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Abstract: The thermal expansion coefficient and the microscopic thermal stresses of mature concrete
depend on its microstructural composition and the internal relative humidity. This dependence is
determined by means of thermoelastic multiscale analysis of concrete. The underlying multiscale
model enables two types of scale transition. Firstly, bottom-up homogenization allows for the
quantification of the thermal expansion coefficient and the elastic stiffness of concrete based on the
Mori-Tanaka scheme. Secondly, top-down scale concentration gives access to the volume averaged
stresses experienced by the cement paste, the fine and the coarse aggregates and, furthermore, to the
stress states of the interfacial transition zones covering the aggregates. The proposed model is
validated by comparing the predicted thermal expansion coefficient of concrete with independent sets
of experimental measurements. Finally, sensitivity analyses are carried out to evaluate the influence
of the volumetric composition and the internal relative humidity of concrete on the thermal expansion
coefficient and the microscopic thermal stresses.
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1. Introduction

The thermal expansion coefficient of mature concrete depends on the aggregate type, the volume
fractions of the constituents, the age and the internal relative humidity [1]. The type and the volume
fraction of coarse aggregates were shown to be particularly important for the values of the thermal
expansion coefficients of concrete [1–3]. Aggregates with a rich content of quartz have larger thermal
expansion coefficients compared to the ones with a rich content of calcite. Consequently, concrete
containing siliceous aggregates exhibits a larger thermal expansion coefficient than that with marble
aggregates [4,5]. A linear relation between the thermal expansion coefficient of concrete and the
volume fraction of coarse aggregates was reported by Chung [6] and Won [7], respectively. As for the
internal relative humidity (RH), the thermal expansion coefficient of concrete becomes a maximum
at around RH = 60% and a minimum at RH = 100% [4,6]. This follows from the dependence of the
thermal expansion coefficient of the cement paste on the internal relative humidity, see Figure 1 [1,8–10].
This coefficient becomes a minimum value for a fully-saturated (RH = 100%) cement paste and it
is slightly larger for a fully-dried (RH = 0%) cement paste. The thermal expansion coefficient of a
partially-saturated cement paste becomes larger. It reaches its maximum value at an internal relative
humidity around 65%, which is almost twice of its minimum value [11]. This dependence was
recently found to originate from the water uptake/release of the nanosized hydration products at
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decreasing/increasing temperature [11,12]. In this work, the influence of the composition and the
internal relative humidity of concrete on the thermal expansion coefficient will be quantified.
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Figure 1. Dependence of the thermal expansion coefficient on the internal relative humidity: experimental
data from Meyers [8], Mitchell [9] and Dettling [10], measured on mature cement paste with the initial
water-to-cement mass ratio ranging between 0.12 and 0.40; the curve was depicted by Emanuel and
Hulsey [1].

As for quantification of the thermal expansion coefficient of concrete, empirical models, based
on the rule of mixtures, have often been used [1,5]. Zhou et al. [13,14] developed a micromechanical
model to predict the thermal expansion of concrete and found that the aggregate type was the
decisive parameter for the thermal expansion coefficient of concrete while the influence of the
initial water-to-cement mass ratio was insignificant. By utilizing micromechanical modeling and
a homogenization method, Ghabezloo [15] investigated the effect of the porosity on the thermal
expansion coefficient of heterogeneous materials. He concluded that this coefficient may either
increase or decrease with increasing porosity, depending on the combination of the thermomechanical
properties of the constituents. Liu et al. [16] proposed a stochastic multiscale model for determination
of the thermal expansion coefficient of early-age mortar and quantified the significant influence of the
type and the volume fraction of the aggregates on this coefficient. By resolving the microstructure of
the cement paste to nanosized hydration products and gel pores, the thermoelastic properties of the
cement paste were homogenized by means of a microporomechanical model [11]. The present paper
refers to upscaling the thermoelastic properties of concrete, from the scale of observation of the cement
paste and the fine aggregates, via the intermediate scale of the mortar and the coarse aggregates, to the
scale of observation of the homogenized concrete.

Furthermore, microscopically inhomogeneous thermal deformations occur at temperature
variations as a result of the heterogeneity of concrete. This leads to microscopic thermal stresses and
to microcracking [17–21]. Based on multiscale postprocessing of the macroscopic thermomechanical
simulations, Wang et al. [22] concluded that the microstructural stress fluctuations of the cement
paste and the aggregates originate from the inhomogeneous thermal expansion and stiffness of the
microstructural constituents of concrete. Sumarac and Krasulja [18] investigated the damage of
plain concrete due to thermal incompatibility of its constituents. They concluded that a moderate
temperature change may cause a substantial degradation of concrete in consequence of microcracking
at the interface between the aggregates and the cement paste. By observing the crack propagation with
the scanning electron microscope (SEM) and experimentally determining the temperature-dependent
stress-strain relation of cement-based materials, Fu et al. [19] concluded that a mismatch of the thermal
deformation between the cement paste and the aggregates contributed to the thermal damage of
mortar subjected to high temperature. Additionally, numerical simulations with a 2-D mesoscopic
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thermoelastic damage model have shown that thermal-induced stresses and associated cracking
of cement-based composites at elevated temperatures are dominated by the thermal mismatch of
the matrix and the inclusions and also by the arrangement, the heterogeneity and the shape of the
inclusions [20,21]. This has provided the motivation for the present paper to explicitly quantify the
microscopic stresses of the constituents of concrete subjected to thermomechanical loading.

In the present paper, a thermoelastic multiscale model is established to study the macroscopic
thermal expansion and the microscopic thermal stresses of concrete in case of temperature changes.
To this end, the cement paste, the fine aggregates, the coarse aggregates and the interfacial transition
zones are introduced as elementary constituents of concrete. The scale transition from properties of
microstructural compositions to macroscopic thermoelastic properties of concrete is carried out by
means of the Mori-Tanaka scheme. As for the volume averaged microstresses of the cement paste
and the aggregates, the contributions of the macroscopic strains and of the microscopic eigenstrains
are considered. At a finer scale of observation, the continuity conditions of both the tractions and
displacements across the interfaces, together with the generalized Hooke’s law of the material, give
access to the microscopic stress states of the interfacial transition zones surrounding the aggregates.

The paper is structured as follows: The thermoelastic multiscale model of concrete is described
in Section 2, followed by its validation with independent sets of experimental data, in Section 3.
The influence of the type and the volume fractions of the aggregates and of the internal relative
humidity is studied in the framework of sensitivity analysis, in Section 4. Concluding remarks are
given in Section 5.

