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Abstract: Inspired by biology, neuromorphic systems have been trying to emulate the human brain for
decades, taking advantage of its massive parallelism and sparse information coding. Recently, several
large-scale hardware projects have demonstrated the outstanding capabilities of this paradigm for
applications related to sensory information processing. These systems allow for the implementation of
massive neural networks with millions of neurons and billions of synapses. However, the realization
of learning strategies in these systems consumes an important proportion of resources in terms
of area and power. The recent development of nanoscale memristors that can be integrated with
Complementary Metal–Oxide–Semiconductor (CMOS) technology opens a very promising solution
to emulate the behavior of biological synapses. Therefore, hybrid memristor-CMOS approaches
have been proposed to implement large-scale neural networks with learning capabilities, offering a
scalable and lower-cost alternative to existing CMOS systems.

Keywords: neuromorphic systems; spiking neural networks; memristors; spike-timing-dependent
plasticity

1. Introduction

The outstanding evolution of computers during the last 50 years has been based on the
architecture proposed by Von Neumann in the 1940s [1]. In this model of stored-programme computer,
data storage and processing are two independent tasks performed in separated areas with a high
need of data communication between them. With the development of integrated circuits, Gordon
Moore predicted in the 1960s that the number of transistors in an integrated circuit would double
every 18 to 24 months [2]. This exponential evolution allowed for the development of more efficient
computing systems, with increasing processing speed and decreasing power consumption. However,
even the current technologies for semiconductor manufacturing are reaching the limits of Moore’s
law [3], so different solutions have been proposed to keep the future evolution of processing systems [4].
Two different strategies suggest the development of new processing paradigms and novel devices
beyond conventional Complementary Metal–Oxide–Semiconductor (CMOS) technologies.

In parallel with the development of computing platforms, in the 1960s some researchers used the
emerging electronic technologies as a mechanism for modeling neural systems, from individual
neurons [5–10] to more complex networks [11]. The increasing understanding of the structure
and fundamental principles of behavior of the human brain revealed a very different processing
paradigm from the traditional computer architecture with a much better performance. Even when
comparing with current supercomputers which excel at speed and precision, the human brain is still
much more powerful when dealing with novelty, complexity and ambiguity for practical tasks like
visual recognition and motion control, while presenting a negligible power consumption around
20W [12]. This comparison between conventional computers and the brain led to the emergence of
neuromorphic computing. The term neuromorphic engineering was first coined by Carver Mead
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to refer to developing microelectronic information processing systems mimicking the operation of
their biological counterparts [13,14]. During the 1980s, Carver Mead highlighted the analogy between
the physics in biological neurons and the behavior of transistors in sub-threshold regime [13,14],
developing neural networks based on analog circuits; leading to the implementation of the first
silicon retinas [15] and proposing a new computing paradigm where data and processing tasks are
performed by indivisible entities, taking inspiration from biological neural systems. Along the years,
the neuromorphic engineering field has broaden its inspiration. Today’s neuromorphic computing
engineers not only try to mimic the highly parallel architecture of biological brains and the use
of in-memory computing architectures as a way of improving the speed and energy performance,
but also have deeply studied the signal information encoding, computational principles and learning
paradigms that enable even simple biological brains with admiring performance in the interaction and
adaptation to complex and unexpected environments with high reaction speeds and minimal power
consumption despite relying on very simple and highly unreliable computation units [16].

Alternatively, many novel beyond-CMOS technologies have been proposed to overcome the
limits of Moore’s law. One of the most promising available devices is the nanoscale memristor.
The memristor was first described theoretically by Chua in the 1970s as the fourth passive element
establishing a relationship between electric charge and magnetic flux [17]. Much later in 2008,
a team at HP Labs claimed to have found Chua’s memristor experimentally based on a thin film of
titanium oxide [18]. This 2-terminal device behaves as a variable resistor whose value can be modifed
by applying certain voltages or currents. The most common structure for this device is a union
metal-dielectric(s)-metal, where the dielectric layer can be as thin as a few nanometers. The application
of electric fields and controlled currents across the dielectric produces an alteration of its resistance
by growing a filament or other mechanisms like barrier modulation. Currently available memristors
are mostly binary devices, as they can switch between two resistance values: HRS (High-Resistance
State) and LRS (Low-Resistance State) [19]. Since the appearance of the memristors, many logic
families based on memristors for digital computation have been proposed [20,21], their potential as
digital long-term non-volatile memory technology has also been demonstrated [22–25], and their
use as biosensing devices looks also promising [26]. In the field of neuromorphic engineering,
the memristors have attracted a special interest due to its particular plasticity behaviour which
ressembles the adaptation rules observed in biological synapses. Memristors can adapt and change its
behaviour over time in response to different stimulation patterns as it happens in the human brain.
In particular, it has been demonstrated that if stimulated with pulse-trains simulating the input from
spiking neurons, memristors may exhibit a biologically inspired learning rule [27–30] resembling the
spike-timing-dependent plasticity (STDP) observed in biological neurons [31–36]. Hence, memristors
have been considered as artificial inorganic synapses.

In this paper, we analyze the current trend towards using memristors over CMOS platforms
to implement neuromorphic systems, demonstrating a new paradigm which overcomes current
limitations in conventional processing systems. In Section 2, we give a general overview of
the basis of neuromorphic computing, while in Section 3 we review the main large-scale CMOS
hardware implementations of neuromorphic systems. In Section 4, we describe proposed hybrid
Memristor-CMOS approaches, while in Section 5 we emphasize the suitability of this strategy to
implement learning algorithms in neural systems. Finally, in Section 6 we give our future perspective
for this field.

2. Neuromorphic Computing

As already stated, neuromorphic computing systems take inspiration on the architecture,
the technology and the computational principles of biological brains. Morphologically, the human
brain is composed of approximately 1011 elementary processing units called neurons, massively
interconnected by plastic adaptable interconnections called synapses. Each neuron connects
approximately to 103–104 other neurons through synaptic connections. The neurons are known
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to be distributed in layers, and most of the synaptic interconnections are devoted to interconnect
neurons belonging to successive layers.

The first computing systems inspired by this structure of biological brains were published in the
1940s–1950s and were called Artificial Neural Networks (ANNs) [37,38]. They appeared as powerful
computational tools that proved to solve, by iteratively training algorithms that adapted the strength
of the interconnection weights, complex pattern recognition, classification or function estimation
problems not amenable to be solved by analytic tools. The first generations of neural networks did not
involve any notion of time nor any temporal aspect in the computation.

