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Abstract: The stratospheric airship envelope material is operated in biaxial stress, so it is necessary to
study the in-plane biaxial tensile strength. In this paper, a theoretical model is developed to evaluate
the mechanical properties of in-plane biaxial specimens. Being applied to the finite element analysis,
the theoretical model is employed to evaluate the influence of strengthening material behavior (E*)
and geometry parameters on the mechanical behavior in the central. The follows results are drawn:
(i) smaller the length of the central region (Lcen), E* and larger the central region corner radius (r)
contribute to smaller coefficient of variation (CV); (ii) smaller Lcen and larger E* contribute to smaller
stress concentration factor (k), k in the limit state of r is larger than that in other conditions. (iii) The
CV and k under stress ratio of 1:1 are smaller than those under other stress ratios. The study can
provide a useful reference for the design of biaxial specimens.
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1. Introduction

The stratospheric airship has attracted widespread attentions with potential applications in radio
relay telecommunications service, earth observation science, and other fields [1–4]. Envelope material
is a major part of airship structure. The mechanical properties and service life for envelope material
determine the lifetime of airship [5,6]. The typical envelope of the non-rigid airship structure is
laminated fabric composites [7]. The laminated material is used to contain lifting gas and provide
structural strength for the system.

The uniaxial tensile test has been widely used to study the mechanical properties of envelope
materials. Meng et.al [8] developed a theoretical model to predict fatigue life on envelope material
under uniaxial cycle load. The theoretical model is in good agreement with the experimental results.
Hu et al. [9] studied the mechanics of plain woven fabric URETEK 5893 under uniaxial monotonic
and cyclic load in on-axis and off-axis tension. Meng et al. [10] studied the mechanical properties and
the strength criteria of envelope material under uniaxial tension. Jin-Ho Roh et al. [11] investigated
the thermoelastic behaviors of the stratospheric airship envelope by experimental and numerical
simulation. Chen et al. [12] studied the elastic constants of envelope fabric Uretek3216A under
mono-uniaxial, uniaxial cyclic, and biaxial cyclic loading. Chen Jianwen et al. [13] studied the
mechanical behaviors of URETEK-3216LV material under mono-uniaxial, uniaxial cyclic, and biaxial
cyclic loading. Liu et al. [14] developed a new physics model to calculate the tearing mechanical
behavior of envelope material under uniaxial tension tests. Vannucchi de Camargo et al. [15] estimated
an impact numerical simulation to exhibit a fracture mechanism. The finite element simulation
describes a multiphase in detail. Cristiano Fragassa et al. [16] performed an analysis of the mechanical
and impact properties of flax and basalt fibres by experimental investigation.
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In recent years, the mechanical properties of envelope materials have been gradually increased
by biaxial tensile test. Chen et al. [17] studied the mechanical properties of PVC materials by biaxial
tension. The results show that the tensile behavior of the coated membrane materials was dramatically
affected by the stress ratio in the warp and fill directions. Chen et al. [12] studied the tensile properties
of envelope fabric Uretek-3216A under biaxial cyclic loading; the results show that the elastic constants
noticeably vary with the experimental protocols. Meng et al. [10] studied the strength of new envelope
material under biaxial tension tests. Qu et al. [18] reported the constitutive model of the envelope
material under different stress ratios and verified by biaxial experiments. Yasuhiro Hanabusa et al. [19]
proposed a new method for evaluating stress measurement errors in biaxial tensile tests while using a
cruciform specimen by numerical simulation. The new method was used to design uniformly thick
biaxial tensile specimens of flat sheet metal and the design size range of the specimens was also
given. Shi et al. [20] reported a new specimen design and test method for biaxial tensile strength.
The biaxial tensile strength and uniaxial tensile strength were also compared and analyzed. The biaxial
tensile strength under 1:1 load ratio equals uniaxial strength multiplied by an amplification factor
of 1.1–1.3. Zhang et al. [21] studied the fracture failure analysis and failure criterion for Poly tetra
fluoroethylene (PTFE)-coated woven fabric. On-axial and off-axial tensile tests of PTFE were carried
out and biaxial tensile tests were also carried out. A new failure criterion was proposed and then
verified by experiments. Alan Hannon et al. [22] published a review of biaxial tensile test devices
and specimen design for biaxial testing. The advantages and disadvantages of biaxial tension test
device and sample form were also evaluated and analyzed. R. Xiao [23] published a review of biaxial
tensile testing technology and suggested new ideas for future development. The biaxial tension test
equipment and advanced measurement methods were discussed. The stress-strain curves of sheet
metals, the progress of finite element simulation analysis, and the research progress of biaxial specimen
design are reviewed.