2. Thermoelastic Multiscale Model of Concrete

2.1. Micromechanical Representation of Concrete

In continuum micromechanics a composite material is considered to be macro-homogeneous but
micro-heterogeneous, occupying a representative volume element (RVE) with the characteristic size `.
It satisfies the separation of scales principle [23]:

d� `� D , (1)

d denotes the characteristic length of inhomogeneities within the RVE and D stands for the dimension
of the structure, made up with this RVE or for the characteristic length of the applied external loading.
The ratio `/d is typically in the range of 2 to 3 whereas the ratio D/` typically ranges between 5
to 50 [24–26].

In general, the microstructure of RVEs of concrete are too complex to be resolved in full detail.
Therefore, instead of it, quasi-homogeneous subdomains are introduced. They are referred to as
material phases. The homogenized properties of the RVEs are governed by the properties of the
material phases, their shapes, volume fractions and interactions [23].

The hierarchical organization of concrete, consisting of cement paste, fine aggregates and coarse
aggregates, is considered by means of two matrix-inclusion composites, introduced at two different
scales of observation. Concrete is idealized as a continuous mortar matrix, hosting spherical coarse
aggregate inclusions, see Figure 2a. Mortar is idealized as a continuous cement paste matrix with
spherical fine aggregates, embedded as inclusions, see Figure 2b.
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Figure 2. Material organogram of concrete in the form of two-dimensional sketches of three-dimensional
representative volume elements: (a) concrete consisting of coarse aggregate inclusions, embedded in a
mortar matrix, and (b) mortar consisting of fine aggregate inclusions, embedded in a cement paste matrix.

2.2. Bottom-Up Homogenization of the Macroscopic Thermoelastic Properties

The Mori-Tanaka scheme is well-suited for such matrix-inclusion composites. It allows for the
analytical homogenization of the thermoelastic properties of the composites. Each representative
volume element (RVE), occupying the domain VRVE, is subdivided into a matrix phase and an inclusion
phase, occupying the domains Vm and Vi, respectively. Each material phase p ∈ [m , i ] exhibits a
specific elastic stiffness Cp and a specific eigenstress σe

p,

∀x ∈ Vp :

{
C(x) = Cp

σe(x) = σe
p

, p ∈ [m , i ] , (2)

with a known volume fraction, defined as fp = Vp/VRVE.
Isotropic elasticity is considered for both the matrix and the inclusion phases. Their elastic stiffness

tensors Cp are expressed in terms of their bulk moduli kp and shear moduli µp:

Cp = 3 kp Ivol + 2 µp Idev , p ∈ [m , i ] , (3)

where Idev stands for the deviatoric part of the fourth-order unity tensor, defined as Idev = I− Ivol,
where I denotes the symmetric fourth-order unity tensor with Iijrs = 1/2(δirδjs + δisδjr) as its components
and Ivol = 1/3(1⊗ 1) stands for the volumetric part of the fourth-order unity tensor, where 1 denotes
the second-order unity tensor, with the Kronecker delta δij as its components, that is, δij = 1 for i = j
and δij = 0 otherwise.

The eigenstresses σe
p are proportional to the corresponding thermal eigenstrains εe

p

σe
p = −Cp : εe

p , p ∈ [m , i ] , (4)

the thermal eigenstrains are induced by the thermal expansion (or contraction) of the matrix and
inclusion phases as the temperature increases (or decreases) by ∆T, that is,

εe
p = αp ∆T 1 , p ∈ [m , i ] , (5)

where αm and αi are the thermal expansion coefficients of the matrix and of the inclusion phase, respectively.
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The volume fractions of the cement paste, the fine aggregates and the coarse aggregates are
obtained from the initial composition of concrete as

fcp =

mH2O
ρH2O

+ mclin
ρclin

mH2O
ρH2O

+ mclin
ρclin

+
m f agg
ρ f agg

+
mcagg
ρcagg

, (6)

f f agg =

m f agg
ρ f agg

mH2O
ρH2O

+ mclin
ρclin

+
m f agg
ρ f agg

+
mcagg
ρcagg

, (7)

fcagg =

mcagg
ρcagg

mH2O
ρH2O

+ mclin
ρclin

+
m f agg
ρ f agg

+
mcagg
ρcagg

, (8)

in these relations, mH2O, mclin, m f agg and mcagg denote the mass of water and of the cement clinkers,
the fine aggregates and the coarse aggregates per cubic meter of the concrete, while ρH2O, ρclin, ρ f agg
and ρcagg stand for their mass densities. Notably, these values are fractions of the overall volume of
concrete. Hence, their sum is equal to 1:

fcp + f f agg + fcagg = 1 , (9)

at the scale of the mortar, the matrix is the cement paste and the inclusions are the fine aggregates.
The mortar-related volume fractions of the matrix and the inclusion phases read as

f mort
m =

fcp

fcp + f f agg
, f mort

i = 1− f mort
m , (10)

at the scale of the concrete, the matrix is the mortar and the inclusions are the coarse aggregates. The
concrete-related volume fractions of the matrix and the inclusion phases read as

f con
m = fcp + f f agg , f con

i = 1− f con
m . (11)

The generalized Hooke’s law is used for the homogenized matrix-inclusion composite. It results in

Σhom = Chom : (Ehom − Ee
hom) = Chom : Ehom + Σe

hom , (12)

where Σhom and Ehom represent the macroscopic stress and strain, respectively. The homogenized
stiffness tensor reads as [27]

Chom = fm Cm : Am + fi Ci : Ai (13)

and the homogenized eigenstress as [22,28]

Σe
hom = fm σe

m : Am + fi σe
i : Ai , (14)

where Am and Ai denote the strain concentration tensors of the matrix and the inclusion phase.
They can be estimated by means of the Mori-Tanaka scheme as [23,29]

Ap =
[
I+ S : C−1

m : (Cp −Cm)
]−1

:

{
∑

j=m,i
f j

[
I+ S : C−1

m : (Cj −Cm)
]−1
}−1

, p ∈ [m , i ] , (15)

where S is the Eshelby tensor of a spherical inclusion, embedded in an infinite matrix of stiffness Cm.
It is defined as [30]

S = Svol Ivol + Sdev Idev , (16)
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with
Svol =

3 km

3 km + 4 µm
(17)

and

Sdev =
6 (km + 2 µm)

5 (3 km + 4 µm)
, (18)

inserting Equation (16) into Equation (15) results in the strain concentration tensor

Ap = Ap,vol Ivol + Ap,dev Idev , p ∈ [m , i ] , (19)

with

Ap,vol =

(
1 + Svol

kp − km

km

)−1
[

∑
j=m,i

f j

(
1 + Svol

k j − km

km

)−1
]−1

(20)

and

Ap,dev =

(
1 + Sdev

µp − µm

µm

)−1
[

∑
j=m,i

f j

(
1 + Sdev

µj − µm

µm

)−1
]−1

, (21)

where Ap,vol and Ap,dev denote the volumetric and the deviatoric part of the strain concentration
tensor, respectively. The homogenized stiffness tensor is obtained from inserting Equation (16) into
Equation (15), followed by substituting the result together with Equation (3) into Equation (13):