Mc Culloch and Pitts, proposed in 1943, one of the first computational models of the biological
neurons. Figure 1 illustrates the operation of each proposed neural computational unit. As illustrated
in Figure 1, a neuron Nj receives inputs from n other previous neurons x1, x2, ..., xn. The output
of each neuron x1, x2, ..., xn in the previous layer is multiplied by the corresponding synaptic
weight w1j, w2j, ..., wnj, also know as synaptic efficacy. The combined weighted input is transformed
mathematically using a certain non-linear transfer function or an activation function ϕ, generating an
output oj. In the original Mc Culloch and Pitts’ neural model the activation function was a thresholding
gate, giving as neural output a digital signal [37]. This digital output neuron was the core of the first
generation of neural networks.

Figure 1. Diagram of an artificial neuron with n inputs with their corresponding synaptic weights.
All weighted inputs are added and an activation function controls the generation of the output signal.

In 1958, Rosenblatt proposed the perceptron. The architecture of the perceptron is shown in
Figure 2a. In Figure 2, the computational units or neurons are represented by circles, interconnected
through trainable weights representing the synaptic connections. The original perceptron consisted of
a single layer of input neurons fully interconnected in a feedforward way to a layer of output neurons.
A learning hebbian rule [39] to adapt the weights was proposed [38]. This single layer perceptron was
able to solve only linearly separable problems [40].

In the 1950–60s, a second generation of computational units arose were the thresholding activation
function was replaced by a continuous analog valued output like a smooth sigmoid, radial basis
function or a continuous piece-wise linear function [41,42]. Recently, the rectifying non-linear activation
function, also known as ReLU has become very popular for its better training convergence and its
hardware friendly implementation [43]. Furthermore, gradient descent based learning algorithms
could be now applied to optimize the network weights. Alternative learning rules were proposed
as the delta rule based on the Least Mean Squares (LSM) algorithm published by Widrow [44,45].
This second generation proved to be universal approximators for any analog continuous function,
that is, any analog continuous function could be approximated by a network of this type with a single
hidden unit [41].
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Figure 2. (a) Architecture of a single layer perceptron. The architecture consists of a layer on input
neurons fully connected to a single layer of output neurons. (b) Extension to a multi-layer perceptron
including more than one layer of trainable weights. In this example, the network includes 3 layers:
input, hidden and output layer. Each connection between two neurons is given by a certain weight.

The backpropagation algorithm extended the application of the gradient descent techniques
to networks with any number of hidden layers, popularly known as Deep Neural Networks
(DNNs) [46–48]. Figure 2b illustrates a case with 3 layers: a first layer of input neurons, a second
layer of hidden neurons, and a third layer of output neurons, although a general architecture can
contain any given number of hidden layers.

The ANN architectures shown in Figure 2a,b are pure feedforward architectures as the signal
propagates from input to output in an unidirectional way. Other architectures, known as recurrent
neural networks, including feedback connections from upper layers in the architecture to lower
layers, have been proposed. The Adaptive Resonance Theory (ART) architectures by Grossberg [49],
the Kohonen self-organizing maps [50] or the Hopfield models [51] can be cited among the
pioneering ones.

The presented ANNs have been typically developed in software, and trained offline. The training
of DNNs requires a vast amount of annotated data to correctly generalize the problem without
overfitting [52] and intensive computation resources. However, in recent years, the increase in the
computation capabilities of modern computers and the availability of vast amounts of information
have made DNN very popular allowing the development of many DNN-based applications [53,54]
that use complex architectures like LeNet for handwritten digit recognition [55], Microsoft’s speech
recognition system [56] or AlexNet for image recognition [43]. As a consequence we have witnessed
the explosion of DNNs and machine learning.

Despite the impressive advances that DNNs have demonstrated in recent years, their performance
in terms of efficiency (speed and power consumption) compared with the human brain is still low
as it is low their resemblance to the human brain in terms of information coding. In the biological
brain, the information is processed in a continuous way in time, not just as a sequence of static frames
as DNNs recognition systems do. Furthermore, in conventional DNNs, the output of the different
neural layers are computed in a sequential way. Each layer has to wait until the output of the previous
layer has been computed to perform its computation, thus introducing a significant recognition delay
in the network. On the contrary, biological neurons transmit their information to the next neuronal
layers in the form of spikes. Whenever a neuron emits a spike, the spike is transmitted to its afferent
connected neurons and processed with just the delay of the synaptic connection. In 1996, Thorpe
demonstrated that the human brain was able to recognize a visual familiar object in the time that
just one spike propagates through all the layers of the visual cortex [57]. Similar visual processing
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speeds have been measured in the macaque monkeys by Rolls [58]. These experiments reveal an
extremely efficient information coding in the biological brains. In this context, the 3rd generation of
neural networks, spiking neural networks (SNNs), aims to bridge the gap between neuroscience and
machine learning, using biologically-realistic models of neurons to carry out information coding and
computation trying to fully exploit the efficiency in the spatio-temporal signal coding and processing
and the corresponding power efficiency observed in the biological brains. SNNs operate using spikes
in a similar way as biological neurons do. That way, in addition to the state of the neuron and the
synaptic weight, SNNs also incorporate the concept of time into their model of operation. In these
neurons, there is no propagation cycle, so each neuron fires an output spike only when its state
reaches a certain threshold. Therefore, the information flows in these networks are spike trains which
propagate between neurons asynchronously, and temporal correlation between spikes is crucial [41].
Spike trains offer the possibility of exploiting the richness of the temporal information contained in
real-world sensory data. This allows SNNs to be applied to solve tasks which dynamically changing
information like visual gesture recognition or speech recognition in a more natural way than current
conventional (non spiking) artificial intelligent systems do. When dealing with dynamic information
(as video sequences), conventional artificial systems perform computations using sequences of static
images sampled at a constant periodic time (photogram time in the case of vision). Recognition of
dynamic sequences may involve the use of recurrent neural network architectures or the resolution of
continuous time differential equations. These computations are quite intensive using conventional
framed ANN. However, the use of SNN where computation is driven in a continuous time way
naturally and driven only by the occurrence of spikes detecting certain spatio-temporal correlations
can be much more advantageous.

Many different coding methods for these spike trains have been proposed. Many authors have
proposed to code the activity level of the neurons as the frequency of the firing rate. However, this type
of coding does not benefit from the spike sparsity that should characterize SNN processing and thus,
it does not enable the corresponding low power communication and computation due to the sparsity of
the spike coding. Regarding the fast computation capability expected from SNN, this firing rate coding
introduces a latency in the computation of the output firing rate. Furthermore, it is not biologically
plausible as evidenced by the experiments of Thorpe [57] and Rolls [58] which demonstrated that the
computation of a single cortical area is completed in 10–20 ms while the firing rate of the neurons
involved in the computation is below 100 Hz, which does not make possible the computation based on
the coding of analog variables in firing rates. However, as discussed by Thorpe et al. [59], there are
many other biologically plausible and more efficient coding strategies. Other coding schemes that have
been considered are in the timing between spikes [60], in the delay relative to a given synchronization
time also known as time to first spike (TFS) [59] encoding, just coding the values in the order of spikes
which is known as rank order coding [61], or synchronous detection coding [59].

