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Abstract: Biofouling is a significant maritime problem because the growth of fouling organisms on
the hulls of ships leads to very high economic losses every year. Inspired by the soft skins of dolphins,
we prepared graphene oxide/silicone rubber composite membranes in this study. These membranes
have low surface free energies and adjustable elastic moduli, which are beneficial for preventing
biofouling. Diatom attachment studies under static conditions revealed that color has no effect on
antifouling behavior, whereas the studies under hydrodynamic conditions revealed that the combined
effects of color and elastic modulus determine the antifouling performance. The experimental
results are in accordance with the “harmonic motion effect” theory proposed by us, and we also
provide a supplement to the theory in this paper. On the basis of the diatom attachment test results,
the membrane with 0.36 wt % of graphene oxide showed excellent antifouling performance, and is
promising in practical applications. The results confirmed that the graphene oxide and graphene have
similar effect to enhance silicone rubber antifouling performance. This study provides important
insight for the design of new antifouling coatings; specifically, it indicates that lighter colors and low
Young’s moduli provide superior performance. In addition, this study provides a reference for the
application of graphene oxide as fillers to enhance the composite antifouling performance.
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1. Introduction

Biofouling is a significant maritime problem because fouling organisms that grow on the hulls
of ships promote their deterioration and increase drag, thereby increasing fuel costs [1,2]. Another
impact of biofouling is bioinvasion [3]. In the coast of California, more than 60% of invasive species
arrived by clinging to the surface of ships [4]. To solve these problems, the California government
announced regular biological inspection of hulls starting from January 2018 to reduce the invasion
of alien species [5]. These negative impacts have caused enormous economic losses worldwide [6].
Intense methods have been developed to combat biofouling, including the use of copper coatings [7]
and tributyltin self-polishing copolymer (TBT-SPC) [8]. However, in the 1980s, a series of studies
reported the high toxicity of TBT-SPC to marine organisms [9,10]. Since then, the use of toxic antifouling
coatings has gradually been banned in many countries [11,12]. Therefore, the development of new
eco-friendly antifouling coatings is urgent.
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In recent years, composite coatings have aroused considerable interest as economic and eco-friendly
solutions for preventing marine biofouling [13]. Composite coatings based on polydimethylsiloxane,
silicone, and polyurethane-acrylate, among others, have been shown to prevent biofouling
effectively [14–16]. Recently, considerable effort has been devoted to developing new composite
antifouling coatings with graphene/graphene oxide (GO) as fillers [17,18], which promote the antifouling
properties of the coatings [19]. However, several challenges still need to be overcome before these
methods can be applied, such as high cost and low durability [20]. Hence, low cost and efficient
antifouling coatings need to be designed and developed.

Dolphins, soft corals (Sarcophyton trocheliophorum), and seals were found to have antifouling
capacity. These organisms have elastic skin, enabling the creation of a dynamic surface around the flow
to resist biofouling, which is called the “harmonic motion effect.” [21,22] Inspired by this antifouling
strategy, six GO/silicone rubber (GOSR) composite membranes were prepared in the present study.
The preparation method is simple, highly efficient, and low-cost, and the resulting GOSR membranes
are environmentally friendly. They are characterized by adjustable Young’s moduli, low surface free
energies, and smooth surfaces, which are conducive to preventing biofouling. In this study, diatoms
were selected as fouling organisms. The diatom attachment was examined under both static and
hydrodynamic conditions, which revealed that color and Young’s modulus play major roles in diatom
attachment. We previously reported a new understanding of the effect of elastic modulus on antifouling
performance, which we referred to as the “harmonic motion effect” [21]; the experimental results of
the present study can be explained on the basis of this effect. This study provides insight that will be
useful for the design and fabrication of new antifouling coatings.

2. Materials and Methods

2.1. Materials

Silicone rubber (SR) was purchased from Guangdong Bo Rui Co., Ltd, Shenzhen, China. GO was
purchased from Yuhuang New Energy Technology Co., Ltd, Heze, China. Acetone, tetrahydrofuran,
and anhydrous ethanol were supplied by Beijing Chemical Works (Beijing, China). The diatom Triceratium
sp. was obtained from Nanhuaqianmu Biotechnology Co. Ltd, Zhengzhou, China. Algal broth medium
(028820) was purchased from Huankai Microbial Sci. & Tech. Co., Ltd, Guangzhou, China.

