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Abstract: The phase change materials (PCMs) used in devices for thermal energy storage (TES)
and management are often characterized by low thermal conductivity, a limit for their applicability.
Composite PCMs (C-PCM), which combine active phase (proper PCM) with a passive phase with
high conductivity and melting temperature have thus been proposed. The paper deals with the
effect of length-scale on thermal characterization methods of C-PCM. The first part of the work
includes a review of techniques proposed in the scientific literature. Up to now, special focus has
been given to effective thermal conductivity and diffusivity at room or low temperature, at which
both phases are solid. Conventional equipment has been used, neglecting length-scale effect in
cases of coarse porous structures. An experimental set-up developed to characterize the thermal
response of course porous C-PCMs also during active phase transition at high temperature is then
presented. The setup, including high temperature-heat flux sensors and thermocouples to be located
within samples, has been applied to evaluate the thermal response of some of the above C-PCMs.
Experimental test results match Finite Elements (FE) simulations well, once a proper lattice model has
been selected for the porous passive phase. FE simulations can then be used to estimate temperature
difference between active and passive phase that prevents considering the C-PCM as a homogeneous
material, to describe it by effective thermo-physical properties. In the engineering field, under these
conditions, the design steps for TES systems design cannot be simplified by considering C-PCMs as
homogeneous materials in FE codes.

Keywords: composite phase change materials; experimental methods; effective thermal conductivity;
effective thermal diffusivity; heat flux probes

1. Introduction

The phase change materials (PCM) used in devices for thermal energy storage and management
are often characterized by low thermal conductivity [1,2], a limit for their applicability. A widely
diffused class of PCM is that of latent heat PCMs, where thermal energy is stored/released by
melting/solidification transition/s. Composite PCMs are another class of PCM, partly overlapped
to Latent Heat-PCMs (LH-PCMs), defined as composite materials made of two phases: The active
phase, which guarantees good latent thermal energy storage properties, and the passive phase, which
must avoid phase changes during the entire range of working temperatures [1,3–9]. In the following
paper, the focus will be on C-PCM in which the active phase is an LH-PCM and the passive phase has
principally the thermal conductivity enhancement role.
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The selection of high-thermal conductivity passive phase, its suitable amount and distribution
allows to overcome the abovementioned critical feature of PCM, and this is the most general reason
for the production of C-PCMs. Further, in some cases, other structural or functional properties need
to be associated with C-PCMs [3]. Examples of these C-PCM include the addition of graphene or
graphite to polymeric PCMs [1,3,8,10], PCM impregnation into porous high-melting materials [1,3],
micro-encapsulation [1,4], metallic alloys made by immiscible phases [5–7] can be adopted in PCM-based
components. Considering high length scale C-PCMs, this can vary significantly from submicrometric
to micrometric to hundreds of micrometers, to millimetric size (as shown in Figure 1). Porous materials,
are characterized by the insertion of active phase into the pores (examples in Figure 1b,c). Due to the
relatively regular arrangement of phases, they can be often considered as homogeneous materials at
the length scale of some pore size, with specific thermophysical properties. Further, there is no clear
distinction at a millimetric or bigger length scale between composite materials and composite structure,
a term that is, in any case, mostly attributed to those, widely diffused, where high-conductivity passive
phase materials are in the shape of circular and longitudinal finned tubes with various configurations,
rings, and brushes inserted in cavities filled by PCM [1,11–14].
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Several literature works have been devoted to the thermal characterization of homogeneous
LH-PCMs and they are well summarized in reviews dealing with these materials [1,16–18] or specifically
with their thermal characterization [19–22]. For LH-PCMs, the latter includes mainly evaluation of
phase change temperatures and latent heat of melting/solidification (storage properties). As a matter
of fact, the knowledge of these properties is fundamental in the choice of a PCM which satisfies
both the temperature range application and the quantity of heat absorbed/released during the phase
transition. They are obtained through experimental tests during which phase transition occurs and,
for homogeneous PCM, these tests are based on isochronous differential scanning calorimetry [17].

On the other hand, thermal conductivity and/or thermal diffusivity, which can be considered
heat transport properties and that during the stage of heat storage/release are related to the heat
flow/removal from the region where phase transition is actually occurring, are usually determined
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below phase transition, when both phases are solid. The material class (metallic, polymeric, ceramics)
of PCM and thus their typical melting temperature, conductivity/diffusivity properties, guide the
selection of the test type [22]. In porous C-PCMs or structures their scale length should be taken into
account as well.