It is interesting to note in the above reviews that many scholars have contribution to biaxial tensile
mechanical properties of flexible envelope materials from experimental and simulation. At present,
two layers of the same material are used to strengthen the arm of the biaxial specimen, and one layer is
used in the center part of the biaxial specimen to ensure that the failure occurs in the center section.
However, the influence of the different modulus of strengthening material and geometry parameters
of central test section on the mechanical properties of the biaxial specimen is rare studied. In this
paper, the effects of modulus of different strengthening materials (based material: Uretek-3216LV) and
different geometrical sizes in the central region on the mechanical properties of envelope materials are
studied by using commercial software ABAQUS, based on the existing cruciform specimens.

This paper aims to develop a theoretical model for evaluating the effects of modulus and geometry
parameters of the central region of reinforced materials on the mechanical properties of envelope
materials. The structure of this paper is as follows: In Section 2, a theoretical model developed and
envelope material is presented. In Section 3, biaxial specimen shape and analysis conditions are
presented. In Section 4, commercial software ABAQUS was used to study the influence of strengthening
material behavior and geometry parameters on mechanical behavior of biaxial cruciform specimen
for envelope material are presented. In Section 5, a brief summary and conclusions are presented.
The study can provide a reference for the biaxial tensile specimens of flexible envelope materials and
serve the design of flexible structures.

2. Methodology

2.1. Theoretical Model

The shape and dimension of envelope material specimen have great influence on the experimental
results. Reasonable specimen can ensure the validity of the tensile test. A new theoretical model is
proposed in order to obtain a successful specimen. To satisfy a successful biaxial tensile test, the shape
and sizes of biaxial tensile specimens has to meet the following requirements [24–28]: “(i) Maximization
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of the region of stress and strain uniformity in the biaxial loaded zone; (ii) Minimization of the shear
strain in the biaxial load testing zone; (iii) Minimization of the stress and strain concentrations outside
the testing zone; (iv) Specimen failure in the biaxial load testing zone; and, (v) Repeated results of the
experiments”. It has been proven to be difficult to design cruciform specimens that simultaneously
satisfy all of these requirements.

S. Demmerle et al. [26] have contributed to the criterion of biaxial tension. The theory contains
nine evaluation parameters, and the evaluation of biaxial specimens is complicated. An evaluation
theoretical model is developed in order to evaluate the quality of biaxial design sample conveniently
and concisely. The theoretical model is as follows:

(i) Stress Variability Coefficient

The stress variability coefficient was to evaluate the uniformity of the stress field. The expression
of the stress variability coefficient is as follows:

CV = sd(σ_field)/average(σ_field) (1)

where sd() and average() are the standard deviation and average value of von Mises stress in the
central zone, respectively. A successful biaxial tensile specimen requires minimum CV.

(ii) Stress Concentration Factor

The biaxial tensile specimens can be divided into central section and non-central section, where
the failure of specimen occurs in the central section. A maximum stress failure criterion is proposed to
evaluate biaxial tensile failure. The mathematical expression of maximum failure stress criterion is
as follows:

k = (σult,cen − σmax,cen)/(σult,non − σmax,non)

σult,non = σulten,non + σultadd,non layer of non-central region = two layers
σult,cen = σulten,cen layer of central region = one layer

(2)

where k is the maximum failure stress criterion factor, σmax,cen represents maximum in-plane principal
stress in central section under biaxial tension, and σmax,non represents maximum in-plane principal
stress in non-central section under biaxial tension. σult,non denotes failure strength in the non-center
region, σult,cen denotes failure strength in center region. σulten,non represents the failure strength of
envelope material under uniaxial tension. σultadd,non represents the failure strength of strengthening
material under uniaxial tension. Maximum failure stress factor k should be less than 1 for successful
biaxial tensile specimens.