Chom = 3 khom Ivol + 2 µhom Idev , (22)

khom and µhom stand for the homogenized bulk and shear modulus, respectively, of the composite,
that is,

khom =
fi ki

[
1 + Svol (ki−km)

km

]−1
+ fm km

fi

[
1 + Svol (ki−km)

km

]−1
+ fm

, (23)

and

µhom =
fi µi

[
1 + Sdev (µi−µm)

µm

]−1
+ fm µm

fi

[
1 + Sdev (µi−µm)

µm

]−1
+ fm

. (24)

As for quantifying the thermal expansion coefficient of the homogenized composite, αhom,
the composite is assumed to deform freely. Hence, the macroscopic stress tensor vanishes. For this
scenario, Equation (12) yields

Σhom = 0 ⇒ Ehom = Ee
hom = −C−1

hom : Σe
hom , (25)

the sought expression for αhom is obtained by writing the homogenized eigenstrain Ee
hom in Equation (25)

as αhom∆T1 and inserting Equation (5) into Equation (4), followed by substituting the obtained expression
into Equation (14) and, finally, by inserting the outcome together with Equation (13) into Equation (25).
After division by ∆T, this yields [22]

αhom 1 = [ fmCm : Am + fiCi : Ai]
−1 : [αm fm(Cm : 1) : Am + αi fi(Ci : 1) : Ai] , (26)

inserting Equations (20) and (21) into Equation (19) and substituting the result into Equation (26) provides
the analytical solution of the thermal expansion coefficient of the homogenized matrix-inclusion
composite:

αhom =
3 ki km (αm fm + αi fi) + 4 µm (αm fm km + αi fi ki)

3 ki km + 4 µm ( fm km + fi ki)
. (27)
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Homogenization of the concrete is carried out in two steps. Firstly, the matrix-inclusion composite
of mortar in Figure 2b is homogenized. The stiffness tensor and the thermal expansion coefficient of
mortar are calculated by inserting the quantities that stand for material properties of the cement paste
matrix and of the fine aggregate inclusions into Equations (13) and (27). The resulting solutions serve
as input for the subsequent homogenization of the matrix-inclusion composite of concrete in Figure 2a
in the second step. The stiffness tensor and the thermal expansion coefficient of concrete are computed
by inserting the quantities that represent material properties of the homogenized mortar matrix and of
the coarse aggregate inclusions into Equations (13) and (27).

2.3. Top-Down Quantification of the Microscopic Thermal Stresses

2.3.1. Volume Averaged Stresses of the Constituents of Concrete

The volume averaged microstresses of the matrix and the inclusions are quantified by top-down
scale transition, based on knowledge of the macrostress tensor Σhom and of the temperature change
∆T. The homogenized eigenstress Σe

hom is quantified by substituting Equation (5) into Equation (4)
and inserting the result into Equation (14). Substituting the latter together with Equation (13) into
Equation (12) allows for quantification of the macroscopic strain Ehom as

Ehom = C−1
hom : (Σhom − Σe

hom) , (28)

considering the influence of the macroscopic strain Ehom and of the microscopic eigenstrain εe
p,

the volume averaged microscopic strain εp is expressed as [31,32]

εp = Ap : Ehom + ∑
q=m,i

Dpq : εe
q , p ∈ [m , i ] , (29)

where Dpq stands for the eigenstrain influence tensor. For q = p, it expresses the influence of the
eigenstrain of phase p on its the microstrain, reading as [31]

Dpp =
[
I− fpAp

]
:
[
I+ S : C−1

m :
(
Cp −Cm

)]−1
:
(
S : C−1

m

)
: Cp , (30)

for q 6= p, it expresses the influence of the eigenstrain of phase q on the microstrain of phase p, reading
as [31]

Dpq = −Ap : fq

[
I+ S : C−1

m :
(
Cq −Cm

)]−1
:
(
S : C−1

m

)
: Cq , (31)

considering Equations (3) and (19), the eigenstrain influence tensors may be split into a volumetric and
a deviatoric part, that is,

Dpp = Dpp,vol Ivol + Dpp,dev Idev ,

Dpq = Dpq,vol Ivol + Dpq,dev Idev ,
(32)

inserting Equation (32) into Equations (30) and (31) and substituting the result together with
Equation (5) into Equation (29) delivers the volume averaged microscopic strains of the matrix and of
the inclusions as

εm = Am : Ehom + Dmm,vol αm ∆T 1 + Dmi,vol αi ∆T 1 ,

εi = Ai : Ehom + Dim,vol αm ∆T 1 + Dii,vol αi ∆T 1 ,
(33)
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with

Dmm,vol = (1− fm Am,vol) Svol ,

Dmi,vol = − fi Am,vol

(
1 + Svol

ki − km

km

)−1
Svol

ki
km

,

Dim,vol = − fm Ai,vol Svol ,

Dii,vol = (1− fi Ai,vol)

(
1 + Svol

ki − km

km

)−1
Svol

ki
km

,

(34)

the volume averaged microstresses of the matrix and inclusion phases, σm and σi, respectively,
finally follow from the elasticity law as

σm = Cm : (εm − εe
m) , σi = Ci : (εi − εe

i ) . (35)

Top-down computation of the microstresses with the help of the Equations (28)–(35) is first
performed for the representative volume element of concrete, see Figure 2a, based on knowledge of the
macroscopic stresses of concrete and of the temperature fields obtained from structural simulations.
This gives access to the volume averaged stresses of the mortar and of the coarse aggregates. Thereafter,
this top-down analysis is applied to the representative volume element of mortar, see Figure 2b, taking
the computed stress state of mortar as input for quantifying the volume averaged stresses of the cement
paste and the fine aggregates. Notably, given the fact that the thickness of the interfacial transition zones
is much smaller than the dimensions of the aggregate inclusions, they are idealized as two-dimensional
interfaces, representing a firm bond between the matrix phase and the inclusion phases.

2.3.2. Microstress States of the Interfacial Transition Zones

Interfacial transition zones are thin layers of the porous cement paste covering the aggregates.
They represent the weakest links in the microstructure of concrete [33]. Given the small volume fraction
of ITZs, they are not distinguished from the bulk cement paste. Thus, for estimation of the homogenized
stiffness and the thermal expansion coefficient of concrete, they are idealized as two-dimensional
interfaces. However, microscopic stress states of the ITZs are important for investigation of cracking
and of the strength of concrete [26,34]. In order to quantify the microstress states of ITZs, they are
resolved as three-dimensional shells covering the aggregates at a finer scale of observation.