Partly due to the novelty in considering C-PCMs composites as a specific material class and
partly due to the relatively complex matter, to the authors’ knowledge, no specific standards for
the thermal characterization of these materials are available. Only the review work by Zhang and
co-authors on C-PCMs produced by combining porous passive phase with PCM [3] takes into account
the thermal characterization of these materials. Specifically, the combination of two phases with
significant differences in thermal conductivity, their arrangement and length scale drive the selection
of thermal characterization techniques in C-PCMs.

The present work gives an overview of different experimental methods proposed in the literature
for C-PCMs and analyzes their applicability to characterize C-PCMs. Special focus is given to their
applicability to the length scale of C-PCMs. An innovative experimental setup arranged to monitor the
actual thermal response of C-PCMs with millimetric length scale porous structures will be illustrated
and preliminary results will be provided. The results of the current version of the equipment will
supply information on the actual thermal response of coarse porous C-PCMs during phase transitions.
The novelty of the paper is that, combined with FE simulation, they will allow to find the temperature
distributions in both active and passive phases under given boundary condition. This will lead to the
identification of conditions under which the assumptions of homogeneous situations are met and for
which conventional experimental tests can be adopted.

2. Methods

2.1. Tests to Measure the Thermal Storage Properties of C-PCMs

Phase change temperatures or temperature ranges and phase transformation enthalpies are the
most important properties of PCMs. They are mainly characterized by differential scanning calorimetry
(DSC) measurements [19,20,22], within other thermal analysis techniques [23]. In its classical version,
a DSC apparatus includes two crucibles (or sample pans), one of which contains the sample, while the
other is typically empty (see Figure 2). In classical tests of PCMs, when heating/cooling isochronous
cycles, including phase transitions, are set to the crucible, the difference in the heat power supplied
to the crucibles (or flowing from one to the other in some equipment arrangements) is related to the
energy stored/released by the sample due to its phase transformation. Experimental data at constant
heating/cooling rate are usually presented as DSC curves, heat flux/unit sample mass vs. temperature
plots, as schematized on the computer screen in Figure 2, where phase transformations appear as
peaks. From them, the temperature for the onset of transformation or the temperature range for phase
transformation, and by integration, its enthalpy can be obtained.Materials 2019, 12, x FOR PEER REVIEW 4 of 23 
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While the method is extensively used for homogeneous PCMs, in the case of C-PCMs it has some
limitations related to the size of the crucibles. The latter have typically volumes of the order of some
tens to a few hundreds of µL. In cases where the passive phase is finely distributed inside the PCM
and the characteristic homogenization volume is equal or lower than the crucible one, DSC analyses
can be properly performed on C-PCMs. Actually, a large number of papers analyzed DSC tests to
detect changes in thermal energy storage properties as different mass fraction of finely dispersed
passive phase used to enhance the thermal conductivity in the composite PCMs. Passive phases
were expanded graphite (EG) [24–29], graphite matrix [30], nanosheets of graphene [31,32], graphene
aerogel (GA) [33], sulfonated graphene (SG) [34], graphite nanoplates [35] and multi-walled carbon
nanotubes (MWCNTs) [36,37].

DSC analyses were also performed on some porous C-PCM, in the cases of homogenization
volume and size comparable to the crucible volume/sample size. This is the case of the work by Liang
et al. [38], where graphene-nickel foam with pore size corresponding to case b in Figure 1 was filled
with paraffin. Similarly, Xiao et al. [39] characterized C-PCM with paraffin as the active phase and the
passive phase in the form of Al and Cu foams with 25, 10 and 5 pores per inches (PPI). The intermediate
and coarser pores, roughly corresponding to case c in Figure 1, are relatively large for conventional
DSC equipment/crucibles, even for some relatively big crucibles (about a hundred microliters or
more) that are nowadays available. For relatively large porous C-PCMs or structures, thermal storage
properties can be characterized by alternative measurement equipment and a method of analysis
generally referred to as T-history method, revised in [23,40]. In these cases, equipment is based on the
presence, in the same controlled-temperature environment (furnace), of a container with a reference
sample without phase transitions in the investigated temperature range and of one/more containers for
sample/s to be analyzed. Analyses of thermal response under similar conditions allow measurement of
phase change enthalpy and specific heat of PCMs [23,40,41]. The volume of PCM samples can be far
higher than that of DSC analyses and for several container shapes there is the possibility to test porous,
encapsulated C-PCM, even if, to the author’s knowledge, there is no specific literature on it. Cases
of T-history method application with controlled temperatures up to 120 ◦C have been reported [23],
but due to the temperature range of interest for many organic PCMs and partly owing to the selection
of water as a reference material, equipment versions, such as that proposed by Zhang et al. [40], cannot
use T-history method for phase transitions close or above 100 ◦C.