2.2. Material

The stratospheric airship envelope Uretek-3216LV studied in this paper is composed of five layers,
with a total thickness of 0.21 mm. A surface density of envelope material Uretek-3216LV is 200 g/m2.
As shown in Figure 1, envelope material contains three parts: external functional layer, the principal
force bearing layer, and internal functional layer. External functional layer contains wearable layer,
ultraviolet layer, and gas retention layer. The principal force bearing layer is laminated by Vectran fiber.

Uretek-3216LV (material is provided by AVIC Special Vehicle Research Institute, jingmen, China)
is a multi-layer flexible laminate material. Tedlar film is selected as the wearable layer, UV layer, and
helium barrier. The structural layer is the principal bearing layer. The structural layer is made of
high strength Vectran fiber plain woven fabric. Ethylene vinyl alcohol copolymer is selected as the
sealing layer. The five layers are thermal sealed together by thermoplastic polyurethane under the
temperature of 230 ◦C and humidity of 50%.
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Table 1 shows the mechanical properties of envelope materials Uretek-3216LV [29]. Because
the thickness of the envelope material is less than its plane size, it can be considered as a
two-dimensional material.Materials 2019, 12, x FOR PEER REVIEW 4 of 13 
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Figure 1. Envelope material [18], (a) macro morphology; (b) Typical envelope material.

Table 1. Mechanical parameters of envelope Uretek-3216LV [29].

Direction Warp Modulus
(MPa)

Weft Modulus
(MPa)

Poisson’s
Ratio

Shear Modulus
(MPa)

Warp Failure
Strength (MPa)

Weft Failure
Strength (MPa)

Shear Failure
Strength (MPa)

value 4092 3180 0.35 138 322 300 193

3. Biaxial Specimen Shape and Analysis Conditions

3.1. Biaxial Specimen Shape

Figure 2 shows the basic design of the biaxial specimen. In this paper, point o is the origin of the
coordinate. L1 is the width of the arms, and L2 is the length of the arms. It is assumed that the arm
lengths in x and y directions are equal. Ls is the length of the slits and Ws is the width of the slits. R is
the corner radius. The length of the clamped regions is 100 mm. The dotted box represents the central
test region. The base biaxial specimen is single layer, except the clamped regions is double layer.Materials 2019, 12, x FOR PEER REVIEW 5 of 13 
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A modified cruciform specimen comprised of two layers is developed in order to ensure that the
initial failure of the biaxial specimen occurs in the central region. Figure 3 shows the geometry of
modified cruciform specimen. The modified biaxial specimen has two layers, except the central test
regions has one layer. The central black box represents the test section. Lcen is the length of the central
region and rcen is the corner radius of the central region.
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In order to ensure that the initial failure of the biaxial specimen occurs in the central region, it is
usually necessary to paste reinforcing materials to the arm. However, the effect of elastic modulus of
different materials and dimensions of the central region on stress and stress concentration factor in
the central region is less considered. In the following section, the influence of different factors (corner
radius, number of slits, slit length, central region length, corner radius of central region) on the stress
field in the center of biaxial tension is studied.

3.2. Analysis Conditions

Table 2 shows the analysis conditions for finite element model (FEA). The nominal stress ratios
chosen were 1:0, 1:1, 2:1, and 4:1. The tensile load of clamped region was 50 N/mm under stress ratio
1:1. The underlined values indicate the standard conditions for FEA. The thickness of the strengthening
material is 0.21 mm in the finite element model. The elastic modulus and failure strength are assumed
to be n (n = 0.6, 0.8, 1) times of the envelope material. The factors in this study are independent of
each other.

Table 2. Analysis conditions for finite element model (FEA) (underlined: standard conditions).

Variable factors Value Note

Stress ratios Sx: Sy
(warp: weft) 1:0, 1:1, 2:1, 4:1 -

Arm width L1 (mm) 160

-

Arm length L2 (mm) 160
Corner radius R (mm) 15

Number of slits 3
Slit width Ws (mm) 1
Slit length Ls (mm) 155

Central region length
Lcen (mm) 100, 120, 140, 160 Clamped region: two layers (envelope

material);
Central region: single layer

Other regions: two layers (envelope
material + strengthening material)

Central region corner radius
r (mm) 0, 10, 20, 30, 60

Modulus of arm strengthening material E*
(MPa)

0.6E, 0.8E, 1E (E: Modulus of envelope
Material)
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Software ABAQUS6.14 was used in finite element analysis. Due to the dimension of envelope
material in thickness direction being far smaller than the dimension in plane, it can be regarded as a
two-dimensional (2D) plane stress state.