Regarding the SNN neuron models, there are many neuron models that describe the behaviour of
biological neurons with different levels of complexity [5–10]. The classic Hodgkin-Huxley model [5] is
a 4-th order biophysical model that describes the behaviour of the currents flowing into the neuron ion
channels in a biologically realistic way. However, due to its complexity, different 2nd order simplified
models have been proposed like the one proposed by FitzHugh and Nagumo [6,7] and the Morris-Lecar
model [8], among others. In the last years, the Izhikevich model [10] and the Adaptive Exponential
Integrate and Fire (AdEx) model [9] have become very popular for their ability to reproduce a large
variety of spiking regimes observed in the biological neurons just by varying a reduced number of
model parameters. However, while detailed biophysical models can reproduce electrophisiological
activity of biological neurons with great accuracy, they are difficult to analyze computationally and not
friendly for hardware implementations. Because of these reasons, for computational purposes simple
first-order phenomenological models like the Integrate and Fire model are frequently used.

The behavior of a single integrate-and-fire spiking neuron is illustrated in Figure 3. A spiking
neuron receives input spikes from several dendrites and sends out spikes from its output axon,
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as shown in Figure 3a. Every time an input spike arrives, the state of the neuron is updated, and when
it reaches the threshold, it generates an output spike and reset its state, as seen in Figure 3b. In this
case, spikes are fully characterized by their firing time. In Figure 3, it can be observed that there is a
constant slope decay of the membrane potential between two arriving spikes as it is the case of a leaky
integrate and fire neuron. Mathematically, a leaky integrate-and-fire neuron can be described as:

iin(t) =
vmem(t)− vrest

R
+ C

dvmem(t)
dt

(1)

where vmem(t) represents the membrane potential, iin(t) the injected current, vrest the resting
value of the membrane potential, C the equivalent capacitance of the membrane, and R the leak
resistance. A leaky integrate-and-fire neuron can be easily implemented in hardware following the
resistance-capacitance (RC) "text book" concept scheme presented in Figure 4, where an input current
iin is integrated in capacitor C with leak resistance R. The integrated voltage vmem is compared with
a reference vth, generating an output given by vout. Additionally, integrate-and-fire neurons may
consider a refractory period that forces a minimum time interval between two consecutive spikes of a
neuron. A comprehensive overview of circuit realizations of spiking neurons with different levels of
complexity can be found in [62].

Figure 3. Illustration of the behavior of a leaky integrate-and-fire spiking neuron. (a) A spiking neuron
receives spikes from several inputs, processes them, and generates output spikes from its output node.
(b) Temporal evolution of the neuron state while it receives input spikes. When the threshold is reached,
it generates an output spike.

Figure 4. Example of a hardware implementation of an RC leaky integrate-and-fire neuron.



Materials 2019, 12, 2745 7 of 28

In terms of connectivity, the most general type of neural network is fully connected, meaning
that each single neuron in layer i is connected to all neurons in layer i + 1. This scheme applies no
limitation to the learning capabilities of the network; however, it presents some difficulties for practical
implementations. A very popular way of reducing the amount of interconnections is represented by
Convolutional Neural Networks (ConvNets), where each neuron in layer i is connected to a subset
of neurons in layer i + 1 representing a projective field. This receptive field can be represented as
a convolutional kernel, with shared weights for each layer [63]. This scheme is inspired by biology,
as it has been observed in the visual cortex [64]. In a similar way to the biological visual cortex,
this convolutional neural network architecture is commonly used for image processing applications in
the earlier more massive parallel feature extraction layers, as it implies an important reduction of the
number of connections.

Table 1 (adapted from [65]) contains a comparison of the main distinctive features between ANNs
and SNNs. As previously stated, the latency in each computation stage in an ANN is high as the whole
computation in each stage has to be completed on the input image to generate the corresponding
output. On the contrary, in an SNN processor the computation is performed spike by spike so that,
output spikes in a computational layer are generated as soon as enough spikes evidencing the existence
of a certain feature has been collected. In that way, the output of a computation stage is a flow of spikes
that is almost simultaneous with its input spike flow. This property of SNN systems has been called
“pseudo-simultaneity” [65,66]. The latency between the input and output spike flows of a processing
SNN convolution layer has been measured to be as low as 155 ns [67]. Regarding the recognition speed,
whereas in an ANN the recognition speed is strongly dependent on the computation capabilities of
the hardware and the number of total operations to be computed (which is dependent on the system
complexity), in an SNN, each input spike is processed in almost real time by the processing hardware
and the recognition is performed as soon as there are enough input events that allow the system to
take a decision. This recognition speed strongly depends on the input statistics and signal coding
schemes as previously discussed. In terms of power consumption, the ANNs power depends on the
consumption of the processor and the memory reading and writing operations but for a giving input
sampling frequency and size does not depend on the particular visual stimulus. However, in an SNN,
the power consumption depends also strongly on the statistics of the stimulus and coding strategies.
If efficient coding strategies are used, the system should benefit from the power efficiency of sparse
spike representations.

On the negative side, as it has been already pointed out, the addition of the time variable
makes SNN neuron models more complex than ANN ones. Also, as the computation of ANN is
time-sampled, in each sampling time the algorithmic computation is performed using the available
hardware resources that can be time multiplexed by fetching data and storing intermediate variables.
However, in true SNN the spikes should be processed as they are generated in real time, requiring
parallel hardware resources which cannot be multiplexed. The scaling up of the system can be done by
modular expansion of the hardware resources.

However, where SNN should have major advantage is in applications requiring recurrent neural
architectures, such as, in recognition of dynamic stimulus. The computation of recurrent connections in
ANN requires computationally intensive iterations until convergence is reached, while the convergence
of recurrent connections in SNN is almost instantaneous due to their pseudo-simultaneity property.

In terms of accuracy, as it will be discussed in Section 5, the learning methods that have been
developed for ANN are not directly applicable to SNN. Although the learning theory of SNN still lacks
behind its equivalent methods for ANN, some recent work reports for the same architecture an error
increment of only 0.15% for the ImageNet dataset and 0.38% for the CIFAR10 dataset [68]. However,
the temporal dependence introduces complexity so that once a SNN has been trained, its accuracy
drops if the input temporal coding changes. But it also introduces the potential to recognize dynamic
sequences in a more efficient way.
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Table 1. Table comparing different features of ANNs and SNNs.