An alternative choice, more adopted for C-PCM structures than for porous C-PCMs, is to estimate
the thermal energy storage properties on the basis of those characterized for their active phase:
Transitions temperature are the same and enthalpy of C-PCM is derived from that measured for active
phase once the volume fractions/densities of phases are known. Nevertheless, this method does not
consider the possibility to have changes in the transition temperatures due to pressure variations
arising from the volume constraint of the active phases in porous C-PCM, as demonstrated, for example,
by Zhang [40].

2.2. Thermal Conductivity Measurements Methods

Thermal transport properties, such as thermal diffusivity, and conductivity, affect the time
necessary to release/absorb heat by the material. Thermal conductivity is a thermal transport property
used for the characterization both of massive PCMs and of C-PCMs. In this latter case, the main aim of
the presence of a passive phase is actually an increase of the effective thermal conductivity, related to
the presence and distribution of the passive phase. The addition of four mass% graphene nanosheets
as the passive phase more than doubled the thermal conductivity of homogeneous PCM (from 0.34 to
0.91 W/mK) [31], while according to Mills e al. [30], the porous matrix of graphite filled with paraffin
could lead to an increase the ETC of the C-PCM from 20 to 130 times that of homogeneous PCM,
also with the possibility of obtaining anisotropic thermal conductivity related to phase arrangement of
the passive phase. The beneficial effect on the acceleration of thermal response of a thermal energy
storage system containing C-PCM is thus high.
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There is no one single technique that can be suitably used for measuring the thermal conductivity
of all types of PCMs, as well described in [31,41]. They can be divided into two broad classes:
Steady-state techniques and transient techniques and standard test methods have been proposed for
many of them. Steady-state techniques, widely applied in the form of axial flow methods, require to
reach steady-state conditions across the sample, which can take a long time and a rightful evaluation
of the thermal resistance between the sample, sensors, and heating sources [42]. On the other hand,
transient techniques work by measuring the temperature response to a constant heating power or
a heat pulse supplied to the sample initially in thermal equilibrium and deriving effective thermal
diffusivity from it. Among them, the hot wire method [43,44], the laser flash [45,46], and the transient
plane heat source method [47] can be mentioned.

The situation is far more complex when C-PCMs are taken into account. The effectiveness of a
specific technique depends on different features, such as the measurement time, the required accuracy
and reproducibility under various environmental conditions and, last but not least, by the physical
and chemical properties of the material under investigation, its homogenization size and shape or
“shapeability” of the C-PCM. Both steady-state and transient methods for ETC measurement and their
applications to C-PCMs will be summarized in the following sections.

2.3. Steady-State Methods: Axial Flow Methods

From a theoretical point of view, the thermal conductivity of a homogeneous material can be
simply derived as the ratio between the one-dimensional heat flow per unit area in the sample (heat
flux) and the thermal gradient along the sample, kept under steady-state conditions [42,48]. Different
methods adopt different ways to keep steady-state conditions, to measure heat flow (or directly heat
flux) and temperature gradient. Corresponding, different re-formulations of the above relation can be
found in the literature for specific measurement techniques. Further, both cylindrical and prismatic
samples are generally used.

The most widely used method for axial thermal conductivity testing is the comparative cut bar
(ASTM E1225 test method [42]), where the heat flow across the sample is derived from the thermal
gradient along a reference sample of known thermal conductivity (Figure 3a). Often commonly, the
sample is sandwiched between two reference samples (Figure 3b), to further account for minor heat
losses that are very difficult to eliminate [3].
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Figure 3. Axial flow methods: (a) A scheme of a comparative cut bar, (b) an example of the symmetric
experimental setup (adapted after [11] with permission from Elsevier).

The comparative cut bar method was adopted in several studies to characterize C-PCM [30,31,
49–53]. Different experimental setups adopted for C-PCMs are proposed in references [31,49–53],
where reference samples were in different metallic materials, selected on the basis of the actual
differences between their thermal conductivity and the sample ETC, of the maximum test temperature:
Aluminum [49], copper [51], stainless steel [53] and indium [31]. A summary of the investigated
C-PCMs, phases, and experimental parameters for axial flow methods applied to C-PCMs are given in
Table 1.
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Table 1. Phases, experimental parameters and literature sources for axial flow methods on composite
phase change materials (C-PCMs). In the table ND stands for ‘not defined’. TCR: Thermal
Contact Resistance.