Firstly, the geometric features of the cruciform were precisely reappeared in the software. Table 1
shows the mechanical behavior of envelope materials.

Secondly, the specimen was meshed on a global seed interval of 2.5 mm. The mesh density of the
corner radius is added in order to accurately capture the stress of corner radius. The element type of
central region is quad and the element type of non-central region is quad-dominated. Element type
S4R was applied in FEA.

Table 3 presents the boundary conditions for numerical model of biaxial tension. The numerical
model of biaxial tension in this paper is assumed to be a plane stress model, so the degrees of freedom
in out-of-plane direction (z direction) and rotation directions are all zero.

Table 3. Boundary conditions for the in-plane stress finite element model.

Reference Node Coordinated
Displacement In

x y

1 x = y = 0 0 0
2 x = 0 0 Free
3 y = 0 Free 0

Eventually, the tensile load was applied at the cruciform specimen. The stress ratios of 1:0, 1:1, 2:1,
and 4:1 are 50 N/mm:0, 50 N/mm:50 N/mm, 50 N/mm:25 N/mm, and 50 N/mm:12.5 N/mm, respectively.

3.3. Mesh Sensitivity Analysis

A limited mesh sensitivity analysis was carried out in order to investigate the effect of mesh
density on stress. The standard specimen was chosen for FEA. The tensile load was applied at the
cruciform under load stress ratio 1:1 was 50 N/mm:50 N/mm. Three different element sizes were
used in the cruciform specimen. The three specimens were meshed on a global seed interval of were
1.25 mm, 1.875 mm, and 2.5 mm, respectively. To enhance the reliability of the model, the number of
corner radius was determined to be 21, 32, and 42, respectively. Table 4 shows the number results.
As the number of grids increases, the stress change is controlled within 8%, so it can be considered that
the mesh number setting was reasonable. The element number in reference 1 was chosen for next FEA.

Table 4. Mesh sensitivity analysis on stress.

Reference Number of Elements Maximum Stress of
Global Specimen (MPa)

Maximum Stress in
Central Region (MPa)

1 34,899 345 223
2 62,143 354 223
3 140,278 370 223

4. Results and Discussion

4.1. Effects of the Central Region Length and Central Region Corner Radius

Figure 4 shows the effect of central region length on stress in central region. Variation coefficient
increases with increasing central region length. The variation coefficient increased from 2.12% to
2.92%. Biaxial specimens are required to have a large central region and von Mises stress as uniform
as possible. Therefore, in the actual design, it is necessary to consider both the test length and the
variation coefficient of the central area synthetically.
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Figure 5 shows the effect of central region length on stress concentration factor. Stress concentration
factor (k) increases with increasing central region length. the effective center region length of biaxial
specimens is no more than 140 mm, k is less than 1, so it is considered to be valid. However, k is more
than 1 when the center region length is 160mm, it is considered to be invalid.Materials 2019, 12, x FOR PEER REVIEW 8 of 13 
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Figure 5. Effect of central region length on stress concentration factor.

Figure 6 shows the effect of central region corner radius on stress in central region. The coefficient
of variation decreases with the increase of the central region corner radius. When the radius of the
central region is 60 mm (the central region is circular), the minimum variation coefficient is 0.71%.
Increasing the central region corner radius can reduce the variation coefficient.

Figure 7 shows the effect of central region corner radius on stress concentration factor. The central
region corner radius is 0 mm and 60 mm, k is less than 1, so the initial failure occurs in the center
region. k in the limit state of r is larger than that in other conditions.
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4.2. Effect of Modulus of Strengthening Material

The effect of modulus of strengthening material (E*) on the stress in central region is shown in
Figure 8. The variation coefficient increases with the increasing of E*. The biaxial tension specimens
require the stress in the central region to be as uniform as possible, so the appropriate modulus of
strengthening material is selected to meet the design requirements of the cruciform specimens.
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Figure 9 shows the effect of modulus of strengthening material (E*) on stress concentration factor.
k decreases with increasing E*. k decreased from 0.57 to 0.26. k is lower than 1, so the initial failure
will occur in the central region.Materials 2019, 12, x FOR PEER REVIEW 10 of 13 
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4.3. Effect of Stress Ratios

