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Abstract: High-efficiency thermally activated delayed fluorescence (TADF) is leading the
third-generation technology of organic light-emitting diodes (OLEDs). TADF emitters are designed
and synthesized using inexpensive organic donor and acceptor derivatives. TADF emitters are a
potential candidate for next-generation display technology when compared with metal-complex-based
phosphorescent dopants. Many studies are being conducted to enhance the external quantum
efficiencies (EQEs) and photoluminescent quantum yield of green TADF devices. Blue TADF reached
an EQE of over 35% with the support of suitable donor and acceptor moieties based on a suitable
molecular design. The efficiencies of green TADF emitters can be improved when an appropriate
molecular design is applied with an efficient device structure. The triazine acceptor has been identified
as a worthy building block for green TADF emitters. Hence, we present here a review of triazine with
various donor molecules and their device performances. This will help to design more suitable and
efficient green TADF emitters for OLEDs.
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1. Introduction

Organic light-emitting diodes (OLEDs) and the application of organic materials in emitting
technology have attracted much attention from industrial and research communities since 1987. The
advantages of OLED technology, such as its light weight, image quality, high contrast, fast response
time, thin film, and wide-view angle, have made it a potential candidate in commercial applications
instead of liquid crystal displays (LCDs) [1–5]. Moreover, OLED displays can be fabricated on foldable
and bendable substrates, thus making them a leading type of next-generation display. OLEDs have
received considerable attention as an energy-efficient technology because they do not require any
backlighting support [6–8]. OLED technology has developed from single- to multilayer devices
across three generations of dopant materials. Multilayer OLED devices consist of several layers
between an anode and a cathode, including a hole-injection layer (HIL), a hole-transporting layer
(HTL), an electron-blocking layer (EBL), an emission layer (EML), a hole-blocking layer (HBL), an
electron-transporting layer (ETL), and an electron-injection layer (EIL). The emission layer is made
of two components, namely, host and dopant materials. The dopant material, at a suitable doping
concentration, is usually doped with a high–triplet energy host material to support effective energy
balance and emit colors by a proper charge recombination [9–19].

The spin rule explains the singlet and triplet emission possibilities of OLED dopants, where 25% are
only responsible for singlet emission while 75% are from the triplet state. First-generation fluorescent
emitters harvest only singlet emission with an internal quantum efficiency (IQE) of 25%. The remaining
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75% of the IQE does not hold any emission responsibility for colors [20–25]. Phosphorescent OLEDs
(PhOLEDs) were developed by using iridium- and platinum-based noble metals to enable the 100% IQE
by activating the intersystem crossing (ISC) pathway [26–32]. The efficiency of PhOLEDs was enhanced
further by developing various host materials. Host materials are responsible for supplying energy
to the dopant while preventing energy flow back from the dopant [33–37]. The major disadvantage
of PhOLEDs is that they require the use of expensive noble metals to form a metal–ligand complex,
which produces toxic waste [38–43].

Current studies are exploring new technologies using metal-free dopants and a type of emission
referred to as thermally activated delayed fluorescence (TADF). This TADF mechanism can also achieve
100% IQE by activating an efficient up-conversion process of reverse intersystem crossing (RISC) from
an excited triplet state to an excited singlet state [44–51]. The TADF concept is based on organic
molecules with suitable donor–acceptor building blocks. Donor and acceptor moieties present in the
same molecule enable intramolecular charge transfer (ICT) with a small energy difference between
singlet and triplet excited states to allow an effective RISC process to harvest singlet emissions through
converting triplets to singlets. Moreover, clear separation between highest occupied molecular orbitals
and lowest unoccupied molecular orbital (HOMO and LUMO) distribution, twisted molecules, and a
phenyl linker between donor and acceptor support an effective TADF mechanism that can achieve
highly efficient device performances [52–60].

Many donor–acceptor-based structures have been reported for TADF emitters. The most commonly
reported donor moieties are carbazole, diphenylamine, acridine, phenoxazine, phenothiazine, and their
derivatives. The electron-withdrawing groups of cyano, boron, pyridine, pyrimidine, triazine, sulfone,
dicyanofluorene, pyrazine, and ketone have been employed as acceptor moieties [61–66]. Suitable
donor and acceptor combinations create efficient TADF emitters and help to decrease the singlet–triplet
energy gap, which increases the rate constant of RISC. According to Boltzmann’s equation, increasing
the rate of ISC and RISC helps to decrease the delayed fluorescence time. Over the past few years,
great advances have been made in the efficiencies of red, green, and blue color development [67,68].