Feature ANN SNN

Data processing Frame-based Spike-based
Latency High Low

Pseudo-simultaneity
Time resolution Low High

Preservation of spatio-temporal
correlation

Time processing Sampled Continuous
Neuron model complexity Low High

Recognition accuracy Higher Lower
Hardware multiplexing Possible Not possible

System scale-up Ad hoc Adding modules
Recognition speed Low High

Independent on input stimulus Dependent on input statistics
Dependent on hardware resources
Dependent on system complexity Not dependent on system complexity

Power consumption Determined by processor power Determined by power-per-event
and memory fetching processing in modules

Independent on input stimulus Dependent on stimulus statistics
Recurrent topologies Need to iterate until converge Instantaneous

3. CMOS Neuromorphic Systems

Simulating SNNs on normal hardware is very computationally-intensive since it requires simulating
coupled differential equations of large neuron populations running in parallel. Fully exploiting the
coding and computation capabilities of biological brains requires the adequacy of the corresponding
hardware platform to the peculiarities of the algorithm at different levels: from signal coding up to high
level architectures. At the architectural level, the intrinsic parallelism of neural networks lends to the
development of neuromorphic custom parallel hardware resembling the architecture of the biological
brain to emulate its computing capabilities [62,69,70]. Furthermore, at the signal level, SNNs are better
suited than ANNs for hardware implementation, as neurons are active only when they receive an
input spike, reducing power consumption and simplifying computation.

One of the major issues when trying to implement in a parallel hardware large arrays of neural
populations is the implementation of the synaptic interconnections. In a parallel 2D hardware,
the physical wiring does allow to implement connections between just neighbouring neurons,
while the biological neurons are distributed in 3D and massively interconnected among populations.
Address-Event-Representation (AER) [71] is an asynchronous communication protocol that was
conceived to massively interconnect neuron populations that can be located in the same or different
chips as a ‘virtual wiring’ system. Figure 5 illustrates two neural populations communicated through
an AER bus. In the particular case of this figure, neurons in the emitter population code their activity
as a density of output pulses which is proportional to their activation level. However, the AER
communication scheme can be applied to any type of pulse signal encoding [59]. Whenever a neuron
in the emitter population generates a spike, it codes its physical coordinates (x, y) or address in a
digital word in a fast digital bus and activates an asynchronous request (Rqst) signal. The coded
address is sent through the fast digital bus to the receiver population. Upon reception of an active
request, the receiver decodes the arriving neuron address and activates the acknowledge (Ack) signal.
The received pulse can be sent to the corresponding neuron where the original activity of the sending
neurons can be reproduced (as illustrated in Figure 5) or to a group of virtually connected neurons in
the receiving population implementing a projection field [72]. The high-speed of the inter-population
digital bus (in the order of nanoseconds) compared to the inter spike interval of biological neurons
(in the order of milliseconds) allows to multiplex the connections of a million neurons in a shared
time-multiplexed digital bus. Most of the developed large-scale CMOS neuromorphic computing
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platforms make use of this AER communication protocol. As neuromorphic systems have scaled up in
size and architectural complexity, many variations of the original point-to-point AER communication
scheme [71,73,74] have been proposed trying to improve the overall system communication bandwidth.
The broadcast-mesh-AER [75–77] proposes a generic approach to interconnect a mesh of AER devices
using a global mapper and interconnecting the devices in a chain architecture. The pre-structured
hierarchical AER approach [78] uses the knowledge of the network topology to interconnect AER
devices through different AER links. Mappers can be used in every link, however, once the
AER devices have been physically interconnected the changes in the configuration are limited.
The Hierarchical-Fractal AER [79] proposes different levels of interconnection by adding address
bits at higher level based on the idea that the traffic of spikes is going to be more intense at a
local level. The router-mesh AER [80] proposes to avoid an external mapper by placing a router
with a mapping table inside every AER module taking ideas from traditional NoC topologies [81].
The multicasting-mesh AER approach [82] proposes a simplification of the router-mesh AER by
employing routing tables that contain only information of the connectivity between modules instead
of allowing full neuron to neuron connectivity programming. Another approach developed to allow
programmable interconnections inside the same chip or at wafer scale has been to implement massive
programmable cross-point interconnects to configure the network topology [83] and including off-wafer
rerouting for longer range interconnects [84]. Recently, the Hierarchical Routing AER has been
proposed that establishes different hierarchical levels of nested AER links where each link has a
dynamically reconfigurable synaptic routing table which allows programmable connectivity of the
neurons without restriction on the spatial range of connectivity [85]. Moradi et al. have proposed
a mixed-mode hierarchical-mesh routing scheme that exploits a clustered connectivity structure to
reduce memory requirements and get a balance among memory overhead and reconfigurability [86].

Figure 5. Illustration of two neural populations communicated through a point-to-point AER bus. Each
neuron in the emitter population can be virtually connected to every neuron in the receiver population.

The above mentioned spike routing schemes have allowed the implementation of highly parallel
massively interconnected spiking neural networks and the multichip integration of SNN hardware
devoted to realize different specific parts of the cognitive function including integration of spike-based
sensors and neural processors.

CMOS spike-based vision sensors have been developed since the very beginning of the
neuromorphic engineering field [15]. Since then, a variety of AER visual sensors can be found in the
literature that use different approaches to encode the luminance such as simple luminance to frequency
transformation sensors [87], Time-to-First-Spike (TFS) coding sensors [88–91], foveated sensors [92,93],
sensors encoding the spatial contrast [94,95], spatial and temporal filtering sensors that adapt to
illumination and spatio-temporal contrast [96] and temporal transient detectors [97–104]. Among them,
the temporal transient detectors also know as Dynamic Vision Sensors (DVSs) have recently become
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very popular. They produce as output a stream of asynchronous events where each pixel codes the
temporal variation of the illumination inpinging on the pixel. Figure 6 illustrates the operation of a
DVS sensor. One of the advantages of this sensor is that it codes the information in a compressive
way sending only spikes when there is a relevant change in the illumination and thus removing the
static background features of the scene from the moving object. Another advantage is that all the
exact spatio-temporal information of the object is preserved with a reported precision in the spiking
times of the order of 10 µs. This converts these sensors in ideal candidates for high-speed processing
and recognition systems. Several companies are nowadays making an effort to develop commercial
prototypes of high-resolution DVS cameras: iniVation, Insightness, Samsung [105], CelePixel [106],
and Prophesee, aiming to develop high-speed autonomous intelligent vision systems. Other types of
spiking sensors have been developed such as cochleas [107–109] and tactile sensors [110,111] following
similar principles of encoding the sensed signal relative changes as a flow of neural spikes, thus,
generating a compressed information.

