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Abstract: 5A06 Aluminum (Al) alloy and AZ31B magnesium (Mg) alloy with 20 mm thickness were
successfully butt joined by friction stir welding. In order to control the composition of Al and Mg
alloys along thickness direction, an inclined butt joint was designed in this study. The microstructure
and phase identification at the interface of Al/Mg joints were examined using scanning electron
microscopy with an energy-dispersive spectroscopy and Micro X-ray diffraction. The results indicated
that there were two different formation mechanisms of intermetallic compounds at the interface
of thick plate Al/Mg joint. The first was constitutional liquation, and eutectic structure consisting
of Al12Mg17 and Mg solid solution existed at the top and upper-middle of the Mg side interface.
The second was diffusion reaction, and the two sub-layers of Al12Mg17 and Al3Mg2 formed at
the lower middle and bottom of the Mg side interface. In addition, the diffusion thickness values
of Al12Mg17 and Al3Mg2 layers decreased gradually from the lower middle to bottom of the Mg
side interface. As the position changes from the middle to the bottom near the Mg side interface,
the diffusion coefficient of Al3Mg2 phase rapidly decreases from 3.14 × 10−12 m2/s to 6.9 × 10−13 m2/s
and the diffusion coefficient of Al12Mg17 phase decreases from 6.8 × 10−13 m2/s to 1.5 × 10−13 m2/s.

Keywords: friction stir welding; Al/Mg alloys; thick plate; intermetallic compounds

1. Introduction

Aluminum (Al) and magnesium (Mg) alloys have been extensively used in automotive, electronics
and aerospace industries. The composite structure of Al and Mg alloys has attracted the attention of
many researchers because of the advantages of lightweight [1,2]. But combining Al alloy with Mg alloy
still face a big challenge. Conventional welding methods, such as fusion welding, are easy to form
crack, porosity and a large number of Al-Mg brittle intermetallic compounds (IMCs) due to its high
temperature [3–5]. So fusion welding of Al and Mg alloys is very difficult used for practical application.

Friction stir welding (FSW), as solid-state joining technology [6], is characterized by the absence
of melting, low temperature. Thus, FSW has high possibility of welding Al and Mg alloys compared
to fusion welding. Much work has been carried out on the FSW of Al to Mg in butt joint [7–9].
Hirano et al. [10] previously reported that dissimilar FSW joints of 5182 Al and AZ31 Mg with a same
thickness of 1.2 mm were successfully obtained. The tensile test showed that dissimilar joints have
a high joint efficiency of around 77%. Malarizh et al. [11] welded 6 mm-thick plates of 6061 Al and
AZ31B Mg at 400 rpm and 19.8 mm/min using a tool with 21 mm shoulder diameter. The joints
showed tensile strength of 192 MPa and joint efficiency of 89% in comparison to Mg alloy. However,
Mclean et al. [12] reported that joints of 12 mm-thick 5083 Al and AZ31B Mg alloys by FSW were so
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weak that the sample fractured under the relatively light forces. Moreover, this scanning electron
microscopy (SEM) analysis of the welds revealed that the Al12Mg17 intermetallic compounds (IMC)
layer varied in thickness and the debonding had occurred between the IMC layer and Al alloy.
The above results suggest that it is more and more difficult to obtain reliable joints with the increase of
plate thickness, and the fracture failure may be related to the formation of IMCs.

As known to all, the presence of IMCs is an important issue in dissimilar FSW of Al and Mg
alloys because it could not only affect the strength of joints, but also relate to liquation crack [13,14].
Sato et al. [15] and Chen et al. [16] reported that liquid formation occurred rather than solid state
diffusion during Al/Mg FSW with thickness less than 6mm, leading to the formation of γ-Al12Mg17.
However, it has been reported that the formation of intermetallics in short welding time is due to the
higher diffusion rate in FSW based on the thermal history of FSW [2]. Therefore, the formation of IMCs
in FSW of dissimilar metals is still controversial and needs further investigation. On the other hand,
there exists a big difference in temperature and microstructure along the thickness direction when
thicker plates are butt welded by FSW. For instance, Martinez et al. [17] concluded that a heat gradient
distributed along the thickness direction, resulting in the microstructure difference at top and bottom
of weld zone for FSW of 13 mm thick Al 7449 alloys. Xu et al. [18] stated that temperature reduced
from the top to bottom for FSW of 14 mm thick 2219-O Al alloys. Canaday et al. [19] demonstrated
that higher temperature might be located at mid-depth in nugget due to greater heat extraction in FSW
with 32 mm thick 7050 Al alloys. The temperature difference along the thickness direction would
affect local microstructure. In particular, the formation of IMCs would be affected by the temperature
difference in dissimilar FSW of thick plate Al/Mg alloys according to the Al-Mg binary phase diagram,
as shown in Figure 1 [20].
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Figure 1. The Al-Mg phase diagram [20].