The external quantum efficiencies (EQEs) of red, green, and blue TADF OLEDs have made
great progress along with new molecular designs. Red emitters suffer due to low band-gap energy
and longer wavelengths near the IR region. Recently, green TADF emitters have received much
attention because of their molecular design and efficiency enhancement. Strong-donor–weak-acceptor,
weak-donor–strong-acceptor, and moderate-donor–moderate-acceptor combinations were identified
and applied to green TADF molecular constructions [66,69–71]. Acridine, phenoxazine, and
phenothiazine are strong donor groups, and boron and sulfone derivatives are strong withdrawing
groups. The color purity of emitters was controlled according to the type and number of donor moieties
attached with different positions of linker units present between donor and acceptor moieties. Among
the reported cyano-acceptor-based green TADF emitters, 4CzIPN exhibited good device characteristics.
The EQEs of 4CzIPN green emitters were 14%, 19.3%, 21.8%, 26.5%, 27.5%, 26.7%, 28.6%, 29.6%,
and 31.2% with various host materials of mCBP, CBP, 4CN34BCz, mCPSOB, mCP:TSPO1, DCzDCN,
mCP:BmPyPb, mCP:B3PYMPM, and 3CzPFP, respectively [72–79]. The weak electron acceptor
of the pyrazine moiety with different donor-derivative-based green TADF emitters exhibited low
device characteristics, but pyrimidine-based Ac-HPM, Ac-PPM, and Ac-MPM revealed considerable
EQEs of 20.9%, 19.0%, and 24.5%, respectively [80]. A thioxanthone acceptor unit with carbazole
(TXO-PhCz) and triphenylamine (TXO-TPA) donor derivatives showed EQEs of 21.5% and 18.5%,
respectively, and the efficiencies were better than those of pyrazine-based green TADF emitters [59]. The
stable and moderate electron-withdrawing triazine molecule showed great efficiencies and improved
device stabilities. The boron-acceptor-based green TADF emitters PXZ-Mes3B and 2DAC-Mes3B
revealed EQEs of 22.8% and 21.6%, respectively, which were higher than those of thioxanthone-based
green emitters [69]. A triazine acceptor with different donor moieties of TmCzTrz, DMAC-TRZ,
TRZ-DDPAc, and DACT-II had excellent EQEs of 25.5%, 26.5%, 27.3%, and 29.6%, respectively, and the



Materials 2019, 12, 2646 3 of 19

current efficiencies of acridine-donor-based DMAC-TRZ and TRZ-DDPAc were 66.8 and 62.8 cd/A,
respectively [81–84].

When we compare the device efficiencies of various acceptor-based green TADF emitters, the
triazine acceptor with suitable donor moieties enhances the device efficiencies and photoluminescent
quantum yield (PLQY). In this review, we focus on triazine-based green TADF emitters and their device
characteristics. As a moderate acceptor, triazine is an interesting derivative for green TADF emitters.
Triazine-based green TADF emitters are depicted in Figures 1–6, and their photophysical properties
and device performances are summarized in Tables 1 and 2, respectively.

2. Results and Discussion

The heterocyclic triazine acceptor is a well-known moiety for green TADF emitters due to its
stable and moderate electron acceptability. Many studies have reported that efficient green TADF
emitters were developed by replacing various donor moieties in different positions and suitable device
structures, especially the host material.

12,12′-(6-([1,1′-biphenyl]-4-yl)-1,3,5-triazine-2,4-diyl)bis(11-phenyl-11,12 dihydroindolo[2,3a]
carbazole) (PIC-TRZ) (Figure 1) was developed with two steric indolocarbazole donor units to
confine the pi conjugation, which helped to reduce the singlet–triplet energy gap through clear frontier
molecular orbital separation [85]. The PLQY was reported to be 39% and had a delayed fluorescence time
of 230 µs. This OLED device was fabricated with mCP host material, which has a high–triplet energy
of 2.91 eV, to ensure effective energy transfer from the host to the dopant. The electroluminescent
emission was recorded at 500 nm and the EQE was 5.3%. The monosubstituted donor-based
12-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-phenyl-5,12-dihydroindolo[3,2-a]carbazole (PIC-TRZ2) not only
had a lower singlet–triplet energy difference of 0.02 eV compared with PIC-TRZ but also showed
a high quantum yield of 45%. The EQE was boosted from 5.3% to 14% with an effective reverse
intersystem crossing [86].