Figure 6. Illustration of the operation of a Dynamic Vision Sensor. (a,b) illustrate the operation a
DVS pixel. (a) plots the illumination inpinging on a pixel that varies as a sinusoidal waveform along
time with period 2.5 ms, and (b) illustrates the output spikes generated by the corresponding DVS
pixel. The blue traces correspond to positive output spikes which are generated when the illumination
increases, while the red traces illustrate the negative signed spikes generated by an illumination
decreasing over time. (d) illustrates real measurements of the response of a DVS when observing a
white rotating dot on a black background rotating with a 2.5 ms period, as shown in (c).

Regarding the neuromorphic hardware for processing, it should be distinguished between
the hardware implementing specific functionalities of the cognitive function and general purpose
SNN hardware platforms intended for emulating massive neural arrays. Among the specific
functional neuromorphic circuits, researchers have developed SNN neuromorphic chips implementing
computational primitives and operations performed in the brain such as:

• Winner-Take-All (WTA) is a brain inspired mechanism implemented by inhibitory interactions
between neurons in a population that compete to inhibit each other. The result is that the neuron
in the population receiving the highest input remains active while silencing the output of the rest
of the neurons. Hardware modules of spiking Winner-take-all networks have been reported [112].
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• Spiking Convolutional Networks (ConvNets): neural networks implementing in real time
the behaviour of the feature extraction layers of the cortex region have been implemented in
hardware [113–115].

• Hardware implementations of spiking neural networks for saliency maps detection have been
proposed as emulators of brain attention mechanisms [116].

• Spiking Liquid State Machines have also been implemented for recognition of sequential patterns
such as speech recognition tasks [117,118].

The specific SNN neuromorphic chips can be combined in a modular and scalable way [78] to
achieve optimum performance in terms of complexity, speed, and power consumption depending on
the specific application. However, the current evolution of hardware neuromorphic platforms tends to
large-scale modular computing systems with increasing numbers of neurons and synapses [62,119]
that are meant to be easily reconfigurable for different applications. Some of the most remarkable
large-scale neuromorphic systems developed until the present are:

• The IBM TrueNorth chip is based upon distributed digital neural models aimed at real-time
cognitive applications [120].

• The Stanford NeuroGrid uses real-time sub-threshold analogue neural circuits [121]. It has been
recently reversioned with the Braindrop chip prototype [122] which is a single core planned to be
part of the 1-million-neuron Brain Storm System [123].

• The Heidelberg BrainScaleS system uses wafer-scale above threshold analogue neural circuits
running 10,000 times faster than biological real time aimed at understanding biological systems,
and in particular, long-term learning [124].

• The Manchester SpiNNaker is a real-time digital many-core system that implements neural and
synapse models in software running on small embedded processors, again primarily aimed at
modelling biological nervous systems [125].

• The Intel Loihi chip consists of a mesh of 128 neuromorphic cores with an integrated learning
engine on-chip [126].

• The Darwin Neural Processing Unit is a hardware co-processor with digital logic specifically
designed for resource-constrained embedded applications [127].

• The ROLLS chip was developed at ETHZ-INI including 256 neurons and 128 k on-line learning
synapses [128]. Recently, it has been updated to the Dynamic Neuromorphic Asynchronous
Processor (DYNAPs) with 1 K neurons and 64 k on-line learning synapses [86].

• A digital realization of a neuromorphic chip (ODIN) containing 256 neurons and 64 K 4-bit
synapses exhibiting a spike-driven synaptic plasticity in FDSOI 28 nm technology has recently
been developed in the University of Leuven [129].

A comparison of the main features of these generic neuromorphic systems and the human brain is
shown in Table 2. In general, these systems are based on a processing chip which is part of a multi-chip
board (or wafer for BrainScaleS), and in some cases these boards can be assembled in multi-board racks,
scaling up more and more the size of the implemented network. Some of the most recent approaches
have not reported yet such multi-chip platforms.
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Table 2. Comparison of the major features of the human brain and the large-scale neuromorphic systems described in this work.

Platform Human
Brain Neurogrid BrainScaleS Truenorth SpiNNaker Loihi Darwin ROLLS DYNAPs ODIN

Technology Biology Analog,
sub-threshold

Analog,
over threshold Digital, fixed Digital,

programmable
Digital,
programmable

Digital,
programmable

Mixed-signal,
sub-threshold

Mixed-signal,
subthreshold

Digital,
programamble

Feature size 10 µm 180 nm 180 nm 28 nm 130 nm 14 nm 180 nm 180 nm 180 nm 28 nm
# transistors 23 M 15 M 5.4 B 100 M 2.07 B ≈M 12.2 M - -
Chip size 1.7 cm2 0.5 cm2 4.3 cm2 1 cm2 60 mm2 25 mm2 51.4 mm2 43.79 mm2 0.086 mm2

# neurons (chip) 65 k 512 1 M 16 k 131 k ≈M 256 1 k 256
# synapses (chip) 100 M 100 k 256 M 16 M 126 M Programmable 128 k 64 k 64 k
# chips per board 16 352 16 48 - - - - -
# neurons (board) 1011 1 M 200 k 16 M 768 k - - - - -
# synapses (board) 1015 4 B 40 M 4 B 768 M - - - - -
Energy per connection 10 fJ 100 pJ 100 pJ 25 pJ 10 nJ 81 pJ 10 nJ >77 fJ 30 pJ 12.7 pJ
On-chip learning Yes No Yes No Yes Yes Yes Yes No Yes
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4. Hybrid Memristor-CMOS Systems

As was mentioned in Section 1, progress in silicon technologies is reaching physical limitations
which are causing the end of Moore’s law, and traditional Von Neumann computing architectures
are reaching scalability limits in terms of computing speed and power consumption. Novel brain
inspired architectures have emerged as alternative computing platforms specially suitable for cognitive
tasks that require the processing of massively parallel data. As already stated in Section 3, one of
the main bottlenecks of the CMOS implementation of these neuromorphic parallel architectures
is the physical implementation of the massive synaptic interconnections among neurons and the
synaptic adaptability. The implementation of adaptable synaptic connections in CMOS technology
requires the use of large amount of circuitry for analog memory or digital memory blocks that
are costly in terms of area and energy requirements. Furthermore, learning rules to update these
synaptic memory devices have to be implemented. The interest in developing a compact adaptable
device obeying biological learning rules to implement the synaptic connections has motivated the
investigation on alternative nanotechnologies to complement the CMOS technology in this regard.
Memristive devices are novel two terminal devices able to change their conductance as a function
of the voltage/current applied to their terminals that were predicted in 1971 by Chua based on
circuit theory reasoning [17] and whose existence was experimentally demonstrated in nanomaterials
devices much later in 2008 [18]. Different materials with different conductance switching mechanisms
have been proposed [130] such as Phase-Change-Memory (PCM) [131], Conductive Bridge Memory
(CBRAM) [132], Ferroelectric Memories (FeRAM) [133], Redox-based resistive switching Memories
(ReRAM) [134], or organic memristive devices (OMD) [135–139]. Each of them presents different
characteristics in terms of compactness, reliability, endurance, memory retention term, programmable
states, and energy efficiency [69,140].

