower secondary impact pressure when the jet impacts the target (see Figure 11), which will again
decrease the chemical reaction rate of the reactive materials. Hence, the lower temperature or pressure
inside the reactive materials is likely to be an important mechanism for increasing the initiation delay
time, which will eventually enhance the penetration damage effects of the RM-CL shaped charge.
It should be noted, however, that under the action of strong shock wave generated by the 8701 explosive
detonation, it is assumed in this paper that the reactive material penetrator will be inert during the jet
formation and penetration process, and all the reactive materials would deflagrate simultaneously and
release their chemical energy instantaneously at the time of τ, ignoring the propagation of deflagration
reaction rate within the reactive material penetrator described in reference [36].
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To further analyze the influence of the initiation delay time on the penetration performance and
optimum standoff of RM-CJ, the curves between the penetration depth and standoff for different
reactive liner thicknesses are shown in Figure 16. As the standoff increased from 0 to 4.0 CD, the
penetration depths were simulated every 0.25 CD based on the above calculated initiation delay time,
and three curves can be obtained by fitting these calculated values using the fourth-order polynomial.
Figure 16 demonstrates that, for a given thickness of copper liner, if considering only the penetration
depth, the optimum standoff of RM-CL shaped charge increases with increasing the reactive liner
thickness. That is to say, the initiation delay time significantly influences the optimum standoff of
RM-CJ. Figure 16 also illustrates that, for the same standoff and a given thickness of copper liner, when
the reactive liner thickness increases from 3 mm to 5 mm, the penetration depth of RM-CJ increases
significantly, but the rate of increase gradually decreases. This is mainly because a longer initiation
delay time can be obtained using a thicker reactive liner (see Figure 15), whereas this method could
dramatically decrease the tip-velocity of the RM-CJ (see Figure 10b). However, based on the penetration
theory of reactive jet [24], the penetration depth is proportional to not only the jet-tip velocity but also
the initiation delay time of reactive materials. Hence, for this RM-CL shaped charge technology, a
reasonable thickness ratio of the reactive liner to the copper liner is important to ensure sufficient jet-tip
velocity and relatively longer initiation delay time, resulting in deeper penetration depth and more
reactive materials entering the penetrated target, eventually enhancing the penetration damage effects.
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In addition, it can be seen from Figure 16 that the experimental results generally agree well with
the numerical simulations, but the experimental penetration depth results are all smaller than those of
the simulations when the standoff is 1.0 CD. Excluding the experimental errors, the main reason is
that, when the standoff is smaller, it will take less time to form a jet and the jet tip-velocity is relatively
larger, which leads the jet to impact the target early. Moreover, the reactive materials will be subjected
to a higher secondary impact pressure, accelerating the deflagration reaction of reactive materials and
declining the initiation delay time. Consequently, when the standoff is 1.0 CD, the actual initiation
delay times of the experiments are less than the calculated average penetration time, resulting in the
experimental results all being smaller than the simulated penetration depths.

According to the above discussions, for the double-layered liner shaped charge with the reactive
material liner, prolonging the initiation delay time of reactive materials is important. However, the
initiation delay time is influenced not only by the formulation and the particle size of reactive materials,
but also by the structure of this shaped charge and the action condition of the jet impacting the target.
Therefore, when a novel reactive material liner shaped charge will be designed, the initiation delay
time of reactive materials should be actively increased, which can make full use of the combined
damage effects of the chemical and kinetic energy to achieve enhanced damage to the thick targets.
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5. Conclusions

The penetration enhancement behaviors of reactive material-copper liner shaped charge against a
steel target were studied, and its penetration performance and damage mechanism were investigated
by both experiments and simulations. Several conclusions are presented as follows:

(a) Experimental results have shown that the penetration depth of a reactive material-copper jet
increased significantly compared with the single reactive jet, and the penetration hole-diameter was
larger than that of the single copper jet; and the reactive materials can enter the penetrated target.
These phenomena have verified that this RM-CL shaped charge can incorporate the kinetic energy of a
copper jet and the chemical energy of follow-thru reactive materials to achieve a deeper penetration
depth and damage enhancement effects.

(b) For the same standoff and a given copper liner thickness, the penetration performance of a
reactive material-copper jet and the mass of reactive materials entering the penetrated target positively
related to the reactive liner thickness. It indicated that the reasonable thickness ratio of the reactive
liner to the copper liner is important to ensure that the jet can perforate the limited thickness target
and more reactive materials can enter the penetrated target, enhancing the penetration damage effects
of the RM-CL shaped charge.

(c) For the RM-CL shaped charge technology, its penetration enhancement behavior is strongly
dependent upon the initiation delay time of reactive materials. For mechanism considerations, with
increasing the reactive liner thickness, the reactive liner would be subjected to a lower temperature and
secondary impact pressure, which decreased the rate of deflagration reaction and led to the initiation
delay time being prolonged, resulting in an increase in the penetration depth.
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