Figure 10 shows the effect of stress ratios on stress in central region. The stress ratios (warp:weft)
of 1:0, 1:1, 2:1, 4:1 are 50 N/mm:0 N/mm, 50 N/mm:50 N/mm, 50 N/mm:25 N/mm, 50 N/mm:12.5 N/mm
respectively. The variation coefficient at the stress ratio of 1:1 is smaller than that of other stress ratios.
The minimum variation coefficient is 2.40% and the maximum variation coefficient is 5.99%.
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Figure 11 shows the effect of stress ratios on stress concentration factor. k under the stress ratio
of 1:1 is smaller than k in other stress ratios. k is lower than 1, so the initial failure will occur in
central region.
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4.4. Optimum Specimen

Different evaluation criteria can obtain different optimized samples. The order of importance of
the three parameters in this paper is as follows: stress concentration factor > coefficient of variation.
Table 5 shows the optimum specimen size. Parameters L1, L2, R, N, Ws, and Ls are the same as
in Table 2. The tensile load was applied at the cruciform under load stress ratio 1:1 was 50 N/mm:
50 N/mm. the k of two type specimens are both less than 1, so the initial failure will occur in central
region. The CV value of the optimized specimen is smaller than that of the original specimen, which
means that the stress in the central region of the optimized specimen is more uniform than that in the
original specimen.

Table 5. Parameter value for the optimum specimen (load ratio = 1:1).

Type Lcen (mm) R (mm) E* (MPa) k CV

Original 120 10 0.6E 0.57 2.40%
Optimum 100 50 0.6E 0.94 0.51%

Figure 12 provides the stress contour diagram with two type specimens. The stress in the center
region of the optimized specimen is less than that in the original specimen. The stress uniformity
region of the optimized specimen is better than that of the original specimen.
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5. Conclusions

In this paper, a theoretical model is developed to study the strengthening material and geometric
parameters on the mechanical behavior of the biaxial tensile specimens. The method can be used to
guide the design of cruciform specimens and obtained reliable biaxial strength in operated condition,
hence providing more accurate design for envelope structure. The obtained results can be summarized,
as follows:

(1) The central region length Lcen has great influence on the variation coefficient and stress
concentration factor. The variation coefficient and stress concentration factor increase with
increasing of Lcen.

(2) The influence of central region corner radius r on variation coefficient and stress concentration
factor are different in the central region. With the increasing of r, the coefficient of variation
decreases and the stress concentration factors are lower than 1.

(3) Modulus of strengthening material E* has great influence on the coefficient of variation and
stress concentration factor. Average stress increases slightly with the increase of E* and the
variation coefficient increases with increasing of E*, while stress concentration factor decreases
with increasing of E*.

(4) Stress ratios (Sx:Sy) has great influence on the variation coefficient and stress concentration factor.
The variation coefficient and stress concentration factor are the smallest when the stress ratio is
1:1.

(5) In this paper, under the given design criteria, the optimal shape and the original shape can be
realized in the central region. The coefficients of variation of the optimized shape are less than
those of the original shape.

Author Contributions: Methodology, Z.Q. and M.L., Validation, H.X., Z.Q. and X.W., Formal Analysis, Z.Q.,
H.X., P.W. and L.X., Investigation, Z.Q. and H.X., Writing—Original Draft Preparation, Z.Q., Writing—Review &
Editing, Z.Q. and M.L., Supervision, M.L.; Project Administration, M.L., Funding Acquisition, M.L.

Funding: The project funded by AVIC Special Vehicle Research Institute provided.

Acknowledgments: We express our grateful acknowledgment to Cai Xiaojian (Beihang university) for his
cooperation on the biaxial simulation data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ilcev, S.D. Stratospheric communication platforms as an alternative for space program. Aircr. Eng.
Aerosp. Technol. 2011, 83, 105–111. [CrossRef]

2. Smith, M.; Rainwater, L. Applications of scientific ballooning technology to high altitude airships.
In Proceedings of the AIAA’s 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Forum,
Denver, CO, USA, 17–19 November 2003.

3. Meng, J.; Li, P.; Ma, G.; Du, H.; Lv, M. Tearing Behaviors of Flexible Fiber-Reinforced Composites for the
Stratospheric Airship Envelope. Appl. Compos. Mater. 2016, 24, 735–749. [CrossRef]

4. Androulakakis, S.P.; Judy, R. Status and Plans of High Altitude Airship (HAATM) program. In Proceedings
of the Aiaa Lighter-Than-Air Systems Technology Conferences, Daytona Bech, FL, USA, 25–28 March 2013.