These devices present some properties specially valuable as electronic synaptic elements [141]:

• Memristors can be scaled down to feature sizes below 10 nm.
• They can retain memory states for years.
• They can switch with nanosecond timescales.
• They undergo spike-based learning in real time under biologically inspired learning rules as

Spike-Time-Dependent Plasticity (STDP) [31,32,34–36].

The characteristic i/v equations of a memristive element can be approximated by:

iMR = G(w, vMR)vMR

dw/dt = fMR(w, vMR)
(2)

where iMR, vMR are the current and the voltage drop at the terminal devices, respectively (as shown in
Figure 7a, G(w, vMR) is the conductance of the device that changes as function of the applied voltage
(supposing a voltage or flux controlled device model [142]), and w is some physical parametric
characteristic whose change is typically governed by a nonlinear function fMR of the applied
voltage including a threshold barrier. A typical fMR observed in memristive devices [142] can be
mathematically approximated by [28–30,143]

fMR =


Io ∗ sign(vMR)(e|vMR |/vo − evTH/vo ) i f |vMR| > vTh

0 otherwise
(3)

Figure 7b depicts the typical non-linear memristive adaptation curve fMR.
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Figure 7. (a) Memristor symbol and (b) typical thresholded memristive adaptation curve

According to Equations (2) and (3), when a voltage higher than vTH is applied between the
terminals of a voltage-controlled memristor, its resistance changes. This property has been used
to adapt supervisely the weights of simple perceptron networks [38] by applying voltage pulses
controlled by some error function to memristive devices. The performance of correct categorization
has been experimentally demonstrated [144–146]. Although these novel memristive devices open
very promising alternatives for electronic technologies, they are still far from the maturity reached
by CMOS sytems during the last decades. Instead, they are very promising technologies for
being integrated in 3D with CMOS technology providing a high-density memory closely tight to
computational units, thus overcoming the limitations of Von Neumann’s architecture. Very dense
architectures for 3D-integration of CMOS computing units with crossbar arrays of nanodevices like
the semiconductor/nanowire/molecular integrated circuits (CMOL) [147] architecture have been
proposed. A CMOL system combines the advantages of CMOS technology (flexibility and high
fabrication yield) with the high density of crossbar arrays of nanoscale devices. This structure consists
of a dense nanowire crossbar fabric on top of the CMOS substrate with memristor devices assembled
in the crossings between nanowires as shown in Figure 8. Figure 8a shows a crossbar nanoarray
where nanowires run in orthogonal directions. A memristive device is located at each cross point of
a vertical and horizontal nanowire. Figure 8b shows the proposed CMOL structure. The nanowire
crossbar is tilted with respect to the orientation of the 2D array of CMOS neurons. Each CMOS neuron
has an output pin (red dots in Figure 8b) and an input pin (blue dots in Figure 8b). Each neuron
output is connected to just one nanowire and each neuron input is connected to another nanowire in
the perpendicular direction. The crosspoint memristive devices implement the synaptic connections
between neurons. In the illustration of Figure 8b, the output of neuron 2 is connected to the input of
neuron 1 through the synaptic memristive device located at the intersection point (marked as a black
circle) of the two perpendicular nanowires (plotted as green lines) connected to neuron 2 output and
neuron 1 input, respectively. Other alternative architectures for neuromorphic structures based on
3D integration of CMOS neurons and memristive synapses have been proposed as CrossNets [148].
A functional digital FPGA-like implementation of a small CMOL prototype where the memristors
where used as digital switches to re-configure the digital hardware implemented in the CMOS cells
has been demonstrated [149].
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Figure 8. Illustration of the proposed hybrid CMOS/memristive CMOL architecture. (a) Memristive
devices fabricated in the cross-points of a crossbar array and (b) proposed CMOL architecture.
(c) Neuromorphic architecture composed of CMOS neurons connected to a crossbar array of memristors.

Neuromorphic architectures composed of CMOS neurons connected to a crossbar array of
memristors as shown in Figure 8c have also been proposed as accelerators to perform the intensive
matrix multiplications needed in deep machine learning architectures. In the memristive crossbar
shown in Figure 8c, the input vector [Vin1, Vin2, ..., VinN ] is applied as input voltages to the rows,
each memristor in an (i,j) crossbar position is programmed with an analog value wij so that the currents
flowing through the vertical columns are the result of the vector-matrix multiplication

Ij = ∑ wijVini. (4)

Many works have proposed including ReRAM memristive memory crossbars to implement
Matrix-Vector-Multiplication Units in computer architectures to accelerate Neural Network
applications [150–155] demonstrating great benefits in power consumption levels. PRIME [151] and
RESPARC [150] report simulations of energy savings compared to fully CMOS Neural Processors Units
in the order of 103 depending on the particular neural network architecture. Energy savings in the order
of 103–105 respect to baseline CPU implementations have been reported [153,155]. However, in these
works the memristor crossbars are included at a simulation level. A real hardware implementation
of a hybrid CMOS system including an array of ReRAM crossbar as vector matrix multiplication
elements for neural network computing acceleration at low energy consumption has been reported [22].
However, in this work the memristors are used in digital flip-flops as non-volatile digital devices.
The real integration of CMOS neurons with a crossbar of CBRAM memristors is also demonstrated [156]
for functional programming of a crossbar array of memristors in a digital way. More advanced
fabrication techniques have been proposed to integrate up to 5 layers of 100 nm memristors in 3D
crossbar arrays [157]. Some works have demonstrated the feasibility of integrating both carbon
nanotube field-effect transistors (CNFETs) and RRAM on vertically stacked layers in a single chip on
top of silicon logic circuitry, reporting 1952 CNFETs integrated with 224 RRAM cells for brain-inspired
computing [158], or a prototype with more than 1 million RRAM cells with more than 2 million
CNFETs in a single chip [25]. A recent work reported some circuit-level techniques for the design of
a 65 nm 1 Mb pseudo-binary nonvolatile computing-in-memory RRAM macro which is capable of
storing 512 k weights for Deep Neural Networks (DNN) [159].