Lee et al. reported another molecule with a disubstituted bicarbazole donor derivative at the
second and fourth positions of the triazine acceptor. 9,9′′-(6-phenyl-1,3,5-triazine-2,4-diyl)bis((9H-3,9′

-bicarbazole)) (CC2TA) (Figure 1) showed a low energy difference of 0.05 eV between the singlet and
triplet levels, which was supported by the considerable separation between the donor and acceptor
units. A photoluminescent quantum yield of 62% was recorded, while delayed fluorescence was
observed at 22 µs. This OLED device was constructed using a double emission layer with host materials
such as mCP and DPEPO. The double-layered host materials were responsible for opposite charge
transportation, and a thin layer of DPEPO was employed to block excitons at the interface between
the emission layer and the electron-transporting layer. The device exhibited an external quantum
efficiency of 11% and an emission of 490 nm [87].

The carbazole-triazine based 9-(4,6-diphenyl-1,3,5-triazin-2-yl)-9′-phenyl-9H,9′H-3,3′-bicarbazole
(CzT) (Figure 1) molecule showed a PLQY of around 40%, and the singlet–triplet energy gap
was observed to be 0.07 eV. This OLED device was fabricated with the high–triplet energy host
material DPEPO to ensure effective energy transfer. Also, a low concentration of 3 wt % CzT was
applied during the fabrication process to prevent fluorescence quenching at the emission layer.
The power and EQE were 9.7 lm/W and 6%, respectively, and electroluminescent emission was
recorded at 520 nm. Additionally, a biphenyl link between the triazine acceptor and carbazole donor
for the 3-(2′-(4,6-diphenyl-1,3,5-triazin-2-yl)-[1,1′-biphenyl]-2-yl)-9-phenyl-9H-carbazole (PhCzTAZ)
molecule (Figure 1) displayed a higher singlet–triplet energy gap and made an impossible reverse
intersystem crossing, which did not show any delayed component in photophysical evaluation [88].

Lee et al. studied triazine-based TADF emitters with an increased number of carbazole donor
moieties, which were attached with a phenyl linker unit (Figure 1). 9,9′,9′′-(5-(4,6-diphenyl-1,3,5-
triazin-2-yl)benzene-1,2,3-triyl)tris(3,6-dimethyl-9H-carbazole) (TmCzTrz) and 9,9′-(2-(3,6-dimethyl-
9H-carbazol-9-yl)-5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis (9H-carbazole) (DCzmCzTrz)
revealed PLQYs of 100% and 98%, respectively, and the energy difference between the singlet and triplet
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states were 0.07 and 0.20 eV, respectively. The higher PLQY of the TmCzTrz molecule showed greater
efficiencies (18.6 cd/A, 52.1 lm/W, and 25.5%) than the DCzmCzTrz molecule. The number of carbazole
donors with even HOMO distribution increased, and the device efficiencies were enhanced [89].
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Figure 1. Molecular structures of triazine acceptors with carbazole donor moieties.

The study of the 9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-N3,N3,N6,N6-tetraphenyl-9H-
carbazole-3,6-diamine (DACT-II) molecule (Figure 2) showed an interesting photoluminescent quantum
yield of 100%, which matched the theoretical IQE of 100%. The energy difference between the singlet and
triplet states was 0.009 eV. An energy gap near zero supported a large oscillator strength and an effective
RISC process. The bulky molecular structure had favorable thermal properties, and the decomposition
temperature was 484 ◦C at 5% weight reduction. The symmetric diphenylaminocarbazole donor in this
molecule played an important role in the device efficiencies. An OLED device was fabricated with a 100
nm thick 4,4′-Cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] (TAPC) hole-transporting
layer and was doped with CBP host material. An EQE of 29.6% was recorded without any outcoupling
techniques. At the same time, the device exhibited low power consumption, even at high thickness [84].