Based on the aforementioned investigations, the IMCs of weld interface along thickness direction
would vary due to the existence of a temperature difference for thick plate alloys. However, it is
unknown that the effect of heat gradient along thickness on interfacial IMCs of dissimilar FSW of Al/Mg
alloys with thickness exceeding 12 mm. Thus, the present study examines the features of interfacial
IMCs during dissimilar FSW of Al/Mg alloys with 20 mm thick, and discusses its formation mechanism.

2. Materials and Methods

The materials used for FSW were 5A06 Al alloy and AZ31B Mg alloy plates (150 × 60 × 20 mm3).
The chemical compositions of both materials are given in Table 1. The welding specimens are prepared
by FSW on an X53K type FSW machine (Tonmac, Nantong, China). Before FSW, the assisted-heating
device is used to reduce the temperature difference between the top and bottom of the base materials,
and improve the flow ability of plastic material in bottom zone of Al and Mg plates. Through previous
experiments at different heating temperatures, the weld shape is better when the heating temperature
is about 220 ◦C. Thus, the heating temperature was set to 220 ◦C in this experiment.
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In order to control the composition of the Al and Mg alloys along thickness in weld zone,
an inclined butt joint was designed. Here it was noted that the slope angle of the welded sample
and taper of the pin was also prepared as 9◦. During the FSW, the Al and Mg alloys were placed at
advancing side (AS) and retreating side (RS), respectively, as shown in Figure 2a. The tool cut just
0.5 mm to the Mg alloy side, as shown in Figure 2b. The travel and rotation speed were 23.5 mm/min
and 375 rpm, respectively. The tool was rotated clockwise and tilted 2◦ from the plate normal direction
when viewed from above. In order to measure the peak temperature of interface along thickness
direction during stable welding process, thermocouples were placed in the position shown in Figure 2b.
K-type thermocouples with a diameter of 1.0 mm were embedded in blind hole at depth of 50 mm
from the edge of the plates.

After FSW, microstructure features of the joints were observed on transverse cross section.
To obtain microstructure information, the welded samples were etched and unetched, respectively.
The unetched sample was used for backscattering electron (BSE) analysis in following procedure.
The etched sample was prepared in three steps. Firstly, Al alloy was etched with a Keller reagent for
2.5 min and then wiped with 4% nitric acid solution for 20 s. Secondly, Mg alloy was etched with
a solution consisting of 4.2 g picric acid, 10 mL acetic acid, and 10 mL distilled water in 80 mL ethanol
for 25 s. The final step was to dip them in a solution of 4 g KMnO4 and 2 g NaOH in 100 mL distilled
water for 10 s.

Meanwhile, the structural stability of IMCs was investigated by using the thermodynamic
calculation method. The microstructure and chemical composition in the weld interface were analyzed
by field emission scanning electron microscopy (FESEM, Nova NanoSEM 450, FEI, Hillsboro, OR,
USA) with an energy-dispersive spectroscopy (EDS). The chemical composition from EDS was input
to JMatPro 7.0 software for predicting the existed phase. The localized phase structure in the weld
interface was determined using micro- X-ray diffraction (XRD). Micro-XRD (RIGAKU Rapid IIR, Tokyo,
Japan) was performed with Cu Kα radiation at 40 kV and a relatively high tube current of 250 mA.
The diameter of X-ray collimator was 0.1 mm.

Table 1. The nominal composition of AZ31B magnesium (Mg) and 5A06 aluminum (Al) (in wt.%).