Assuming a firm bond between the aggregate inclusions and the surrounding ITZ shells,
continuity conditions of both the tractions and displacements must be satisfied across the interfaces.
Traction continuity results in the compatibility relation for the stresses of the inclusion, σi, and of the
ITZ, σITZ, across the interface I ITZ

i [34]

[σi − σITZ(x)] · n(x) = 0 , ∀x ∈ I ITZ
i , (36)

where n(x) represents the outward unit normal vector at the position x of the interface. The requirement
of displacement continuity results in the compatibility relation for the strains of the inclusion phase, εi,
and of the ITZ, εITZ, across the interface I ITZ

i [34]

t1(x) · [εi − εITZ(x)] · t2(x) = 0 , ∀x ∈ I ITZ
i , (37)

where t1(x) and t2(x) denote an arbitrary pair of vectors in the tangential plane of the interface at
the position x. Notably, homogeneous microstrains and microstresses are good approximations of
the actual microstress and microstrain states inside the inclusions, as suggested by the Mori-Tanaka
estimation [23]. Hence, the volume averaged stress state, σi, and the corresponding strain state, εi,
are also representative for the surfaces of the aggregate inclusions, irrespective of the position x, see
Equations (36) and (37).
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A local spherical coordinate system e = (er, eθ , eφ) is introduced, see Figure 3. The zenith angle θ

and the azimuth angle φ determine the considered point of the ITZ.

fine aggregate

(a) concrete (b) mortar

coarse aggregate

cement paste

Figure 3. Local spherical coordinate system covering the inclusion phase.

Transformation of the Cartesian components of the stress tensor and the strain tensor into components
related to the local spherical coordinate system is carried out by means of the transformation matrix

Q =

 cos φ sin θ sin φ sin θ cos θ

cos φ cos θ sin φ cos θ − sin θ

− sin φ cos φ 0

 , (38)

the transformation rule for the stress components reads as σagg,rr σagg,rθ σagg,rφ

σagg,rθ σagg,θθ σagg,θφ

σagg,rφ σagg,θφ σagg,φφ

 = Q ·

 σagg,xx σagg,xy σagg,xz

σagg,xy σagg,yy σagg,yz

σagg,xz σagg,yz σagg,zz

 ·QT , (39)

where QT stands for the transpose of Q. Replacing σ by ε in Equation (39) delivers the corresponding
transformation rule for the strain components. Substituting the unit outward normal vector n, reading
as (1, 0, 0) in the local spherical coordinate system, into Equation (36) results in the continuity relations
for the three stress components with the index r [34]

σagg,rr(θ, φ) = σITZ,rr(θ, φ) ,

σagg,rθ(θ, φ) = σITZ,rθ(θ, φ) ,

σagg,rφ(θ, φ) = σITZ,rφ(θ, φ) ,

(40)

considering the pair of vectors (t1, t2) in Equation (37) as (eθ , eθ), (eφ, eφ) and (eθ , eφ), respectively, yields
the continuity relations for the three strain components without the index r

εagg,θθ(θ, φ) = ε ITZ,θθ(θ, φ) ,

εagg,φφ(θ, φ) = ε ITZ,φφ(θ, φ) ,

εagg,θφ(θ, φ) = ε ITZ,θφ(θ, φ) .

(41)

Consideration of the continuity of the tractions and the displacements permits determination
of the three stress and the three strain components of the ITZ, see Equations (40) and (41), based on
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knowledge of the stresses and the strains of the aggregates. The remaining unknown stress and strain
components are determined by means of the generalized Hooke’s law for the ITZ, reading as [35]

σITZ,rr
σITZ,θθ

σITZ,φφ√
2 σITZ,θφ√
2 σITZ,rφ√
2 σITZ,rθ


=



kITZ + 4
3 µITZ kITZ − 2

3 µITZ kITZ − 2
3 µITZ 0 0 0

kITZ − 2
3 µITZ kITZ + 4

3 µITZ kITZ − 2
3 µITZ 0 0 0

kITZ − 2
3 µITZ kITZ − 2

3 µITZ kITZ + 4
3 µITZ 0 0 0

0 0 0 2 µITZ 0 0
0 0 0 0 2 µITZ 0
0 0 0 0 0 2 µITZ



·



ε ITZ,rr
ε ITZ,θθ

ε ITZ,φφ√
2 ε ITZ,θφ√
2 ε ITZ,rφ√
2 ε ITZ,rθ


− 3 kITZ



αITZ ∆T
αITZ ∆T
αITZ ∆T

0
0
0


, (42)

where kITZ and µITZ denote the bulk and the shear modulus of the ITZ, respectively, and αITZ stands
for the thermal expansion coefficient of the ITZ. The sought three stress components read as

σITZ,θθ(θ, φ) =
[
4 µITZ (3 kITZ + µITZ) ε ITZ,θθ + (3 kITZ − 2 µITZ) (2 µITZ ε ITZ,φφ + σITZ,rr)

− 18 kITZµITZ αITZ ∆T
]
/(3 kITZ + 4 µITZ) ,

σITZ,φφ(θ, φ) =
[
4 µITZ (3 kITZ + µITZ) ε ITZ,φφ + (3 kITZ − 2 µITZ) (2 µITZ ε ITZ,θθ + σITZ,rr)

− 18 kITZµITZ αITZ ∆T
]
/(3 kITZ + 4 µITZ) ,

σITZ,θφ(θ, φ) = 2 µITZ ε ITZ,θφ ,

(43)

and the sought three strain components as

ε ITZ,rr(θ, φ) =
3 σITZ,rr − (3 kITZ − 2 µITZ) (ε ITZ,θθ + ε ITZ,φφ) + 9 kITZ µITZαITZ ∆T

3 kITZ + 4 µITZ
,

ε ITZ,rθ(θ, φ) =
σITZ,rθ

2 µITZ
,

ε ITZ,rφ(θ, φ) =
σITZ,rφ

2 µITZ
.

(44)

3. Model Validation of the Thermal Expansion Coefficient of Fully-Saturated Concrete

Various test results of the thermal expansion coefficients of mature cementitious materials are
available in the open literature. They are significantly influenced by the test set-up. A relatively new
test method, recommended by the American Association of State Highway and Transport Officials,
AASHTO TP 60 [36], has become widely accepted for determination of thermal expansion coefficients
of cementitious materials. It is based on measuring the length change of a fully-saturated cementitious
specimen, that is, for RH = 100%, due to a specific temperature change. Following this standard
method, Sakyi-Bekoe [2], Tasneem et al. [3] and Naik et al. [37] independently determined the thermal
expansion coefficients of concretes with different initial compositions experimentally. Their results are
used for validation of the proposed thermoelastic model.