Dibenzofuran–carbazole-donor-based 9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)dibenzo[b,d]furan-3-yl)-
9′-phenyl-9H,9′H-3,3′-bicarbazole (BCzTrzDBF), 9’-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)dibenzo[b,d]
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furan-3-yl)-9,9”-diphenyl-9H,9’H,9”H-3,3’:6’,3”-tercarbazole (TCzTrzDBF), and 12-(4-(4,6-diphenyl-
1,3,5-triazin-2-yl)dibenzo[b,d]furan-3-yl)-5-phenyl-5,12-dihydroindolo[3,2a]carbazole (IDCzTrzDBF)
were synthesized and used for green TADF emitters (Figure 2). A dibenzofuran unit was used as
the backbone between the carbazole donor and the triazine acceptor, and a HOMO–LUMO
distribution confirmed the linker unit. All three molecules exhibited PLQYs over 80%.
The delayed time was recorded as 5.4, 4.4, and 2.8 µs for BCzTrzDBF, TCzTrzDBF, and
IDCzTrzDBF, respectively. The reverse intersystem crossing rate constant of IDCzTrzDBF was
high due to the large angle between the indolocarbazole donor and the dibenzofuran linker.
TCzTrzDBF exhibited the highest horizontal dipole alignment ratio relative to the substrate
of 0.79, which helped to bring a higher EQE of 23.5% compared with BCzTrzDBF (20.1%)
and IDCzTrzDBF (12.2%). Moreover, the three-carbazole-unit-based TCzTrzDBF enhanced
the current and power efficiencies (74.8 cd/A and 44.7 lm/W, respectively) compared with the
two-carbazole-unit-based BCzTrzDBF (59.6 cd/A, 35.1 lm/W). Further studies were carried out by Jung
et al. by changing the donor and acceptor positions with a dibenzofuran linker unit (Figure 2). 9-(4-(4,6-
diphenyl-1,3,5-triazin-2-yl)dibenzo[b,d]furan-3-yl)-9′-phenyl-9H,9′H-3,3′-bicarbazole (2Cz3Trz)
and 9-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)dibenzo[b,d]furan-3-yl)-9′-phenyl-9H,9′H-3,3′- bicarbazole
(3Cz2Trz) showed low PLQYs and device efficiencies compared with TCzTrzDBF. Changing the
acceptor attached position and reducing the amount of carbazole did not reveal any interesting
efficiency enhancements. However, a dibenzofuran linker can suppress the nonradiative mechanism
when compared with the presence of a phenyl linker moiety [90,91].
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Carbazole and its derivatives with a triazine acceptor were the subject of an interesting study
on device performances. The monosubstituted indolocarbazole donor moiety PIC-TRZ2 showed a
well-separated frontier molecular orbital distribution compared with disubstituted indolocarbazole
PIC-TRZ2, which helped to increase the EQE from 5.3% to 12.5%. However, these two molecules did
not have any phenyl linker or spacer molecule between the donor and the acceptor. A bicarbazole
donor and triazine acceptor without any phenyl linker showed the opposite performance, and
disubstituted CC2TA revealed better performances (11%) than the monosubstituted CzT molecule
(6%). Symmetrical molecules of DPA-TRZ and DACT-II with a phenyl linker unit exhibited better
device properties. Carbazole with diphenyl amine at the third and sixth positions (DACT-II) enhanced
the device quantum efficiency up to 29.6%, while diphenyl amine, at the third and sixth positions of
diphenylamine (DPA-TRZ), showed a low efficiency of 13.8%. So, carbazole with a diphenylamine
donor at the third and sixth positions resulted in a more interesting effect with the triazine acceptor
than a similar molecular design with diphenylamine donor derivatives. A IDCzTrzDBF molecule
was constructed with a furan linker between an indolocarbazole donor and a triazine acceptor, but
this linker moiety and substituted position did not have a successful effect on the external quantum
efficiency. A furan linker moiety attached to a symmetrical donor of carbazole with third- and
sixth-position-substituted phenyl carbazole (TCzTrzDBF) showed better performance. When the
number of carbazole donor moieties was increased and attached to the phenyl group at meta and
para positions (TmCzTrz), the result was an EQE over 25%. Overall, a carbazole donor containing
a symmetrical structure, along with free rotating substitutions at the third and sixth positions,
and a number of carbazole donors attached through meta and para substitution further helped to
achieve high EQEs for green TADF emitters compared with carbazole-based rigid donor derivatives
of indolocarbazole.

The indeno–acridine strong-donor-based 5-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-7,7,13,13-
tetramethyl-7,13-dihydro-5H-indeno[1,2-b]acridine (TrzIAc) molecule (Figure 3) was reported to
have a PLQY of 97%. Delayed fluorescence was observed at 1.6 µs, with a singlet–triplet energy
difference of 0.06 eV. The rigid donor molecule enhanced the thermal stabilities of TrzIAc. OLED
device performances were noticed when 20 wt % was doped with mixed hosts of mCP and TPBI.
An EQE of 20.9% was recorded, which was higher than that of acridine-donor-based TrzAc (17.7%).
The indeno–acridine donor moiety not only enhanced the thermal stability but also improved device
efficiencies with green color emission (511 nm) [61].