Materials Al Zn Mn Si Cu Fe Ni Mg

AZ31B 2.5~3.5 0.6~1.4 0.2~1 ≤0.1 ≤0.05 ≤0.005 ≤0.005 Bal.
5A06 Bal. ≤0.2 0.5~0.8 0.4 0.1 ≤0.4 0.1 5.8~6.8
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(b) Temperature measurement (unit: mm).

3. Results

3.1. Peak Temperature of Al/Mg Joints

Figure 3a shows the thermal cycles measured near the joint interface (marked position A, B, C
and D) in dissimilar FSW of Al and Mg alloys. The travel speed and rotation speed are 23.5 mm/min,
and 375 rpm, respectively. The peak temperatures of position A and B, located at the Al side interface,
are 436.8 ◦C and 418.5 ◦C, respectively. The temperature difference between the middle and bottom is
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about 18.3 ◦C. On the other side of the weld, the peak temperature of position C and D are 438.8 ◦C
and 424.2 ◦C, respectively, with a temperature difference of 14.6 ◦C. Figure 3b shows the magnified
thermal cycle at the position C in Figure 3b.

The result mentioned above indicates that temperature distribution along thickness direction
is uneven, and exists in similar FSW for thick plate Al alloys [21,22]. It is noteworthy that peak
temperature of position C run to 438.8 ◦C, which slightly exceeds 437 ◦C that the eutectic reaction
Mg + Al12Mg17 → L would occur. Based on the above analysis, the peak temperature at the top and
middle of the plates in this experiment has exceeded the eutectic temperature 437 ◦C, and liquid films
would form along the interface Al and Mg alloys [23]. On the other hand, the weld root performs
a relatively low temperature than the top and middle, caused by suffering a smaller stirring force and
frictional force than the weld surface.
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3.2. Macro-Microstructure of the Al/Mg Joints

Figure 4 shows the low magnification overview of dissimilar Al/Mg butt joint by using the travel
speed of 23.5 mm/min and rotation speed of 375 rpm. Sound FSW joints without macro-defects are
obtained. It is seen from Figure 4 that the multi-layer structures are observed in the weld region,
which is apparently different from the FSW of thin plate Al and Mg alloys [15].

On the top of the weld zone, the large dark phase is mixed with a small amount of light grey
phase. The dark phase is likely the Mg-rich phase since it is much more susceptible to corrosion and
preferentially etched as dark. The light grey phase may be Al-rich phase because of the corrosion
resistance of 5A06 Al alloy. The intercalated structure is existed in the middle of the weld zone, also
observed at other dissimilar FSW of Al/Mg alloys [24]. It exists apparent onion ring at the bottom of
the weld zone, and this phenomenon suggests that materials are incorporated into the tool threads
during each rotation, resulting in the formation of lamellae [25,26].
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Figure 5 shows the SEM micrographs and EDS maps of the Mg side interface, marked as white
dotted rectangles in Figure 4. The interfacial features of different regions (marked as A, B, C, and D)
of Mg side interface are discussed as follow. In order to distinguish the phases of Mg side interface,
Table 2 presents the chemical composition of the position marked by the number 1 through 14
in Figure 5.

On the left of region A, it consists mainly of light grey phase (position 1 and 2) and black and grey
laminar phase (position 3). Quantitative analysis of chemical compositions by EDS shows that the light
grey phase consists of about 60.0 wt% Mg and 40.0 wt% Al, while the black and grey laminar phase
contains 67.6 wt% Mg and 32.4 wt% Al, as shown in Table 2. This result suggests that the light grey
phase is primary Al12Mg17 and the black and grey phase is a eutectic structure consisting of Al12Mg17

phase and Mg solid solution. The white and continuous layer is visible near the Mg side interface, as
shown at position 4 in Figure 5a. In order to distinguish this white layer, the BSE image is presented at
the lower left corner of Figure 5a. It can be seen from the Figure 5a that the white and continuous layer
is actually part of the eutectic structure. The reason for the formation of the white and continuous
layer is that edge morphology of the Mg side interface is sharp and prominent, which leads to the high
reflection intensity of second electrons [27].

It is similar to the top that the upper-middle microstructure also consists of eutectic phase (Mg
+ Al12Mg17) and primary Al12Mg17 phase. Interestingly, the size of the eutectic structure at the
upper-middle is smaller than that at the top. This may be ascribed to the lower peak temperature and
short duration time in the upper middle than that in the top, so that the amount of melted metals in the
upper-middle is less than that in the top, according to the Section 3.1. Moreover, the BSE image of the
white and continuous layer at position 4 is indicated at lower left in Figure 5b. It can be seen that white
and continuous layer is also a part of eutectic structure.