5. Zhai, H.; Euler, A. Material Challenges for Lighter-Than-Air Systems in High Altitude Applications.
In Proceedings of the Aiaa Atio & Lighter-Than-Air Sys Tech & Balloon Systems Conferences, Arlington, VA,
USA, 26–28 September 2005.

6. Komatsu, K.; Sano, M.A.; Kakuta, Y. Development of High Specific Strength Envelope Materials. Jpn. Soc.
Aeronaut Space Sci. 2013, 51, 158–163.

7. Stockbridge, C.; Ceruti, A.; Marzocca, P. Airship Research and Development in the Areas of Design, Structures,
Dynamics and Energy Systems. Int. J. Aeronaut. Space Sci. 2012, 13, 170–187. [CrossRef]

8. Meng, J.; Qu, Z.; Zhu, W.; Lv, M. Fatigue Damage Mechanical Model of the Envelope Material for Stratospheric
Airships. Appl. Compos. Mater. 2016, 24, 837–848. [CrossRef]

http://dx.doi.org/10.1108/00022661111120999
http://dx.doi.org/10.1007/s10443-016-9539-7
http://dx.doi.org/10.5139/IJASS.2012.13.2.170
http://dx.doi.org/10.1007/s10443-016-9556-6


Materials 2019, 12, 2680 12 of 12

9. Hu, J.; Gao, C.; He, S.; Chen, W.; Li, Y.; Zhao, B.; Shi, T.; Yang, D. Effects of on-axis and off-axis tension on
uniaxial mechanical properties of plain woven fabrics for inflated structures. Compos. Struct. 2017, 171, 92–99.
[CrossRef]

10. Meng, J.; Lv, M.; Qu, Z.; Li, P. Mechanical Properties and Strength Criteria of Fabric Membrane for the
Stratospheric Airship Envelope. Appl. Compos. Mater. 2017, 24, 77–95. [CrossRef]

11. Roh, J.-H.; Lee, H.-G.; Lee, I. Thermoelastic Behaviors of Fabric Membrane Structures. Adv. Compos. Mater.
2008, 17, 319–332. [CrossRef]

12. Chen, J.; Chen, W.; Zhang, D. Experimental study on uniaxial and biaxial tensile properties of coated fabric
for airship envelopes. J. Reinf. Plast. Compos. 2014, 33, 630–647. [CrossRef]

13. Chen, J.; Chen, W.; Wang, M.; Ding, Y.; Zhou, H.; Zhao, B.; Fan, J. Mechanical Behaviors and Elastic Parameters
of Laminated Fabric URETEK3216LV Subjected to Uniaxial and Biaxial Loading. Appl. Compos. Mater. 2017,
24, 1107–1136. [CrossRef]

14. Longbin, L.; Mingyun, L.; Houdi, X. Tear strength characteristics of laminated envelope composites based on
single edge notched film experiment. Eng. Fract. Mech. 2014, 127, 21–30. [CrossRef]

15. De Camargo, F.V.; Pavlovic, A. Fracture Evaluation of the Falling Weight Impact Behaviour of a
Basalt/Vinylester Composite Plate through a Multiphase Finite Element Model. Key Eng. Mater. 2017,
754, 59–62. [CrossRef]

16. Fragassa, C.; Pavlovic, A.; Santulli, C. Mechanical and impact characterisation of flax and basalt fibre
vinylester composites and their hybrids. Compos. Part B Eng. 2018, 137, 247–259. [CrossRef]

17. Chen, S.; Ding, X.; Fangueiro, R.; Yi, H.; Ni, J. Tensile behavior of PVC-coated woven membrane materials
under uni- and bi-axial loads. J. Appl. Polym. Sci. 2010, 107, 2038–2044. [CrossRef]

18. Qu, Z.; He, W.; Lv, M.; Xiao, H. Large-Strain Hyperelastic Constitutive Model of Envelope Material under
Biaxial Tension with Different Stress Ratios. Materials 2018, 11, 1780. [CrossRef] [PubMed]