2.2. Membrane Preparation

Scheme 1 illustrates the preparation of the GOSR composite membranes. (a) First, GO was added
to acetone under mechanical agitation for 3 h, then remove the mixture into an ultrasonic cleaner for
3 h, which yielded GO dispersions, and the weight ratio of GO/acetone was 1/9. (b) SR was added to
tetrahydrofuran under magnetic stirrer for 2 h, then SR dispersions were obtained, and the weight
ratio of SR/tetrahydrofuran was 1/4. (c) According to the following Equation,

Weight percent (wt%) =
1/10MGo dispersions

1/10MGo dispersions + 1/5MSR dispersions
(1)

Five different GO/SR composite materials were prepared, the GO in composite materials were
expressed as 0.16, 0.36, 0.64, 1.28, and 2.56 wt %, respectively. The mixtures were then stirred for 1 h
under mechanical agitation, after which they were placed in a vacuum chamber for 1 h at 60 ◦C until
acetone and tetrahydrofuran were removed. (d–e) Finally, the mixtures were poured into an acrylic
mold and cured at room temperature for 24 h. A pristine SR (PSR) membrane with 0 wt % GO was
prepared as a control.
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mixture is poured into an acrylic mold and cured. 
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heated in an autoclave for 15 min at 121 °C. After cooling, 100 g of diatoms was added, and the 
mixture was cultured for 2 days at room temperature. As diatoms are photosynthetic organisms, a 
light-emitting diode (LED) plant lamp was used with a light/dark time-cycle of 14/10 h per day. After 
culturing for 2 days (see Figure S1, Supporting Information), the diatom suspension was added to 
containers for static and hydrodynamic diatom attachment tests. The containers were filled with 50 
L of water and 50 g of the algal broth medium. The size of the specimens was approximately 5 cm × 
2 cm × 2 mm (length × width × thickness). The specimens were submerged in a static container for 8 
days, after which they were examined and measured. In the hydrodynamic test, the specimens were 
fixed to a hexagonal prism, and the speed of the electric motor was set as 500 rad/min. Therefore, the 
linear velocity (V) near the specimens was 3.4 m/s ((Figure S2 and Table S1). Some studies reported 
the negative relevant relations between the amount of fouling organisms adhered on ship hulls and 
the flow velocity [23,24]. Therefore, a low flow velocity can reveal the antifouling capability of 
coatings under hydrodynamic conditions. The specimens were examined after 10 days. 

2.4. Characterization 

Raman spectra was obtained using a Raman spectrometer (T64000, HORIBA, Paris, France) 
which combined an Olympus microscope lens with a 532.05 nm CW He-Ne laser. The composition 
of GO nanosheets were analyzed using a Fourier transform infrared spectroscopy (FTIR, Thermo 
Fisher Scientific, Nicolet 6700, Waltham, MA, USA). The morphologies of GO nanosheets were 
obtained using a transmission electron microscope (TEM, JEOL, JEM1200EX, Mitaka-shi, Japan). The 
elemental composition was analyzed using an energy dispersive spectrometer (EDS, X-Max50, 
Oxford, UK) installed in a scanning electron microscope (JSM-7610, JEOL, Mitaka-shi, Japan). The 
water contact angles were measured using a surface tension meter (WCA, XG-CAM, 

Scheme 1. Preparation schematic of graphene/graphene oxide (GO)/silicone rubber (GOSR) composite
membranes: (a) Preparation of a GO dispersion, (b) preparation of an silicone rubber (SR) dispersion,
(c) the two dispersions are mixed to produce GOSR composite material, and (d,e) the mixture is poured
into an acrylic mold and cured.