There exists a significant difference that no eutectic structure is observed in Figure 5c, compared
with Figure 5a,b. It is mainly caused by that the temperature of the lower middle is below the eutectic
temperature (437 ◦C). Additionally, the BSE and EDS map in Figure 5c shows that there are two distinct
IMC layers formed along the Mg side interface. Quantitative analysis of the chemical compositions of
position 8 indicates that this region is the Al solid solution. The position 9 and 10 mainly contain Al
and Mg element. From the ratio of Mg to Al the position 9 and 10 should be Al3Mg2 and Al12Mg17,
respectively. The thickness of the layer Al12Mg17 is approximately 8.35 µm lower than that of the
layer Al3Mg2, which is ascribed to rapid growth rate of Al3Mg2 [28]. These findings indicate that the
formation of two IMC layers is caused by the diffusion reaction rather than fusion solidification.

It is observed from Figure 5d that the two sub-layers are formed along the Mg side interface.
According to the EDS results of position 14, it is deduced that this layer is identified as Al12Mg17 phase
with approximately 3.89 µm thickness. The other layer is identified as Al3Mg2 phase with thickness
of 7.62 µm, which is significantly larger than that of the Al12Mg17 layer. The same phenomenon was
also been reported by Panteli [29] and Lv et al. [30] The straight shape of IMC layer in Figure 5d is
obviously different with that in Figure 5a,b, and this straight shape of IMC layer has also been reported
in the field of Al and Mg diffusion bonding [31]. This result indicates that the formation of IMC layers
in Figure 5d is caused by the diffusion reaction.

Based on the above analysis, this kind of morphology difference of the IMC layer should be
caused by the constitution liquation and the diffusion reaction. The more detailed analysis about the
formation of IMC would be carried out in the Section 4.2.
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Table 2. Chemical compositions (Weight Percent) measured by EDS at Locations shown in Figure 5.

Location Mg Al Total Possible Phase(s) Location Mg Al Total Possible Phase(s)

1 61.0 39.0 100 Al12Mg17 8 6.6 93.4 100 Al substrate
2 60.7 39.3 100 Al12Mg17 9 37.3 62.7 100 Al3Mg2
3 67.6 32.4 100 Al12Mg17 + Mg 10 57.6 42.4 100 Al12Mg17
4 96.5 3.5 100 Mg substrate 11 96.7 3.3 100 Al substrate
5 59.5 40.5 100 Al12Mg17 12 0 100 100 Al substrate
6 70.0 30.0 100 Mg + Al12Mg17 13 37.0 63.0 100 Al3Mg2
7 97.0 3.0 100 Mg substrate 14 60.1 39.9 100 Al12Mg17

Figures 6 and 7 show the SEM micrographs and EDS maps of the Al side interface, marked as
white dotted rectangles in Figure 4, respectively. The interfacial features of different regions (marked
as E, F, and G) of Al side interface are discussed as follow. In order to distinguish the phases of Al side
interface, Table 3 presents the chemical composition of the position marked by the number 1 through 8.

As indicated in white arrow in Figures 6a and 7a, there are continuous crack and dispersive
eutectic structure existed at the top of the Al side interface comparing with the Figure 5a. This eutectic
structure is identified as Mg solid solution and Al12Mg17 by the EDS analysis. In addition, local
magnified map in the Figure 5a clearly indicates that two sub-layers are formed near the top of Al side
interface, as shown at position 2 and 3. Here an abnormal phenomenon is observed that the thickness
of Al12Mg17 layer is obviously larger than that of layer Al3Mg2. This might be due to the fact that
existence of cracks prevents Al atoms from diffusing to the interface.