Kang et al. reported two TADF emitters with rigid donors of benzofuran–acridine (13-(4-
(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-5,5-dimethyl-5,13-dihydrobenzofuro[3,2-c]acridine, BFAcTRZ)
and benzothiophene–acridine (13-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-5,5-dimethyl-5,13-
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dihydrobenzo[4,5]thieno[3,2-c]acridine, BTAcTRZ) with a triazine acceptor (Figure 3). The PLQY
of BTAcTRZ was as high as 100%, and the energy difference between singlet and triplet states was
as small as 0.02 eV, with a delayed fluorescence of 9.3 µs. The constant of reverse intersystem
crossing was higher in benzothiophene-based BTAcTRZ. The EQEs of BFAcTRZ (20.4%) and
BTAcTRZ (21.8%) were higher than 20%, and BTAcTRZ exhibited better efficiencies than that
of the indeno–acridine-based TrzIAc molecule. The BTAcTRZ molecule showed a red-shifted
electroluminescent emission of 526 nm due to its donor moiety [61,92].

Rigid donor moieties of indeno–acridine-, dibenzofuro–acridine-, and benzothieno–acridine-based
TrzIAc, BFAcTrz, and BTAcTrz revealed better EQEs, which were higher than those of
indolocarbazole-based green TADF emitters.
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The 10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10H-phenoxazine (PXZ-TRZ) material with
a phenoxazine donor (Figure 4) showed a dihedral angle between donor and acceptor of 74.8◦,
which made an effective separation of HOMO and LUMO. There was a small energy gap between
the singlet and triplet states of 0.07 eV, which was obtained through a phenyl linker between
the donor and the acceptor. A PLQY of 65.7% resulted in an EQE of 12.5%. There was a short
delayed fluorescence at 0.68 µs, and the maxima of the electroluminescent spectra was at 529 nm.
Later, di- and trisubstituted phenoxazine donors with a triazine acceptor moiety were reported.
2,4,6-Tris(4-(10H-phenoxazin-10-yl)phenyl)-1,3,5-triazine (Tri-PXZ-TRZ) revealed an EQE of 13.3%,
which was higher than that of the single-substituted donor molecule. Moreover, the trisubstituted
material showed red-shifted emission, and the PLQY was 58% [93,94].
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Table 1. Photophysical properties of triazine-based green thermally activated delayed fluorescence
(TADF) emitters.

TADF Emitter HOMO
(eV)

LUMO
(eV) PL (nm) ∆EST (eV) ΦPL (%) τd (µs) Reference

PIC-TRZ - - 500 0.11 39 230 [86]

PXZ-TRZ 5.5 3.1 540 0.07 65.7 0.68 [89]

CC2TA 5.9 2.6 513a 0.05 62 22 [87]

PIC-TRZ2 - - - 0.02 45 2.7 [86]

Bis-PXZ-TRZ 5.7 3.4 560 a 0.054 b 64 1.33 a [90]

Tri-PXZ-TRZ 5.7 3.4 568 a 0.065 b 58 1.10 a [90]

CzT - - 502 0.07 39.7 42.6 a [88]

PTZ-TRZ 5.5 3.0 420,520 0.18 b 65.8 0.52 a [89]

DMAC-TRZ 5.3 2.78 510 0.05 83 3.6 [82]

DACT-II 5.5 3.2 520 0.009 100 - [84]

DPA-TRZ - - 540 0.11 100 160 [91]

TrzIAc 5.75 3.34 519 0.06 97 a 1.6 [61]

3ACR-TRZ - - 504 0.015 98 a 6.7 [93]

BCzTrzDBF 5.85 3.34 - 0.06 82.4 5.4 [95]

TCzTrzDBF 5.87 3.43 - 0.01 86.3 4.4 [95]

IDCzTrzDBF 5.88 3.34 - 0.05 85.4 2.8 [95]

BFAcTrz 5.84 3.23 - 0.11 92.3 14.2 [94]

BTAcTrz 5.8 3.24 - 0.02 100 9.3 [94]

TmCzTrz 5.19 b 2.11 b - 0.07 100 13.3 [92]

DCzmCzTrz 5.26 b 2.15 b - 0.20 98 9.7 [92]

TRZ-DDMAc 5.70 2.89 529 0.03 52.7 10.32 [83]

TRZ-DDPAc 5.72 2.87 511 0.05 79.7 10.37 [83]

2Cz3Trz 5.78 3.32 - 0.06 74.2 4.80 [96]

3Cz2Trz 5.77 3.20 - 0.05 69.7 2.84 [96]
a Measured in solution state. b Calculation value.