2.3. Diatom Attachment Testing

First, 3.8 g of the algal broth medium was added to 1 L of deionized water, and the mixture
was heated in an autoclave for 15 min at 121 ◦C. After cooling, 100 g of diatoms was added, and the
mixture was cultured for 2 days at room temperature. As diatoms are photosynthetic organisms,
a light-emitting diode (LED) plant lamp was used with a light/dark time-cycle of 14/10 h per day.
After culturing for 2 days (see Figure S1, Supporting Information), the diatom suspension was added
to containers for static and hydrodynamic diatom attachment tests. The containers were filled with
50 L of water and 50 g of the algal broth medium. The size of the specimens was approximately 5 cm
× 2 cm × 2 mm (length × width × thickness). The specimens were submerged in a static container
for 8 days, after which they were examined and measured. In the hydrodynamic test, the specimens
were fixed to a hexagonal prism, and the speed of the electric motor was set as 500 rad/min. Therefore,
the linear velocity (V) near the specimens was 3.4 m/s (Figure S2 and Table S1). Some studies reported
the negative relevant relations between the amount of fouling organisms adhered on ship hulls and the
flow velocity [23,24]. Therefore, a low flow velocity can reveal the antifouling capability of coatings
under hydrodynamic conditions. The specimens were examined after 10 days.

2.4. Characterization

Raman spectra was obtained using a Raman spectrometer (T64000, HORIBA, Paris, France) which
combined an Olympus microscope lens with a 532.05 nm CW He-Ne laser. The composition of GO
nanosheets were analyzed using a Fourier transform infrared spectroscopy (FTIR, Thermo Fisher
Scientific, Nicolet 6700, Waltham, MA, USA). The morphologies of GO nanosheets were obtained
using a transmission electron microscope (TEM, JEOL, JEM1200EX, Mitaka-shi, Japan). The elemental
composition was analyzed using an energy dispersive spectrometer (EDS, X-Max50, Oxford, UK)
installed in a scanning electron microscope (JSM-7610, JEOL, Mitaka-shi, Japan). The water contact
angles were measured using a surface tension meter (WCA, XG-CAM, Xuanyichuangxi, Shanghai,
China) at room temperature with deionized water as testing liquid, and three specimens were
measured for each membrane. The Young’s moduli were tested using a rubber testing machine
(UTM5305, YOUHONG, Shanghai, China), and three specimens were measured for each membrane.
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The surface topographies of the specimens were analyzed by scanning probe microscopy (SPM,
ICON, BRUKER, Karlsruhe, Germany). Specimens under static and hydrodynamic conditions were
observed by scanning electron microscopy (SEM; MAGELLAN 400, FEI, Hillsboro, Oregon, USA,
and JSM-7610, JEOL, Mitaka-shi, Japan). After the diatom attachment test, the six specimens were
removed and placed into the same amounts of normal saline (4 ml), after which they were placed in an
ultrasonic cleaner for 1 h to separate the diatoms from the specimens, and to produce diatom solutions.
The optical densities of these solutions were measured at 440 nm (OD440) using an ultraviolet-visible
spectrophotometer (UV-5500/PC, METASH, Shanghai, China), which revealed the amounts of diatoms
on the different specimen surfaces. Three specimens were measured for each membrane to minimize
the experimental error.

3. Results and Discussions

3.1. Membrane Composition Analysis

The morphologies of GO nanosheets were observed by SEM (Figure S3a) and TEM (Figure
S3b). As can be seen, the GO nanosheets resemble crumpled silk veil waves, which indicates that
they are multi-layered. The GO nanosheets were confirmed by Raman spectroscopy (Figure S3c),
and it is evident that GO has typical D (1359 cm−1) and G (1589 cm−1) peaks and a 2D region [25,26].
The functional groups of GO nanosheets were analyzed by FTIR (Figure S3d). The band at 3199.55 cm−1

is assigned to the O−H stretching vibration. The peak at 1722.31 cm−1 is attributed to C=O stretching
vibration. The band at 1617.94 cm-1 is assigned to C=C skeletal vibration. The three peaks at
1401.60 cm−1, 1221.08 cm−1, and 1049.12 cm−1 correspond to the C−O stretching vibration. The Raman
spectra of the GOSR membrane (red curve in Figure 1a) exhibits a peak at 1594 cm−1, which is
the G peak of GO. The elemental compositions of the membranes were determined using the EDS
(Figure 1b), and the results in Table S2 reveal that the carbon content increases with increasing GO
content. The presence of GO in the membranes is evident (Figure S4). The PSR membrane appears
milky white and semi-transparent, whereas the GOSR membranes are brown because of the imbedded
GO, and the color deepens with increasing GO content.
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Figure 1. Characterization of specimens with different GO contents: (a) Raman spectra, (b) energy
dispersive spectrometer (EDS) results.