It is seen from the magnified map in the Figures 6b and 7b that single Al3Mg2 layer and continuous
crack are formed at middle of the Al side interface. As can be seen from Figure 4, the middle of interface
is light gray, which indicates that the content of Al is higher than that of Mg. This causes insufficient
diffusion of Mg atoms to the Al atoms, which is easy to form Al3Mg2 at the Al side [32].
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Figure 6c shows the bottom microstructure of the Al side interface with respect to the region G
in Figure 4. The EDS result indicates that the bottom of Al side interface mainly contains Al substrate and
Al3Mg2. It should be noted that there was no diffusion layer formed at the bottom of Al side interface, as
shown in Figure 7c. This might be explained by lower temperature and shearing force, leading to insufficient
diffusion and the formation of dispersed granular IMC at the bottom of Al side interface.
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Table 3. Chemical compositions (Weight Percent) measured by energy-dispersive spectroscopy (EDS)
at Locations shown in Figure 6.

Location Mg Al Total Possible Phase(s)

1 6.9 93.1 100 Mg substrate
2 37.3 62.7 100 Al3Mg2
3 58.4 41.6 100 Al12Mg17
4 15.2 84.8 100 Al substrate
5 36.0 64.0 100 Al3Mg2
6 37.4 62.6 100 Al3Mg2
7 9.3 90.7 100 Al substrate
8 20.2 79.8 100 Al+ Al3Mg2

3.3. Micro-XRD Analysis of the Al/Mg Joints

The micro-XRD spectra obtained from different locations in Figure 4 is indicated in Figure 8.
The micro-XRD results from location A in Figure 4 show that Al12Mg17 phase is formed in the top region
of Mg side interface, as shown in Figure 8a. The micro-XRD result from location C in Figure 4, below the
middle region of Mg side interface, show that the phase in this region contains Al3Mg2 and Al12Mg17.
The identical phenomenon is occurred at the bottom of Mg side interface, as shown in Figure 8c.
Figure 8d–f show the micro-XRD spectra obtained from locations E, F, and G. The micro-XRD result
from location E shows that the top region of Al side interface mainly contains Al, Al3Mg2 and Al12Mg17.
The micro-XRD results from location F and G show that this region contained Al solid solution
and Al3Mg2.
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Combined with the analysis of the mentioned thermal cycle, the presence of the Al12Mg17 phase
in the top region of Al and Mg side interface, such as locations A and E, indicates that eutectic reaction
Mg + Al12Mg17 ↔ L could be taken place in the FSW of thick plate Al and Mg alloys. On the other
hand, although the peak temperatures of location C, D, F, and G were lower than the eutectic reaction
temperature 437 ◦C, this would result in the formation of Al3Mg2 and Al12Mg17 as a result of enhanced
mutual diffusion between Al and Mg atoms undergone high welding temperature and high strain rate
plastic deformation in FSW [33].
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4. Discussion

4.1. Thermodynamic Calculation of IMCs

It is well known that the formation of IMCs is related to local composition and temperature.
Therefore, the formation of IMCs in non-equilibrium phase is calculated by using the JMatPro software.
The EDS results of Mg side interface are presented in Figure 5 and Table 2. Then thermodynamic
properties are calculated by the equation of thermodynamics, as expressed in following equations:

H = U +

∫
CpdT (1)

G = H − TS (2)

where H is the enthalpy, U is the formation heat, Cp is the isobaric heat capacity of the specific
temperature, T is the absolute temperature, G is the Gibbs free energy and S is the entropy of the
specific temperature.

The non-equilibrium phases of location 3 and 13 in Figure 5 are calculated, respectively. The H, S,
and G of Al3Mg2 and Al12Mg17 are used to investigate the precipitation mechanism of IMCs in the
Al/Mg joints. It is shown in Figure 9 that G of Al12Mg17 is lower than that of Al3Mg2 at the range of
0–500 ◦C. Hence, Al12Mg17 phase firstly precipitates than Al3Mg2 phase. This result is coincided with
that reported by Panteli et al. [29].Materials 2019, 12, x FOR PEER REVIEW 10 of 13 
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4.2. Formation Discussion of the IMCs

In this study, the top and upper-middle of Mg side interface has been exposed to peak temperature
higher than 437 ◦C during friction stirring according to temperature measurement results. Consequently,
constitutional liquation has occurred at the top and upper-middle of the Mg side interface during
FSW of thick plate Al and Mg alloys. Diffusion reaction would dominate at the bottom of the Mg side
interface since this temperature is lower than eutectic temperature. Similarly, the formation of IMCs at
the middle and bottom of the Al side interface is also controlled by diffusion reaction. There are the
continuous IMCs layer and partially dispersed eutectic at the top of the Al side interface, which mean
that liquation and diffusion reaction have occurred at the top of this interface.