Tanaka et al. developed the phenothiazine-donor-and-triazine-acceptor-based 10-(4-(4,6-diphenyl-
1,3,5-triazin-2-yl)phenyl)-10H-phenothiazine (PTZ-TRZ) TADF emitter (Figure 5), which had a phenyl
linker between the donor and the acceptor. It was noticed that PTZ-TRZ exhibited dual ICT
fluorescence in solid and solution states with a small singlet–triplet energy difference. PTZ-TRZ
revealed quasi-equatorial conformation and had a lower dihedral angle between donor and acceptor
compared with phenoxazine-based PXZ-TRZ. Two PL emissions were observed at 409 and 562 nm,
which were assigned to the quasi-axial and quasi-equatorial conformers, respectively. This OLED
device, at a low concentration of 2 wt % PTZ-TRZ, showed an EQE of 10.8% and a PLQY of 65.8% [60,93].

Shizu et al. reported another molecule (N1-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-N1-(4-
(diphenylamino)phenyl)-N4,N4-diphenylbenzene-1,4-diamine, DPA-TRZ) (Figure 5) with a 100%
PLQY. When DPA-TRZ was doped with host material, nonradiative decay was suppressed, which
helped the effective reverse intersystem crossing mechanism. A long delayed component of 160 µs
was observed, which confirmed the presence of TADF characteristics. An EQE of 13.8% was recorded
at a current density of 0.01 mA/Cm−2. The device efficiencies were notably better than those of
phenothiazine-based PTZ-TRZ and phenoxazine-based PXZ-TRZ devices. The electroluminescent
(EL) emission was notices at 548 nm, which showed little red shifting due to its long conjugation donor
molecule [60,93,95].
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Tsai et al. introduced 10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9,9-dimethyl-9,10-dihydroacridine
(DMAC-TRZ) (Figure 6) with a dimethyl acridine donor, which showed high PLQYs of 83% and 90%
for neat and doped films, respectively. The geometrical optimization showed that DMAC-TRZ had a
large dihedral angle of 88◦ between the acridine donor and the triazine acceptor. DMAC-TRZ exhibited
more stable thermal properties than those of phenoxazine-based PXZ-TRZ. Delayed fluorescence was
observed at 3.6 µs in the neat film state, while it was 1.9 µs in the doped film state. The high PLQY
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in neat and doped film states suggests that two different devices with doped and undoped TADF
emitters could be fabricated. The doped device with mCPCN host material showed current, power,
and external quantum efficiencies of 66.8 cd/A, 65.6 lm/W, and 26.5%, respectively. The undoped
device had current and external quantum efficiencies of 61.1 cd/A and 20%. Such high efficiencies for
an undoped device were explained by the effective mechanism of RISC [82,93].

Further development of acridine-donor-based 2,4,6-tris(4-(9,9-dimethylacridin-10(9H)-yl)phenyl)-
1,3,5-triazine (3ACR-TRZ) TADF emitters (Figure 6) for solution-processable OLEDs was reported by
Wada et al. 3ACR-TRZ showed a high PLQY of 98%, which was higher than that of DMAC-TRZ. The
increased number of acridine donor molecules helped to reduce the energy gap between the singlet
and triplet states to 0.015 eV, and a slightly longer delayed fluorescence was recorded at 6.7 µs. The
OLED device was fabricated with a 16 wt % emitter doped with CBP host material. The EQE was
18.6%, which was higher than that of the phenoxazine-based three site molecule Tri-PXZ-TRZ. The
dimethyl acridine donor provided good properties as well as easy solution processability [82,94,96].

Recently, our group reported two TADF emitters based on an acridine–triazine molecular
backbone. Two different acridine donors, such as dimethyl acridine (10,10′-(5-(4,6-diphenyl-1,3,5-triazin-
2-yl)-1,3-phenylene)bis(9,9-dimethyl-9,10-dihydroacridine), TRZ-DDMAc) and diphenyl acridine
(10,10’-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9,9-diphenyl-9,10-dihydroacridine), TRZ-
DDPAc) were constructed (Figure 6) with a D-A-D structure and a phenyl linker between the donor
and the acceptor. Interestingly, the diphenyl-acridine-donor-based molecule revealed a PLQY (79.7%)
higher than that of the dimethyl-acridine-based molecule. The calculation method showed that the
nonradiative decay rate of the dimethyl acridine donor molecule was two times that of the diphenyl
donor molecule. A device using TRZ-DDPAc doped with the polar host material DBFPO showed
excellent efficiencies of 62.8 cd/A, 56.3 lm/W, and 27.3% for current, power, and external quantum
efficiencies, respectively [83].
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Table 2. Organic light-emitting diodes (OLED) device evaluation performances of triazine-based green TADF emitters.