3.1. Thermoelastic Properties of the Cement Paste and of the Aggregates

Thermoelastic properties of the cement paste and of the aggregates are input for the proposed
multiscale model. After mixing the cement clinker with water, the elastic modulus and the strength of the
cement paste are growing fast in the first week and then are slowing down. Haecker et al. [38] measured
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the elastic modulus of the cement paste, made of ASTM type I cement with an initial water-to-cement
mass ratio ranging between 0.25 and 0.60, at the age of 14 days and 56 days, respectively, after mixing.
The latter, which are slightly larger than the former, are taken as the elastic moduli of mature cement
pastes, see Table 1. Poisson’s ratio of the mature cement paste is considered to be constant and equal to
0.20 [13]. The corresponding values of the bulk modulus k and the shear modulus µ in Equation (3) can
be determined based on the standard relations for isotropic materials,

k =
E

3(1− 2 ν)
, µ =

E
2(1 + ν)

, (45)

where E and ν denote the elastic modulus and Poisson’s ratio, respectively. The thermal expansion
coefficient of the fully-saturated cement paste is set equal to 10.5× 10−6/◦C, see Figure 1.

Table 1. Elastic moduli of mature cement pastes with different initial water-to-cement mass ratios at
the age of 56 days after mixing [38].

w/c [-] 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

elastic modulus [GPa] 33.7 30.3 26.9 23.6 21.8 19.4 18.1 17.2

The elastic modulus, Poisson’s ratio and the thermal expansion coefficient of the aggregate depend
on the mineral composition, the porosity, the crystal orientation and the texture of the aggregate
rock [1,5,39,40]. Thus, the thermoelastic properties of the same type of aggregate from different sources
can be different. Emanuel et al. [1] and Gudmundsson [39] listed the range of the thermal expansion
coefficients and of the elastic parameters of typical rock aggregates, respectively. Their average values,
see Table 2, are taken herein as input for prediction of the thermal expansion coefficient of concrete.

Table 2. Thermal expansion coefficients [1] and elastic parameters [39] of commonly-used concrete aggregates.

Aggregate Thermal Expansion Elastic Poisson’s
Type Coefficient [10−6/◦C] Modulus [GPa] Ratio [-]

limestone 4.75 45 0.270
dolomite 8.50 55 0.225

sandstone 11.25 35 0.250
basalt 6.75 70 0.220

diabase 6.75 78 0.215
granite 7.50 35 0.230
marble 5.50 65 0.245

quartzite 11.75 50 0.160

3.2. Comparison with Independent Experimental Measurements

(1) Experiments by Sakyi-Bekoe

Sakyi-Bekoe [2] measured the thermal expansion coefficients of concretes from Alabama, USA.
Granite, siliceous river gravel and dolomitic limestone, respectively, were used as the coarse aggregates,
while siliceous sand was used as the fine aggregate. Three different ratios of volume fraction of the fine
and the coarse aggregates were considered, namely, f f agg/ fcagg = [ 40/60 , 45/55 , 50/50 ]. Three different
values of the initial water-to-cement mass ratio were chosen, namely, w/c = [ 0.32 , 0.38 , 0.44 ]. As the
initial water-to-cement mass ratio w/c increased from 0.32 to 0.44, the volume fraction of the cement
paste, fcp, decreased from 0.35 to 0.31.

As for the model prediction, the thermoelastic properties of siliceous sand, granite, siliceous river
gravel and dolomitic limestone were taken as the ones of quartzite, granite, sandstone and dolomite,
from Table 2. The elastic moduli of the cement pastes with different initial water-to-cement mass
ratios are obtained by interpolating the values in Table 1. Input for model predictions, namely, volume
fractions and thermoelastic properties of the constituents of concrete, are summarized in Table 3a,b.
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Table 3. Input for model predictions of the experiments by Sakyi-Bekoe [2]: (a) volume fraction and
(b) thermoelastic properties of the cement paste, the fine aggregates and the coarse aggregates.

(a)
w/c fcp f f agg / fcagg f f agg fcagg

0.32 0.35
40/60 0.260 0.390
45/55 0.2925 0.3575
50/50 0.325 0.325

0.38 0.33
40/60 0.268 0.402
45/55 0.3015 0.3685
50/50 0.335 0.335

0.44 0.31
40/60 0.276 0.414
45/55 0.3105 0.3795
50/50 0.345 0.345

(b)
Thermal Expansion Elastic Poisson’s

Coefficient [10−6/◦C] Modulus [GPa] Ratio [-]

cement paste
w/c = 0.32 10.50 28.94 0.20
w/c = 0.38 10.50 24.92 0.20
w/c = 0.44 10.50 22.16 0.20

siliceous sand (quartzite) 11.75 50.00 0.16

granite 7.50 35.00 0.23
siliceous river gravel (sandstone) 11.25 35.00 0.25
dolomitic limestone (dolomite) 8.50 55.00 0.225

The model predicted thermal expansion coefficients of concretes with different initial compositions
agree well with the experimental measurements, see Table 4. Considering the latter as the reference
values, the mean absolute error of this set of model predictions, that is, the deviation from the
experimental measurements, is equal to 0.65 × 10−6/◦C. The root mean square error is equal to
0.84× 10−6/◦C. These values are relatively small compared to the reference values.

Table 4. Comparison of the model predicted with the experimentally measured thermal expansion
coefficients by Sakyi-Bekoe [2] for concretes with granite, siliceous river gravel and dolomitic limestone
as coarse aggregates (unit: 10−6/◦C).

w/c f f agg / fcagg
Granite Siliceous River Gravel Dolomitic Limestone

Measured Predicted Measured Predicted Measured Predicted

0.32
40/60 10.15 9.64 12.62 11.16 10.19 9.25
45/55 10.24 9.79 12.28 11.17 9.56 10.04
50/50 10.64 9.93 12.49 11.19 9.74 10.15

0.38
40/60 9.86 9.59 12.73 11.19 10.06 9.90
45/55 9.94 9.74 12.47 11.20 10.10 10.02
50/50 10.35 9.90 12.28 11.22 9.97 10.13

0.44
40/60 9.67 9.55 13.01 11.21 9.94 9.87
45/55 10.03 9.71 12.35 11.23 9.81 9.99
50/50 9.85 9.87 12.37 11.25 10.12 10.12

(2) Experiments by Tasneem et al.