Composite PCMs Testing T
[◦C]

k Range
[W/mK]

Sample Size
[mm3] Insulation

Flux Meter
Dimension

[mm3]
Peculiar Aspects Reference

CENG/paraffin
CENG/hexadecane ND 3–70 25 × 25 × 25 PS foam 25 × 25 × 65

(Aluminum)
Tested 2 commercial

paraffin waxes
Py et al.

[49]

Graphite
matrix/paraffin 8/45 4–60 70 × 70 × 10 Unknown

70 × 70 × 17.55
(Stainless

steel)

DSC analyses
performed in

different sample
regions

Mills et al.
[30]

Al foam/paraffin 16/76 10–25 89 × 38 × 13 Silicon
rubber

89 × 38 × 102
(Copper)

89 × 38 × 1.6
(Copper)

Determination of
keff through the rule
of mixture reveals
to be erroneous.

Hong et al.
[51]

NG/Unknown PCM
ENG/Unknown PCM
EGP/Unknown PCM

25/217 1–9 π(12.5)2
× 25 ND ND

Graphite fins
dispersion was

optimized through
mathematical
simulations.

Pincemin
et al. [24]

Al foam ND 3–7 π(12.5)2
× 18 ND π(12.5)2

× 45
(Iron)

The effect of TCR
was evaluated.

Sadeghi et
al. [53]

Graphene
nanosheets/1-octadecano ND 0.3–0.9 π(6.35)2

× 6.35 Teflon π(6.35)2
× ND

(Indium)
The effect of TCR
was evaluated.

Yavari et
al. [31]

Metal foam/Unknown
PCM +12/−7 1.95–3.92 30 × 40 × 50

Cotton
(lateral)
PMMA

(top)

30 × 40 × 4
(Copper)

Tested different
contact conditions;

images taken to
monitor cooling

Feng et al.
[52]

Multi Walled Carbon
NanoTubes/RT65

paraffin
10–40 ◦C 0.195–0.24 π(50)2

× 39 ND ND The effect of up to
1% MWCNT tested

Alshaer1
et al. [54]

The largest temperature range derived from the examined papers hovers between 8 ◦C [30]
and more than 200 ◦C [53], while the experimental set-up for unidirectional freezing developed by
Feng et al. [52] has proved effective up to −7 ◦C. The thermal conductivity range derived from the
examined papers lies between 0.3 W/mK [19] and 70 W/mK [49]. Sample sizes are actually dependent
on the method and equipment adopted (see Table 1). The technique boasts high accuracy (uncertainty
expected between 0.5 and 2.0%) [3] with respect to the other methods.

Under optimized conditions, and due to steady-state condition that allows several measurements,
the ETC of C-PCMs can reach uncertainty between 0.5 and 2.0% [3], greater than in other methods and
this is one of the reasons for their extensive use also for C-PCMs.

Nevertheless, some critical points and restrictions to its application directly derive from the need
to meet the theoretical assumptions of the method, which are: Steady-state conditions, axial heat flow,
and conductive heat transport only.

2.3.1. Steady-State Conditions

The first assumption is directly correlated to the test duration (or at least to the time to be spent
before reaching steady-state conditions), which is relatively long for materials of low ETC and high
thermal inertia, within which some C-PCM.

2.3.2. Axial Flow

The axial flow can be reached by keeping two opposite sample surfaces under temperature
control and by minimizing lateral heat flow. For this reason, lateral thermal insulation with thermal
conductivity far less than that of ETC of C-PCM sample has to be provided, or sample geometry
should have a much lower thickness than the other sample dimensions, as exemplified by the setups
schematically shown in Figure 3 [11,51]. Thermal losses also tend to increase with test temperature (to
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be kept over long times) and these tests, to the authors’ knowledge have not been performed above
~230 ◦C (500 K) [24]. The presence of axial flow also gives the possibility to measure the thermal
conductivity of anisotropic C-PCM (for example, related to passive phase distribution, such as in Mills
et al. [30], simply by testing samples with different passive phase orientations.