TADF Emitter Device Structure EML (nm) ELmax (nm) CIE Color CE (cd/A) PE (lm/W) EQE (%) Reference

PIC-TRZ ITO/NPD/α-mCP/6 wt % PIC-TRZ: mCP/BP4mPy/LiF/Al 15 500 - - - 5.3 [86]

PXZ-TRZ ITO/α-NPD/6 wt % PXZ-TRZ: CBP/TPBi/LiF/Al 15 529 - - - 12.5 [89]

CC2TA ITO/α-NPD/6 wt % CC2TA: mCP/6 wt % CC2TA:
DPEPO/DPEPO/TPBi/LiF/Al 30 490 - - - 11.0 [87]

PIC-TRZ2 ITO/TAPC/6 wt % PIC-TRZ2:
PYD2/DPEPO/TmPyPBi/LiF/Al 20 505 - - - 14.0 [86]

Bis-PXZ-TRZ ITO/α-NPD/6 wt % Bis-PXZ-TRZ: mCBP/TPBi/LiF/Al 15 552 - - - 9.1 [90]

Tri-PXZ-TRZ ITO/α-NPD/6 wt % Tri-PXZ-TRZ: mCBP/TPBi/LiF/Al 15 553 - - - 13.3 [90]

CzT ITO/α-NPD/TCTA/CzSi/3 wt % CzT:
DPEPO/DPEPO/TPBi/LiF/Al 20 520 0.23, 0.40 - 9.7 6.0 [88]

PTZ-TRZ ITO/α-NPD/2 wt % PTZ-TRZ: mCBP/TPBi/LiF/Al 15 532 - - - 10.8 [89]

DMAC-TRZ

ITO/PEDOT: PSS/TAPC/mCP/8 wt % DMAC-TRZ:
mCPCN/DPSS/3TPYMB/LiF/Al

(nondoped device): ITO/PEDOT:
PSS/TAPC/mCp/DMAC-TRZ/3TPYMB/LiF/Al

20 - - 66.8
61.1

65.6
45.7

26.5
20.0 [82]

DACT-II ITO/TAPC/9 wt % DACT-II: CBP/BAlq/Liq/Al 40 - - - - 29.6 [84]

DPA-TRZ ITO/α-NPD/6 wt % DPA-TRZ: mCBP/TPBi/LiF/Al 15 548 - - - 13.8 [91]

TrzIAc 20 wt % TrzIAc: mCP and TPBI 25 511 0.33, 0.57 - - 20.9 [61]

3ACR-TRZ ITO/PEDOT: PSS/16 wt % 3ACR-TRZ:
CBP/BmPyPhB/Liq/Al 55 520 - - - 18.6 [93]

BCzTrzDBF ITO/DNTPD/BPBPA/PCzAc/5 wt % BCzTrzDBF:
mCBPTrz/DBFTrz/ZADN/LiF/Al 30 503 0.24, 0.52 59.6 35.1 20.1 [95]

TCzTrzDBF ITO/DNTPD/BPBPA/PCzAc/5 wt % TCzTrzDBF:
mCBPTrz/DBFTrz/ZADN/LiF/Al 30 511 0.27, 0.57 74.8 44.7 23.5 [95]

IDCzTrzDBF ITO/DNTPD/BPBPA/PCzAc/5 wt % IDCzTrzDBF:
mCBPTrz/DBFTrz/ZADN/LiF/Al 30 500 0.22, 0.48 33.6 19.3 12.2 [95]

BFAcTrz ITO/PEDOT: PSS/TAPC/mCP/30 wt % BFAcTrz:
DPEPO/TSPOI/TPBi/LiF/Al 25 506 0.25, 0.51 58.7 52.7 20.4 [94]
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Table 2. Cont.

TADF Emitter Device Structure EML (nm) ELmax (nm) CIE Color CE (cd/A) PE (lm/W) EQE (%) Reference

BTAcTrz ITO/PEDOT: PSS/TAPC/mCP/50 wt % BTAcTrz:
DPEPO/TSPO1/TPBi/LiF/Al 25 526 0.35, 0.57 68.9 58.5 21.8 [94]

TmCzTrz ITO/PEDOT: PSS/TAPC/mCP/30 wt % TmCzTrz:
DPEPO/TSPO1/TPBI/LiF/Al 25 500 0.25, 0.50 18.6 52.1 25.5 [92]

DCzmCzTrz ITO/PEDOT: PSS/TAPC/mCP/20 wt % DCzmCzTrz:
DPEPO/TSPO1/TPBI/LiF/Al 25 496 0.23, 0.46 16.8 42.4 21.3 [92]

TRZ-DDPAc ITO/HATCN/TAPC/DCDPA/30 wt % TRZ-DDPAc:
DBFPO/TPBi/LiF/Al 25 509 0.25, 0.52 62.8 56.3 27.3 [83]