19. Hanabusa, Y.; Takizawa, H.; Kuwabara, T. Numerical verification of a biaxial tensile test method using a
cruciform specimen. J. Mater. Process. Technol. 2013, 213, 961–970. [CrossRef]

20. Shi, T.; Chen, W.; Gao, C.; Hu, J.; Zhao, B.; Wang, P.; Wang, M. Biaxial strength determination of woven fabric
composite for airship structural envelope based on novel specimens. Compos. Struct. 2018, 184, 1126–1136.
[CrossRef]

21. Zhang, Y.; Song, X.; Zhang, Q.; Lv, H. Fracture failure analysis and strength criterion for PTFE-coated woven
fabrics. J. Compos. Mater. 2014, 49, 1409–1421. [CrossRef]

22. Hannon, A.; Tiernan, P. A review of planar biaxial tensile test systems for sheet metal. J. Mater. Process. Technol.
2008, 198, 1–13. [CrossRef]

23. Xiao, R. A Review of Cruciform Biaxial Tensile Testing of Sheet Metals. Exp. Tech. 2019, 2, 1–20. [CrossRef]
24. Kwon, H.J.; Jar, P.-Y.B.; Xia, Z. Characterization of Bi-axial fatigue resistance of polymer plates. J. Mater. Sci.

2005, 40, 965–972. [CrossRef]
25. Geiger, M.; Hußnätter, W.; Merklein, M. Specimen for a novel concept of the biaxial tension test. J. Mater.

Process. Technol. 2005, 167, 177–183. [CrossRef]
26. Demmerle, S.; Boehler, J. Optimal design of biaxial tensile cruciform specimens. J. Mech. Phys. Solids 1993,

41, 143–181. [CrossRef]
27. Yu, Y.; Wan, M.; Wu, X.-D.; Zhou, X.-B. Design of a cruciform biaxial tensile specimen for limit strain analysis

by FEM. J. Mater. Process. Technol. 2002, 123, 67–70. [CrossRef]
28. Makris, A.; Vandenbergh, T.; Ramault, C.; Van Hemelrijck, D.; Lamkanfi, E.; Van Paepegem, W. Shape

optimisation of a biaxially loaded cruciform specimen. Polym. Test. 2010, 29, 216–223. [CrossRef]
29. Chen, J.; Chen, W.; Zhao, B.; Yao, B. Mechanical responses and damage morphology of laminated fabrics

with a central slit under uniaxial tension: A comparison between analytical and experimental results.
Constr. Build. Mater. 2015, 101, 488–502. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compstruct.2017.02.009
http://dx.doi.org/10.1007/s10443-016-9515-2
http://dx.doi.org/10.1163/156855108X385285
http://dx.doi.org/10.1177/0731684413515540
http://dx.doi.org/10.1007/s10443-016-9576-2
http://dx.doi.org/10.1016/j.engfracmech.2014.04.026
http://dx.doi.org/10.4028/www.scientific.net/KEM.754.59
http://dx.doi.org/10.1016/j.compositesb.2017.01.004
http://dx.doi.org/10.1002/app.27303
http://dx.doi.org/10.3390/ma11091780
http://www.ncbi.nlm.nih.gov/pubmed/30235839
http://dx.doi.org/10.1016/j.jmatprotec.2012.12.007
http://dx.doi.org/10.1016/j.compstruct.2017.10.067
http://dx.doi.org/10.1177/0021998314534706
http://dx.doi.org/10.1016/j.jmatprotec.2007.10.015
http://dx.doi.org/10.1007/s40799-018-00297-6
http://dx.doi.org/10.1007/s10853-005-6515-2
http://dx.doi.org/10.1016/j.jmatprotec.2005.05.028
http://dx.doi.org/10.1016/0022-5096(93)90067-P
http://dx.doi.org/10.1016/S0924-0136(02)00062-6
http://dx.doi.org/10.1016/j.polymertesting.2009.11.004
http://dx.doi.org/10.1016/j.conbuildmat.2015.10.134
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Theoretical Model 
	Material 

	Biaxial Specimen Shape and Analysis Conditions 
	Biaxial Specimen Shape 
	Analysis Conditions 
	Mesh Sensitivity Analysis 

	Results and Discussion 
	Effects of the Central Region Length and Central Region Corner Radius 
	Effect of Modulus of Strengthening Material 
	Effect of Stress Ratios 
	Optimum Specimen 

	Conclusions 
	References