Tasneem et al. [3] measured the thermal expansion coefficients of concretes with different types
and volume fractions of aggregates. Granite and dolomite were used as the coarse aggregates while
the fine aggregates were natural sand, originated from marine sedimentary rock, and manufactured
sand, crushed from granite, respectively. The volume fraction of the cement paste, fcp, was set equal to
0.33, with an initial water-to-cement mass ratio w/c of 0.50.
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As for the model prediction, the thermoelastic properties of natural sand were taken as the
ones of the sandstone. The input thermoelastic properties of the cement paste, the fine aggregates
and the coarse aggregates are summarized in Table 5. The volume fractions of the fine and the coarse
aggregates, f f agg and fcagg, were determined according to the mass mixture and the mass density,
see Table 6.

Table 5. Input for model predictions of the experiments by Tasneem et al. [3]: thermal expansion
coefficients and elastic parameters of the cement paste, the fine aggregates and the coarse aggregates.

Cement Paste Manufactured Sand Natural Sand Granite Dolomite(Granite) (Sandstone)

thermal expansion 10.50 7.50 11.25 7.50 8.50
coefficient [10−6/◦C]

elastic 19.40 35 35 35 55modulus [GPa]

Poisson’s 0.20 0.23 0.25 0.23 0.225ratio [-]

The model predicted thermal expansion coefficients of concretes with different initial compositions
agree well with the experimental measurements, see Table 6. Considering the latter as the reference
values, the mean absolute error of this set of model predictions, that is, the deviation from the
experimental measurements, is equal to 0.28 × 10−6/◦C. The root mean square error is equal to
0.30× 10−6/◦C. These values are relatively small compared to the reference values.

Table 6. Comparison of the model predicted with the experimentally measured thermal expansion
coefficients by Tasneem et al. [3] for concretes with different volumetric compositions (unit: 10−6/◦C).

Coarse Aggregate Fine Aggregate fcp f f agg fcagg Measured Predicted

granite

manufactured sand 0.33 0.20 0.47 7.99 8.30
natural sand 0.33 0.20 0.47 8.82 9.12

manufactured sand 0.33 0.41 0.26 8.26 8.30
natural sand 0.33 0.41 0.26 9.76 9.98

dolomite

manufactured sand 0.33 0.22 0.45 8.48 8.77
natural sand 0.33 0.22 0.45 9.07 9.61

manufactured sand 0.33 0.43 0.24 8.32 8.57
natural sand 0.33 0.43 0.24 9.61 9.36

(3) Experiments by Naik et al.

Naik et al. [37] measured the thermal expansion coefficients of concretes with six types of coarse
aggregates, namely, glacial gravel, quartzite, granite, diabase, basalt and dolomite. Natural sand was
used for the fine aggregates. The initial water-to-cement mass ratio w/c was around 0.40.

As for the model prediction, the thermoelastic properties of glacial gravel and natural sand were
taken as the ones of sandstone. The input thermoelastic properties of the cement paste, the fine
aggregates and the coarse aggregates are summarized in Table 7. Volume fractions of the cement paste,
the fine aggregates and the coarse aggregates follow from the mass mixture and the mass density. They
were found to be almost constant, reading as

fcp = 0.30 , f f agg = 0.25 , fcagg = 0.45 . (46)
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Table 7. Input for model predictions of the experiments by Naik et al. [37]: thermal expansion coefficients
and elastic parameters of the cement paste, the fine aggregates and the coarse aggregates.

Cement Paste Natural Sand Glacial Gravel Dolomite Quartzite Diabase Basalt(Sandstone) (Sandstone)

thermal expansion 10.50 11.25 11.25 8.5 11.75 6.75 6.75
coefficient [10−6/◦C]

elastic 23.6 35 35 55 50 78 70modulus [GPa]

Poisson’s 0.20 0.25 0.25 0.225 0.16 0.215 0.22ratio [-]

The model predicted thermal expansion coefficients of concretes with different types of coarse
aggregates agree well with the experimental measurements, see Table 8. Considering the latter as the
reference values, the mean absolute error of this set of model predictions, that is, the deviation from
the experimental measurements, is equal to 0.70× 10−6/◦C. The root mean square error is equal to
0.74× 10−6/◦C. These values are relatively small compared to the reference values.

Table 8. Comparison of the model predicted with the experimentally measured thermal expansion
coefficients by Naik et al. [37] for concretes with different types of coarse aggregates (unit: 10−6/◦C).

Coarse Aggregate Glacial Gravel Dolomite Quartzite Granite Diabase Basalt

measured 10.20 10.60 12.20 9.50 9.30 9.30
predicted 11.06 9.65 11.31 9.27 8.66 8.68

The comparison of model predicted thermal expansion coefficients of concrete with experimentally
measured values in Tables 4, 6 and 8 is summarized in Figure 4. It demonstrates the usefulness of
the proposed model. Fluctuations of the thermoelastic properties of the aggregates and the cement
paste may be the reason of the relatively small differences between the model predictions and the
experimental measurements.

0 3 6 9 12 15
0

3

6

9

12

15

Sakyi-Bekoe

Tasneem et al.

Naik et al.

Figure 4. Comparison of model predicted thermal expansion coefficients of concrete with results from
experimental measurements by Sakyi-Bekoe [2], Tasneem et al. [3] and Naik et al. [37].

4. Sensitivity Analysis

The type and the volume fraction of the aggregates, as well as the internal relative humidity, are reported
to have a significant influence on the thermal expansion coefficient of concrete [1–4,6,8–10,13,14,37].
By utilizing the established thermoelastic model of concrete, the sensitivity of the thermal expansion
coefficient and the thermal microstresses of concrete with respect to the material composition and the
internal relative humidity are investigated.
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4.1. Sensitivity of the Thermal Expansion Coefficient with Respect to the Volumetric Composition of Concrete

The thermal expansion coefficient of concrete, containing three different coarse aggregates,
namely, sandstone, granite and limestone, respectively, with different volume fractions, is determined.
The initial water-to-cement mass ratio w/c is set equal to 0.40. The internal relative humidity, RH,
is assumed as approximately 50%, resulting in 18× 10−6/◦C as the value of the thermal expansion
coefficient of the cement paste, see Figure 1. Sandstone is used for the fine aggregates. Thermoelastic
properties of the cement paste, the fine aggregates and of three types of coarse aggregates, serving as
input, are listed in Table 9.

Table 9. Input for sensitivity analysis: thermal expansion coefficient and elastic parameters of the
cement paste, the fine aggregates and the coarse aggregates.