TRZ-DDMAc ITO/HATCN/TAPC/DCDPA/20 wt % TRZ-DDMAc:
PPBI/TPBi/LiF/Al 25 511 0.26, 0.54 43.2 33.7 17.6 [83]

2Cz3Trz ITO/DNTPD/BPBPA/PCZAC/10 wt % 2Cz3Trz:
CzTrz/CzTrz/ZADN/LiF/Al 30 521 0.30, 0.56 55.8 28.3 17.9 [96]

3Cz2Trz ITO/DNTPD/BPBPA/PCZAC/10 wt % 3Cz2Trz:
CzTrz/CzTrz/ZADN/LiF/Al 30 512 0.26, 0.50 42.9 21.8 15.0 [96]
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Regarding the device performances of triazine-based green TADF emitters, DACT-II-,
TRZ-DDPAc-, DMAC-TRZ-, and TmCzTrz-based devices exhibited good EQEs of 29.6%, 27.3%, 26.5%,
and 25.5%, respectively. The DACT-II molecular design had a carbazole donor with symmetrically
attached diphenylamine units, while the TmCzTrz molecule was constructed with three carbazole
units at the meta and para positions of the phenyl linker. TRZ-DDPAc had two diphenyl acridine
moieties at the meta positions of the phenyl linker group. The molecular design containing only donors
of phenoxazine and phenothiazine did not show any impact on efficiency enhancement. Acridine
derivatives had prominent effects on quantum efficiencies. The number of donor moieties with
symmetrical attachments with the linker phenyl group enhanced the device properties.

Many donor derivatives were incorporated with triazine acceptors to design various green TADF
emitters. The strong donor moieties of acridine, phenothiazine, diphenylamine, and phenoxazine and
the weak donor moieties of carbazole, benzofurocarbazole, and benzothioenocarbazole were employed,
showing suitable attachment to acceptor and linker units. We noticed that strong-donor-based PXZ-TRZ,
PTZ-TRZ, Bis-PXZ-TRZ, Tris-PXZ-TRZ, and DPA-TRZ showed red-shifted emissions of 529, 532, 552,
553, and 548 nm, respectively. The carbazole-donor-based CC2TA, PIC-TRZ, PIC-TRZ2, DCzmCzTrz,
and TmCzTrz showed blue-shifted emissions of 490, 500, 505, 496, and 500 nm, respectively. So, future
works should consider elucidating which type of donor moiety is suitable for designing green TADF
emitters with color purity emission.

Moreover, the selection of host materials, adjacent layers, and doping concentrations is important
to ensure the effectiveness of the device. Among the above-reported triazine-based green TADF
emitters, 20 wt % doped emitters of TrzIAc and DCzmCzTrz showed EQEs of 20.9% and 21.3%,
respectively, and an emission layer thickness of 25 nm. The 30 wt % doped BFAcTrz, TmCzTrz, and
TRZ-DDPAc exhibited quantum efficiencies of 20.4%, 25.5%, and 27.3%, respectively, and had the
same emission layer thickness of 25 nm. A DACT-II-based device showed better device properties at a
low doping concentration of 6%, but the thickness of the emission layer was reported to be 40 nm, and
we believe that the greater thickness of the host material (CBP) supported an effective energy flow
to achieve an EQE of 29.6%. DMAC-TRZ showed good device characteristics (EQE of 26.5%) and
employed an 8% doping (20 nm) concentration and hole-blocking layer (DPSS). The acridine-based
3ACR-TRZ was 16 wt % doped with CBP as the host material, and the emission layer thickness was as
high as 55 nm, but the device could not reach an EQE over 19%. So, for device optimization, using
various doping concentrations and host materials is crucial to obtain an effective device. Host materials
play a major role in device performance as they are responsible for supplying energy to the emission
layer. At the same time, host materials control the charge recombination of collected electrons and
holes from the cathode and anode, respectively. The choice of host material depends on the triplet
energy of the dopant material, and high triplet energy host materials dope with dopant to establish an
effective device.

3. Conclusions

Triazine-acceptor-based green TADF emitters with suitable donor derivatives and host materials
have shown great performance in terms of device efficiency. The EQEs were over 29%, which were
higher than those of any red TADF emitters. Still, many improvements are needed in the molecular
design to achieve a high efficiency. Host materials play a major role in device efficiency by supporting
effective energy transfer to the dopant. Moreover, a proper doping concentration also enhances device
performance. Triazine has exhibited good withdrawing characteristics and a suitable donor moiety
connecting the appropriate position, which should result in a highly efficient and stable molecular
design for green TADF emitters.
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