3.2. Membrane Properties

The surface free energies, Young’s moduli, and surface topographies of these membranes were also
examined, as they are vital for bio-adhesion. The contact angles of GOSR were measured (Figure 2a,
red curve), and the correlation between contact angle and surface energy is given by [27]:

cos θ = −1 + 2
√

γS

γL
[1−β(γL − γS)

2] (2)



Materials 2019, 12, 2608 5 of 11

where θ stands for contact angle, γS and γL represents surface energy of solid and liquid, respectively.
β is a constant with the value 1.057 × 10−4 m2/mJ, and surface energy of deionized water is 72.8 mJ/m2.
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Figure 2. Characterization of specimens with different GO contents: (a) Water contact angles and
surface free energies, (b) Young’s moduli.

The surface free energies of the membranes with varying GO contents range from 19.57 mJ·m−2 to
23.74 mJ·m−2 (Figure 2a, blue curve), which are conducive to reducing marine biofouling [28]. It is
clear that GO significantly affects the Young’s modulus (Figure 2b). Some studies have reported that
Young’s modulus increases with GO contents [29]. However, the Young’s modulus results from this
test contradict reported data as well as our previous studies [21,30], which is ascribable to the GO not
being pre-treated with the coupling agent (KH-550) in this experiment. The GO in the membrane can
aggregate, resulting in points of converging stress in the membrane [17]; consequently, the Young’s
modulus decreases with increasing GO contents. Another explanation is that an excess of the GO filler
will weaken the interaction between the polymer chain segments and decrease the tensile strength [31].
It is generally assumed that a low Young’s modulus is beneficial for mitigating the adhesion of fouling
organisms [21,32]. The surface topographies were also examined. Figure 3a reveals that the membranes
have smooth surfaces at the micron level, and this low surface roughness is important for combating
biofouling [33]. In addition, SPM results (Figure 3b and Figure S5) show that nanostructures are
present on the surfaces, and some studies reported that nanoscale roughness is conducive to combating
biofouling [34].
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Figure 3. (a) SEM images of pristine SR (PSR)/GOSR membrane surfaces. (b) Scanning probe microscopy
(SPM) height profiles of PSR/GOSR membranes.
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3.3. Diatom Adhesion Testing Under Static Conditions

The specimens were examined after soaking for 8 days. In summary, these specimens show similar
results (Figure 4b,c), and no biofilms were observed (Figure 4d), and only scattered diatoms were
present on the surfaces. It is commonly assumed that the Young’s modulus does not influence static
attachment [35]. Since the surface free energies of the specimens are similar (Figure 2a), they show
similar diatom attachment results which conform to the prediction of "Baier curve" [28]. Previous
studies confirmed that diatoms prefer to adhere to dark surfaces [36,37]. However, their experiments
were performed under hydrodynamic conditions. The results in Figure 4 show that colors have no
effect on diatom adhesion under static conditions.
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3.4. Diatom Adhesion Testing Under Hydrodynamic Conditions

The specimens were examined after 10 days. Biofilms were observed on the 0 wt %, 0.16 wt %,
and 1.28 wt % membranes (Figure 5d). The 0.36 wt % membrane showed the cleanest surface
(Figure 5c,d), and scattered diatoms were present on the 0.64 wt % and 2.56 wt % membranes. A low
Young’s modulus is beneficial to combat adhesion of fouling organisms [21,38]. According to Figures
2b and 5, the 0.64 wt %, 1.28 wt %, and 2.56 wt % GO-containing membranes have the lowest Young’s
moduli; however, they show poor antifouling performances, due to their dark colors. On the other
hand, the 0 wt % and 0.16 wt % membranes perform poorly due to high Young’s moduli. The 0.36 wt
% membrane with appropriate color and Young’s moduli exhibits the best antifouling performance.
We conclude that the combined effects of color and Young’s modulus determine the antifouling
performance of GOSR membranes.
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10 days. (d) SEM images of specimens after 10 days.

In our previous studies, we proposed the “harmonic motion effect” to explain the antifouling
behavior of elastic membranes [21], in which the deformation of an elastic membrane under turbulent
flow imparts biofouling resistance. Biofouling resistance involves three components: (i) Fouling
organisms have difficulty identifying dynamic surfaces (Figure 6a); (ii) when these organisms approach
an elastic membrane, its dynamic surface sweeps them away (Figure 6b); (iii) if some organisms
adhere to the elastic membrane (Figure 6c), they cannot adhere tightly because of the micro-flaws [21]
produced at the interface.