However, so far experimental demonstrations of classification and training of memristive based
analogue-memory learning systems have been on reduced systems and without achieving monolithic
integration of the CMOS and memristive part [160], and suffered from classification inaccuracies
due to device imperfections as control of the weight update, the programming of multilevel values,
or variation in the device conductance range, limiting their application and severely degrading the
performance of the network [161,162]. Another important shortcoming that limits the density of the
implemented crossbars, as well as the practical hardware implementation of CMOL neuromorphic
memristive systems, is the necessity of implementing a MOSFET in series with each memristive
device (the so-called 1T1R devices) to limit the currents flowing through each memristor avoiding
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damage due to transient high-currents. When the transistor device is omitted, the current limitation
is done in the peripheral CMOS circuitry, limiting the size of the array to reduce the risk of local
high parasitic transient currents. In the 1T1R structures, the transistor also acts as a selection device
to update individually each memristor avoiding alteration of the nearby devices. As a summary,
although memristors are a very promising technology to implement high-density analog memories
close to the computing system that could potentially implement high-speed low power learning
cognitive system, there are still some technological limitations that are currently being investigated
that have not allowed to implement such large scale systems.

5. Learning with Memristors (STDP)

Given that these SNNs are more powerful, in theory, than 2nd generation networks, it is natural to
wonder why we do not see widespread use of them. One main issue that currently lies in practical use
of SNNs is that of training. Learning mechanisms are crucial for the ability of neuromorphic systems
to adapt to specific applications. In general, the goal of a learning algorithm is to modify the weights of
the synaptic connections between neurons in order to improve the response of the network to a certain
stimulus. Two main categories can be considered: supervised or unsupervised learning. In supervised
learning, the dataset samples are labeled with the identification of the expected ‘correct’ network
output. The measured deviation between the desired output and the real one is used to modify the
synaptic weights. In unsupervised learning, there is no labeled information, so the own characteristics
of the input data are analyzed by the network in order to self-organize.

As explained in Section 2, in the ANN field, the powerful computational capabilities of modern
GPUs and CPUs and the availability of large amount of annotated data have made possible to train
complex deep learning architectures using the supervised backpropagation learning algorithm [48] to
solve complex cognitive problems in some cases with better accuracy than humans. However, there
are no known effective supervised training methods for SNNs that offer higher performance than 2nd
generation networks. The popular backpropagation learning strategies are not directly usable in SNN
networks. On the one hand, if spikes are represented computationally as the occurrence of an output
event at a particular time (as represented in Figure 3) they are not differentiable; on the other hand,
differentiating the error back across the spatial layers (as it is done in the backpropagation algorithm)
looses the precise temporal information contained in the spike timings. Therefore, in order to properly
use SNNs for real-world tasks, we would need to develop an effective supervised learning method
that takes space and time simultaneously into account [163]. Several approaches for SNN training
have been adopted:

Training an ANN and conversion to SNN [66,164–167]. Some authors have proposed ANN to
SNN direct conversion methods which are based on the training of ANN using static input images
and directly mapping the network to an SNN converting the input stimulus to spikes using frequency
rate encoding [164,165,167]. Bodo et al. implemented several optimizations achieving for a rate coded
input similar performance than equivalent ANN implementations [165]. However, such encoding
reduces the power efficiency of SNN. Other authors have proposed to train SNN with sensory data
coming directly from a spike-based sensor (as a DVS recording). For that purpose, an equivalent
ANN using static images generated from histograms of the input recordings of spiking stimulus
is trained. Afterwards, a method to convert the weights of the ANN to the corresponding SNN is
devised [66]. The additional timing parameters as leakage time or refractory period characteristics
of SNN are optimized as hyper-parameters in the SNN resulting on different optimized parameter
values for different input dynamics. Bodo et al. recently proposed an ANN to SNN conversion method
based on time-to-first-spike input conversion code [166]. In all of these methods, training is done on
static images and thus they do not fully exploit directly all the spatio-temporal information contained
in the events.

Supervised training in the spiking domain. For the above mentioned reason, some methods
for direct supervised learning in the spiking domain have been proposed [168–179]. Some of the
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earlier SNN training methods were based on an adaptation of the Delta Learning Rule [44] and were
appropriate to train single layer architectures [169,171,172]. More recent SNN learning methods have
been reported that try to apply the backpropagation learning rules to SNN with several learning
layers. They include coding the spike times to have a differentiable relationship with a subset of
previous spikes and hence compatible with the gradient descent back-propagation rule in the temporal
domain [180], or approximating the spike shape response activity to be differentiable across neural
layers [174,175,177]. Wu et al. introduced an SNN Spatio-Temporal BackPropagation algorithm [177].
Not only do they approximate the spike shape as a continuous differentiable function, but also they
use a back-propagation-through-time (BTT) [163] which backpropagates the error in the space as
well as the time dimension reporting the best recognition accuracy achieved by previously reported
SNN on the MNIST and N-MNIST datasets and equivalent to the state-of-the-art of ANNs. Similarly,
the SLAYER method [178] considers back-propagation in space and time and trains both weights and
delays of the synaptic connections.

Unsupervised training in the spiking domain. The unsupervised SNN training methods are
mostly based on the well known Spike-Timing-Dependent Plasticity (STDP) learning rule [31,32]. STDP
is a Hebbian learning rule. The traditional Hebbian synaptic plasticity rule was formulated in 1940
suggesting that synapses increase their efficiency if they persistently take part in firing the post-synaptic
neuron [39]. Much later in 1993, STDP learning algorithms were reported [31,32] as a refinement of this
rule taking into account the precise relative timing of individual pre- and post-synaptic spikes, and not
their average rates over time. In comparison with traditional Hebbian correlation-based plasticity,
STDP proved to be better suited for explaining brain cortical phenomena [181,182], and demonstrated
to be successful in learning hidden spiking patterns [183] or performing competitive spike pattern
learning [184]. Interestingly, shortly after that, in 1997, STDP learning was experimentally observed
in biological neurons [33–35]. Figure 9a,b illustrate the STDP learning rule as observed in biological
synapses. Figure 9a plots a presynaptic neuron with a membrane potential Vpre which is connected
through a synapse with synaptic strength w to a postsynaptic neuron with membrane potential Vpost.
The presynaptic neuron emits a spike at time tpre which contributes to the generation of a postsynaptic
spike at time tpost. The biological learning rule observed by Bi and Poo is illustrated in Figure 9b.
When the two connected neurons generate spikes close in time, if ∆T = tpost − tpre is positive, meaning
that the presynaptic pulse contributed causally to generate the postsynaptic pulse, there is a positive
variation in the efficacy of the synaptic connection ξ(∆T) > 0; on the contrary, if ∆T = tpost − tpre is
negative, the variation in the efficacy of the synaptic connection ξ(∆T) < 0 is negative. Being STDP
a local learning rule, and memristors two-terminal devices exhibiting plasticity controlled by the
local applied voltage/current to their terminals converts memristors as ideal candidates to implement
high-density on-line STDP-based neuromorphic learning systems [27]. Linares et al. [28] showed that
by combining the memristance model formulated in Equation (2) with the electrical wave signals
of neural impulses (spikes) as shaped in Figure 9c applied to the pre- and post-synaptic terminals
of the memristive synaptic-like device, the STDP behavior shown in Figure 9d emerges naturally.
Considering the mathematical equation describing the spike shape shown in Figure 9c versus time