Cement Paste
Fine Aggregates Coarse Aggregates

Sandstone Sandstone Granite Limestone

thermal expansion 18.0 11.25 11.25 7.50 4.75
coefficient [10−6/◦C]

elastic 23.6 35.0 35.0 35.0 45.0modulus [GPa]

Poisson’s 0.20 0.25 0.25 0.23 0.27ratio [-]

The volume fraction of the cement paste is a constant, given as fcp = 0.30. The volume fraction of
the coarse aggregates with respect to the total volume of aggregates varies from 0.20 to 0.80:

fcagg/( f f agg + fcagg) ∈ [ 0.20 , 0.30 , 0.40 , 0.50 , 0.60 , 0.70 , 0.80 ] . (47)

The computed values of the thermal expansion coefficient of concrete strongly depend on the
type and the volume fraction of the coarse aggregates, see Figure 5. For adequate consolidation of the
concrete, the volume fraction of the coarse aggregates is generally in the range of 35% to 50% [41],
see the shaded area in Figure 5. The mixtures outside this range are just part of a laboratory study.
The concrete made with sandstone exhibits the largest thermal expansion coefficient, while that with
limestone exhibits the smallest one. The thermal expansion coefficient of concrete depends nearly
linearly on the volume fraction of coarse aggregates.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

4

8

12

16

sandstone

granite

limestone

Figure 5. Dependence of the thermal expansion coefficient of concrete on the type and the volume
fraction of the coarse aggregates, with RH = 50%, fcp = 0.30 and w/c = 0.40.
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4.2. Sensitivity of the Thermal Expansion Coefficient of Concrete with Respect to the Internal Relative Humidity

The thermal expansion coefficient of concrete, containing three different coarse aggregates, namely,
sandstone, granite and limestone, respectively, with different internal relative humidities, is determined.
The initial water-to-cement mass ratio w/c is set equal to 0.40. Sandstone is used for the fine aggregates.
The volume fraction of the cement paste is assumed as 0.30 and the volume fraction of the coarse
aggregates with respect to the total volume of aggregates is set equal to 0.60, such that

fcp = 0.30 , f f agg = 0.28 , fcagg = 0.42 , (48)

the thermoelastic properties of the fine and the coarse aggregates, as well as the elastic parameters of
the cement paste, follow from Table 9. The thermal expansion coefficient of the cement paste follows
the unsymmetrical bell-shaped function of the internal relative humidity, see Figure 1.

The computed thermal expansion coefficient of concrete follows an unsymmetrical bell-shaped
function of the internal relative humidity, see Figure 6. The thermal expansion coefficients of fully-dried
and fully-saturated concrete are almost equal, that is, they are smaller than those of partially-saturated
concrete. The maximum value of the thermal expansion coefficient occurs for a concrete with an
internal relative humidity of approximately 65%. Depending on the type of the coarse aggregates,
the maximum variation of the thermal expansion coefficient, induced by internal relative humidity,
is between 21% and 28%, see Figure 6.

0 20 40 60 80 100
0

4

8

12

16

sandstone

granite

limestone

Figure 6. Dependence of the thermal expansion coefficient on the internal relative humidity for concrete,
containing sandstone, granite and limestone, respectively, as coarse aggregates, with w/c = 0.40,
fcp = 0.30 and with the ratio of the volume fraction of the coarse aggregates over the total volume of
aggregates equal to 0.60.

4.3. Sensitivity of the Thermal Microstresses of Concrete with Respect to the Volumetric Composition
of Concrete

In order to study the influence of the volumetric composition and the internal relative humidity
on the thermal microstresses, a concrete volume is considered to be subjected to a uniform temperature
change ∆T, while being macroscopically kept stress-free, that is,

Σcon = 0 , (49)

this leads to an isotropic strain state of the material volume. Recalling Equation (25),

Ehom 1 = Ehom = Ee
hom = αhom ∆T 1 , (50)
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with Ehom = αhom ∆T as the value of the principal components of the macroscopic strain tensor.
Substituting Equation (50) into Equation (33) and considering Equation (19), delivers

εi = εi 1 = (Ai,vol αhom + Dim,vol αm + Dii,vol αi)∆T 1 , (51)

with εi as the value of the principal components of the microscopic strain tensor of the inclusion.
Inserting Equation (51) into Equation (35) and considering isotropic elasticity, the microstress of the
inclusion phase reads as

σi = σi 1 = 3 ki (Ai,vol αhom + Dim,vol αm + Dii,vol αi − αi)∆T 1 , (52)

with σi as the value of the principal components of the microscopic stress tensor of the inclusion.
Substituting the Equations (51) and (52) into the Equations (38)–(43), the components of the stress
tensor of the ITZs, surrounding the inclusions, are obtained as

σITZ,rr = σi ,

σITZ,θθ = σITZ,φφ =
4 µITZ(3 kITZ + µITZ) εi + (3 kITZ − 2 µITZ)(2 µITZ εi + σi)− 18 kITZ µITZαITZ∆T

3 kITZ + 4 µITZ
,

σITZ,rθ = σITZ,rφ = σITZ,θφ = 0 ,

(53)

they are independent of the zenith angle θ and the azimuth angle φ. The stress components σITZ,rr,
σITZ,θθ and σITZ,φφ are the three principal stress components. The principal stress component σITZ,rr is
critical for debonding between the cement paste and the aggregates. Thus, it is the focus of the present
sensitivity analyses.

Statistic results of nanoindentation are considered for quantification of the elastic properties of
the ITZ. Young’s modulus of the ITZ is considered to be around 85% of that of the bulk cement paste
while Poisson’s ratio of the ITZ is set equal to that of the bulk cement paste [34,42]. The thermal
expansion coefficient of the ITZ is considered to be equal to that of the bulk cement paste, noting that
the thermal expansion coefficient of the mature cement paste is practically independent of the initial
water-to-cement mass ratio [11] and, thus, independent of the different porosities of the cement paste
and the ITZ.

The thermal microstresses of concrete, containing three different coarse aggregates, namely,
sandstone, granite and limestone, respectively, with different volume fractions, are investigated.
The initial water-to-cement mass ratio, w/c, is set equal to 0.40. The internal relative humidity, RH,
is assumed to be approximately equal to 50%, resulting in a value of the thermal expansion coefficient
of cement paste equal to 18× 10−6/◦C, see Figure 1. Sandstone is used for the fine aggregates. The
thermoelastic properties of the cement paste, the fine aggregates and of three types of coarse aggregates,
serving as input, follow from Table 9. The volume fraction of the cement paste, fcp, is constant. Its
value is 0.30. The ratio of the volume fraction of the coarse aggregates with respect to the total volume
of aggregates follows from Equation (47).