In order to explain clearly the formation mechanism of the constitutional liquation and
IMCs, the schematic illustration of IMCs formation is shown in Figure 10. Firstly, the diffusion
between Al atoms and Mg atoms would be enhanced under the action of high temperature and
serve plastic deformation along the Al and Mg side interfaces. Then the constitutional liquation
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(Mg + Al12Mg17 → L) occur when the reaction temperature arrived to 437 ◦C depending on the local
composition, as indicated in Figure 10a. For the lower-middle and bottom of Mg side interface whose
temperature is below the eutectic temperature, the formation and growth of IMCs are induced by the
diffusion reaction of Al and Mg atoms. The Al and Mg atoms could diffusion into the Mg and Al
alloys during the FSW process, respectively, as indicated in Figure 10b. As the inter-diffusion process
between Al and Mg atoms continues, the Al12Mg17 layer first forms near Mg side interface due to its
lower Gibbs free energy, while Al3Mg2 nucleates near Al side interface as the Mg atoms diffused to Al
atoms [34]. The second layer of Al3Mg2 develops near Al side interface when the Mg atoms diffuse to
Al atoms continuously. Although the entire IMCs layer continues to grow, the Al3Mg2 layer develops
at a higher growth rate, becoming thicker than the Al12Mg17 layer. The results are also consistent with
the work of Dietrich et al. [35] and Panteli et al. [29].

Base on the previous study, the relationship between the thickness of IMCs layer and diffusion
time could be expressed by using following equations [36]:

d2= K·t (3)

where d is the diffusion thickness, t is the diffusion time, K is the diffusion coefficient.
However, the selection of diffusion time in FSW has not been reported as far. In this study,

the approximate diffusion time would be discussed in combination with the thermal cycle curve
in Figure 2. It is well known that the high temperature range of the stirring area is basically the same
as that of the shoulder, and the temperature of the outside shoulder decreases obviously due to the
strong heat conduction. Given the shoulder diameter (D) and travel speed (V), the thermal history
time (diffusion time, t) of interfacial atoms during Al/Mg FSW process can be expressed as:

t =
D
V

(4)

The diffusion time (t) is about 102 s by substituting shoulder diameter (D = 40 mm) and travel
speed (V = 23.5 mm/min). Then the diffusion coefficient can be calculated according to the diffusion
thickness and diffusion time, as shown in Table 4. Compared to the diffusion coefficient obtained
by Jin et al. [37], these results are higher. Because of an increased vacancy concentration and dislocation
generation caused by severe deformation, the weld interface in Al/Mg FSW might be expected to
enhance diffusion. In addition, the diffusion coefficients of Al3Mg2 and Al12Mg17 at position C are
greater than those at position D. This also confirms that the diffusion coefficient is related to the degree
of plastic deformation. As can be seen from Table 4, the measured thickness of Al3Mg2 and Al12Mg17

layer is larger than the calculated at position C and D. This might be attributed to the fact that the
growth rate of IMCs is higher in severe plastic deformation than that in static condition [29].

Table 4. Diffusion coefficients of aluminum (Al)/magnesium (Mg) interface.

Position IMCs layer Diffusion Thickness
(µm)

Diffusion Time
(s)

Diffusion Coefficient
(10−12 m2 s−1)

C
Al3Mg2 17.91 102 3.14

Al12Mg17 8.35 102 0.68

D
Al3Mg2 8.4 102 0.69

Al12Mg17 3.89 102 0.15
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5. Conclusions

The conclusions are as follows.

1 Dissimilar joints of thick plate 5A06 Al and AZ31B alloys are butt welded using an inclined butt
joint by FSW.

2 There are two different formation mechanisms of intermetallic compounds at the interface of
thick plate Al/Mg joints. The one is component liquefaction, the other is reaction diffusion.

3 As the position changes from the middle to the bottom near the Mg side interface, the diffusion
coefficient of Al3Mg2 phase rapidly decreases from 3.14 × 10−12 m2/s to 6.9 × 10−13 m2/s and the
diffusion coefficient of Al12Mg17 phase decreases from 6.8 × 10−13 m2/s to 1.5 × 10−13 m2/s.
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