spk(t) =



A+
mp

et/τ+−et+tail /τ+

1−et+tail /τ+
i f − t+tail < t < 0

A−mp
e−t/τ−−e−t−tail /τ−

1−e−t−tail /τ−
i f 0 < t < t−tail

0 otherwise

(5)

and a memristive synapse-like device where a presynaptic spike spk(t) with attenuation αpre arrives at
time t to its negative terminal and a postsynaptic spike spk(t + ∆T) with attenuation αpos arrives at
time t + ∆T to its positive terminal, a voltage difference
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vMR(t + ∆T) = αposspk(t + ∆T)− αprespk(t) (6)

is generated among the device terminals. The total change in the memristance parameter w can thus
be computed as,

∆w(∆T) =
∫

fMR(vMR(t + ∆T))dt = ξ(∆T) (7)

Interestingly, for the memristor model considered in Equation (2) and the spike shape considered
in Equation (5), the memristance learning rule shown in Figure 9d ξ(∆T) is obtained which resembles
the STDP rule observed by Gerstner in biological neurons. By playing with the spike shapes, many
other STDP update rules can be tuned as demonstrated by Zamarreño et al. [29,30].

Figure 9. Illustration of STDP learning rule. (a) Pre-synaptic neuron generating a spike Vpre at time tpre

that arrives to a post-synaptic neuron that generates a spike Vpost at time tpost, being ∆T = tpost − tpre,
and (b) illustrates the variation of the synaptic efficacy ξ(∆T) Vs ∆T, STDP learning rule, as the
observed by Bi and Poo in biological synapses. (c) Illustrates the spike shape that applied to the
memristive devices describes in Section 4 reproduces the STDP learning rule shown in (d).

In the last decade, many different works have demonstrated the emergence of STDP learning in
memristive devices of different kinds of materials [137,180,185–189]. However, as already stated in
Section 4, at a system level, the current limitations of the memristor technology in terms of control
of the resolution of the weigh updating, have not made possible the implementation of working
STDP memristive learning systems with analog synaptic elements. Precision in the weight update
is difficult to control and most of the memristive devices operate changing between binary states.
For that reason, stochastic STDP learning rules that operate with binary weights during inference
and updating operation have been proposed. Seo et al. [190] applied this idea to simple classification
problems, but they found that they could not learn to separate more than 5 patterns. Recently,
Yousefzadeh et al. [191] were able to classify more elaborated databases (as MNIST) by introducing
some other techniques that improved the performance.

Combining unsupervised feature extraction methods with supervised categorization training.
While supervised learning methods like backpropagation are not energy efficient, are not appropriate
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for on-line chip learning, and do not look like biologically plausible, unsupervised learning rules
are appropriate to extract repetitive structures in the training data but not appropriate to take
decisions [192,193]. For example, Mozafari et al. propose to combine unsupervised STDP layer
with supervised Reinforcement Learning STDP layers [193]. The resulting network is more robust to
overfitting compared to backprogation training as it extracts common features and performs well with
reduced number of training samples.

6. Future Perspective

It is well known that the human brain contains about 1011 neurons interconnected through
1015 synapses, and with a power consumption of around 20 W it is capable of performing complex
sensing and cognitive processing, sophisticated motor control, learning and abstraction, and it
can dynamically adapt to changing environments and unpredicted conditions. For this reason,
neuromorphic engineers have been using the brain as a processing paradigm for several decades
in order to fabricate artificial processing systems with similar capabilities. After the initial
attempts of building the first spike-based processing systems demonstrated their feasibility and
showed their promising potential [78], it became evident the need for scaling up these systems
in terms of number of neurons and synapses [62]. Several works developed by both academic
institutions [86,121–125,127–129] and industrial players like IBM [120] or Intel [126] fabricated
neuromorphic chips with up to 1 M neurons and 256 M synapses, which could be ensembled in
multi-chip boards and multi-board platforms, opening the way to implement large systems in the near
future with numbers of neurons and synapses similar to the brain. However, these systems, based on
different CMOS technologies, will be limited by the their large room-scale size. Besides, the complexity
of current implementations of learning algorithms in CMOS limits their scalability.

The emergence of memristors and their synaptic-like behavior opened the possibility to overcome
the limitations of CMOS technologies. Memristors can be a few nanometers size and can be packed
densely in a two-dimensional layer with nanometer-range pitch, potentially offering higher neuron
and synaptic density. With a fabrication process much cheaper than CMOS, memristor layers can be
stacked in 3D. Assuming a reasonable 30-nm pitch, the superposition of 10 memristive layers could
theoretically provide a memory density of 1011 non-volatile analog cells per cm2. This approach could
in principle reach the neuron and synaptic density of the human brain in a single board, including
learning capabilities [194]. Furthermore, the close 3D dense packaging between the CMOS neural
computation units and the memristive adaptive memory synaptic elements can significantly reduce
the current consumption of the resulting systems.

Current available memristors are described as 1T1R devices, meaning that they are formed by the
series connection of a MOS transistor and a memristive element. This transistor is used to limit the
current flowing through the memristor during each operation (Forming, Writing, Erasing, Reading)
to avoid damaging the device. However, this structure is limiting the density of memristors, as they
are also consuming area in the CMOS substrate. An alternative to overcome this limitation is given
by 1S1R devices (1-selector-1-resistor), where a volatile memristor (1S) is connected in series with a
non-volatile memristor (1R), eluding any CMOS area consumption [195].

Hybrid systems with memristor layers fabricated on top of a CMOS substrate can provide highly
parallel massive storage tightly coupled to CMOS computing circuitry. Therefore, computing and
learning processes in the brain can be imitated by combining memristors with spiking processors
and integrate-and-fire neurons in silicon. Using mesh techniques [82], grids of tens of chips can
be assembled modularly on a Printed Circuit Board (PCB), allowing for scaling up the numbers of
neurons and synapses in a neural system [65]. The combination of all these techniques together
with the resolution of the multiple technical challenges currently associated to dense memristive
layers (reliability, repeatability, reprogrammability) could provide an important step towards the
hardware implementation of brain-scale low-power neuromorphic processing systems with online
STDP learning.
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