Both the volume averaged microstresses within the cement paste and the microstresses of the
ITZs surrounding the coarse aggregates strongly depend on the type of the coarse aggregates, see
Figure 7a,b. With increasing temperature, compressive microstresses prevail in the cement paste
while tensile microstresses occur in the ITZs, surrounding the coarse aggregates. With decreasing
temperature, the converse situation applies. The largest microstresses occur in the concrete that
contains limestone as coarse aggregates while the smallest microstresses occur in the concrete that
contains sandstone as coarse aggregates. For adequate consolidation of the concrete, the volume
fraction of the coarse aggregates generally is in the range of 35% to 50% [41], see the shaded area in
Figure 7a,b.
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Figure 7. Dependence of the microstresses in (a) the cement paste and (b) the ITZs, surrounding the
coarse aggregates, on the type and the volume fraction of the coarse aggregates, for concrete with
RH = 50%, fcp = 0.30 and w/c = 0.40.

4.4. Sensitivity of the Thermal Microstresses of Concrete with Respect to the Internal Relative Humidity

The thermal microstresses of concrete, containing three different coarse aggregates, namely, sandstone,
granite and limestone, respectively, with different internal relative humidities, are investigated. The initial
water-to-cement mass ratio is set equal to w/c = 0.40. Sandstone is used for the fine aggregates. The volume
fractions of the concrete constituents, namely, cement paste, fine aggregates and coarse aggregates, follow
from Equation (48). The thermoelastic properties of the fine and the coarse aggregates, as well as the elastic
parameters of the cement paste, follow from Table 9. The thermal expansion coefficient of the cement paste
follows the unsymmetrical bell-shaped function of the internal relative humidity, see Figure 1.

The microscopic stresses in the cement paste and the ITZs surrounding the coarse aggregates
strongly depend on the internal relative humidity. They follow the unsymmetrical bell-shaped
functions, see Figure 8a,b. The largest microstresses are observed for concrete with an internal
relative humidity of approximately 65%, as the mismatch of the thermal expansion coefficients of the
cement paste and aggregates is the largest.
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Figure 8. Dependence of the microstresses in (a) the cement paste and (b) the ITZs, surrounding
the coarse aggregates, on the internal relative humidity of concrete containing sandstone, granite
and limestone, respectively, as coarse aggregates, with w/c = 0.40, fcp = 0.30 and a ratio of the volume
fraction of the coarse aggregates over the total volume of aggregates equal to 0.60.
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5. Conclusions

A thermoelastic multiscale model of concrete with two types of scale transitions was presented.
Bottom-up homogenization allows for quantification of the macroscopic thermal expansion and of the
elastic stiffness of concrete, based on knowledge of the properties of its microstructural constituents.
Conversely, top-down concentration gives access to the microstresses of the cement paste and the
aggregates and furthermore, to the stress states of the interfacial transition zones covering the aggregates.

The model predictions were compared with experimental measurements by Sayki-Bekoe [2],
Tasneem et al. [3] and Naik et al. [37] on concretes with different initial compositions. The established
model is based on the thermoelastic constants of the cement paste and the aggregates. The model
was shown to be able to predict the thermal expansion coefficients of fully-saturated concrete with
acceptable accuracy, see the Tables 4, 6 and 8, as well as Figure 4. This was the rationale for using the
model for sensitivity analyses.

The model provides quantitative insight into the sensitivity, regarding the thermal expansion
coefficient and the thermal microstresses, of concrete with respect to the composition and the internal
relative humidity of the material. This leads to the following conclusions:

• Concrete consisting of siliceous aggregates exhibits a larger thermal expansion coefficient and
smaller microscopic thermal stresses, compared to concrete consisting of calcareous aggregates.
Both the thermal expansion coefficient and the microstresses nearly depend linearly on the
volume fraction of the coarse aggregates. This agrees with qualitative findings from experimental
testing [4–7].

• Concrete under partially-saturated conditions exhibits a larger thermal expansion coefficient
and much larger microscopic thermal stresses, compared to concrete under fully-saturated and
fully-dried conditions. This follows from the mismatch of the thermal expansion coefficients
of the aggregates and the cement paste, which is an unsymmetrical bell-shaped function of the
internal relative humidity.

• Temperature changes lead to microstructural stresses within concrete, even for macroscopically
stress-free concrete volumes. The inhomogeneous thermal expansion coefficients of the
constituents of concrete result in the incompatible thermal eigenstrain fields. The compatibility of
the total strain fields requires microscopic mechanical strain fields.

• The thermal expansion coefficient of the cement paste is generally larger than that of the aggregates.
In case of cooling, this leads to microscopic tensile stresses in the bulk cement paste and to
compressive stresses in the aggregates and the surrounding ITZs. In case of heating, microscopic
tensile stresses occur in the aggregates and the surrounding ITZs while compressive stresses occur
in the bulk cement paste.

Cracking of the cement paste, induced by tensile stresses, is a serious threat for the long-term
durability of concrete structures. Both a decrease and an increase of the temperature can result in
microscopic tensile stresses, either in the bulk cement paste or in the ITZs, that is, thin layers of porous
cement paste surrounding the aggregates. In order to reduce the magnitudes of these tensile stresses,
it is recommended to reduce the mismatch of the thermal expansion coefficients of the cement paste
and of the aggregates. This can be achieved

• by using aggregates with large thermal expansion coefficients, which is, however, a trade-off
between increasing the thermal expansion coefficient of concrete and decreasing the microscopic
thermal stresses and

• by moistening the concrete, such that the thermal expansion coefficient of the cement paste decreases.

The presented thermoelastic multiscale model for mature concrete is useful for the frequently
encountered problem that the temperature changes rather quickly such that there is no significant
interplay between thermal stresses and strains, on the one hand, and the viscoelastic behavior of
concrete, drying and hydration of the material, on the other hand. In the future, the model will
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be extended to account for such couplings, which are particularly challenging at early material
age. Because the chemical reaction between water and the cementitious binder is exothermal, initial
hardening of concrete takes place at an increased temperature level. After the main peak of hydration
is passed, the young concrete cools down. According to the coefficient of thermal expansion, cooling
results in a reduction of the volume of concrete. This effect is amplified by autogenous shrinkage and
eventually also by drying shrinkage. In reinforced concrete structures, the resulting overall shrinkage
of concrete is constrained, resulting in tensile stresses. Creep of concrete reduces these stresses to
some extent. Nevertheless, if they reach the tensile strength of concrete, early age cracking will occur.
Mitigation of this problem is the topic of ongoing research [43,44]. Future pertinent multiscale models
shall be based on results obtained from innovative early-age testing of the coefficient of thermal
expansion [45–47], shrinkage [48,49] and creep [50–52] of cementitious materials and on corresponding
multiscale early-age models for the thermal expansion [53], shrinkage [54] and creep [55–57] of
cementitious materials. A 16% variation of the thermal expansion coefficient of concrete is expected to
result in an increase of the early-age cracking risk by 15%, see Reference [58].
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