To reveal the mechanism via which a low elastic modulus aids in combating fouling organisms in
the present study, a theory by Kulik is introduced below. Studies by Kulik revealed that the deformation
amplitude of the elastic coatings in turbulent flow is approximately 0 µm to a few microns [39,40].
Three equations [41] (from Kulik) were employed to calculate the deformation amplitude of a surface:

C∗n =
Cn

H/E
=

λ
H

(
V
C0

t

)2
(1 + σ)αF

2π(1− iµ)2[2−
(V/C0

t )
2

1−iµ − 2S]
(3)

ηrms =

√
η2= [

∫
∞

0

∣∣∣Cn(ω)
∣∣∣2P(ω)dω]1/2, (4)

where C∗n is the vertical (normal to the surface) compliance; P(ω) stands for the energy spectrum
of pressure pulsations; ηrms denotes the vertical displacement; η and H are deformation and
elastic-membrane thickness, respectively; and V and C0

t are the flow rate and shear wave rate
for an ideal material, respectively.
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η/H is plotted as a function of V/C0
t for various Young’s moduli in Figure 6d. In a practical situation,

the flow velocity is not constant; thus, various velocities need to be studied. Figure 6e shows the curve
of E = 0.63 MPa; the area between the curve and the x-axis (blue area in Figure 6e) characterizes the
total deformation of membrane surface. Figure 6f shows the areas for E = 0.60−1.06 MPa (Figure 2b),
which reveal that a lower Young’s modulus leads to a bigger area, i.e., a bigger deformation. According
to contact mechanics [20,42], this higher deformation is conducive to combating the adhesion of
fouling organisms (Figure 6g,h). Thus, 0 wt % and 0.16 wt % membranes show poor antifouling
performances, due to their high Young’s modulus. On the basis of this theory, the 0.64 wt %, 1.28 wt %,
and 2.56 wt % GO-containing membranes have a low Young’s moduli which are conducive to resisting
biofouling; however, they show poor antifouling performances, due to their dark colors. In the past,
fracture mechanics [38,43] was employed to reveal the mechanisms of fouling organisms and elastic
surfaces. Figure 6i shows a schematic illustration of the fracture mechanics, which indicates that the
contact between the fouling organism and elastic surface is not strong enough; consequently, there are
some microcracks at the contact area. Fouling organism tend to detach from the surface when the
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microcracks grow increasing large due to the stress concentration. The Griffith theory of brittle fracture
is as follows [43]:

F =

√
2Eγ
Aπ

(5)

where F represents the stress; A stands for the crack length; E represents for the Young’s modulus of
the surface; γ stands for the surface energy density.

On the basis of the Griffith equation, A is assumed to be a constant. Hence, F
√

Aπ is a function
of Eγ. Here, F

√
Aπ denotes a separating force (the force required to separate the fouling organism

from the surface), and a low Young’s modulus (E) leads to a low separating force (F
√

Aπ). The low
Young’s modulus is beneficial for fouling organisms to isolate from the surface due to low separating
force. The experimental results in the present study also are in accord with the fracture mechanics.
The harmonic motion effect sheds new light on the effects of Young’s modulus on antifouling behavior.

4. Conclusions

SR composite membranes containing 0.36 wt % GO exhibited excellent antifouling performance
in this study, while they are low-cost with inexpensive silicone rubber as the main material. Hence,
these membranes may be promising for applications in antifouling. The combined effects of color and
Young’s modulus determine the antifouling performance of GOSR membranes. The findings provide
insight that could facilitate the fabrication of new antifouling coatings; specifically, lighter colors and
low Young’s moduli provide superior performance. In addition, we provide a novel insight into the
role of the elastic modulus toward the antifouling performance.
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oxide nanosheets, Figure S3b: TEM image of GO nanosheets, Figure S3c: Raman spectra of GO nanosheets, Figure
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S5: Roughness or GOSR membranes with different GO contents, Table S1: Nomenclature and values, Table S2:
Elemental compositions of membranes.
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