2.3.3. Heat Transport Mechanism

Concerning heat transport mechanisms, both radiative and convective transports within the
sample have to be minimized in axial flow methods. The first one has not been a problem for most
of the tests carried out on C-PCM, since these were performed close to room temperature. The effect
was considered negligible also in the case of C-PCMs tested just above 200 ◦C [24]. Convective heat
transport has been accounted for in some studies on C-PCMs. The convection effect is known to
affect the melting stage of structures containing homogeneous PCMs [50] while this heat transport
mechanism generally slightly affects solidification. The confinement geometry of molten PCMs is
among the factors affecting its convective motion in the molten state, to be taken into account in the
design of experimental tests aimed at measuring the thermal conductivity of C-PCMs with passive
phase distributed within the active phase. In the C-PCM with a porous passive phase, the length scale
and shape of pores is mainly responsible for the presence and contribution of convective effects [50] to
heat transport. Moreover, for C-PCMs the negligible effect of convection during solidification has been
confirmed by Feng et al. [52].

2.3.4. Thermal Gradient Measurements

Further requirements are to reduce experimental error measurements of thermal gradient. These
can be obtained by increasing the heat flux, by increasing sample thickness (which reduces relative
errors in temperature differences and in measurement points distances) or acting on both parameters.
The second is preferred for materials with relatively high thermal conductivity, as can be the case
for some C-PCMs. In the case of composite materials, an increase of specimen thickness should
additionally be beneficial for the possibility to consider C-PCM as a homogeneous material. In case
heat flow is increased, due to thermal contact resistance, the temperature difference between the sample
and the surrounding parts conveying heat to/from the sample increases. TCR must be minimized
and, when its effects are not negligible, it has to be taken into account in the estimation ETC. This is,
for example, the case of most porous-C-PCM, where thermocouples are not embedded in the samples
but stay close to it. TCR can, in these cases, be measured by means of either thermal measurements of
samples’ of different thickness made of the same C-PCM [53] or of the same sample under different
heat flows [31].

The beneficial role of applied pressure in minimizing TCR has been demonstrated for many
materials [42,48]. In the case of porous C-PCM with relatively stiff Al foam, Sadeghi et al. [53]
demonstrated that in the range of 0–2 MPa, TCR is relatively insensitive to compressive load in the
range of 0–2 MPa. Similarly, for a C-PCM with copper foam passive phase, Feng et al. [52] demonstrated
that natural contact, applied pressure but also bonding with a high thermal conductivity adhesive
between the sample and the cold interface led to similar freezing rates for the investigated copper
foam/water PCM system.

2.4. Transient Methods: Hot Wire Method

The hot wire method [43,44,55] is a standard transient dynamic technique based on the
measurement of the temperature rise at a defined distance from a linear heat source (hot wire),
a platinum wire embedded in the test material. If the heat source is assumed to have a heat output
axisymmetric and uniform along the length of the test sample, which is kept constant from the
beginning of the test at which sample temperature is homogeneous. A representative setup of the
method is given in Figure 4, drawn after the work of Xiao [56].
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Figure 4. Schematic apparatus for hot wire tests (adapted from [56] with permission of Elsevier).

The thermal conductivity arises from the analytical integration of the Fourier equation, which
relates the temperature increase of the wire, power input, geometrical feature, and thermal conductivity,
as given, for example, in [43,44]. By changing the initial temperature in different tests, the changes in
thermal conductivity with temperature can also be derived. The activation temperature, sample size,
and effective thermal conductivity values of the C-PCM whose effective thermal conductivities have
been reported in the literature, as measured by this technique, are listed in Table 2. Some comments on
the applicability of the hot wire method to C-PCM can be derived from these works.

Table 2. Phases, experimental parameters and literature sources for hot wire tests on C-PCMs.

Composite PCMs Testing
T [◦C]

k Range
[W/mK]

Sample
Geometry

[mm3]

Wire
Insulation

Wire Sizes
[mm] Peculiar Features Reference

EG/paraffin 10/70 0.4–0.8 32 × 22 ×
105 ND

d = 0.18
l = 105

(Platinum)

The EG wt.% optimum
was around 10.

Sari et al.
[25]

MWCNT/Paraffin 15/65 4–60 ND Alumina
d = 0.07
l = ND

(Platinum)

The mechanism of k
enhancement caused by
MWNT addition needs
further investigation.

Wang et al.
[36]

CENG/paraffin;
CENG/stearic acid;

CENG/pentaglycerin
25

5–60
(radial);

2–9
(axial)

25 × 25 ×
25 ND ND

The radial and axial
thermal conductivity

were distinguished due to
anisotropy.

Haillot
et al. [57]

EG/NaNO3;
EG/KNO3;

EG/NaNO3-KNO3

ND 0.15–0.30 ND ND
d = 0.03
l = 116

(Platinum)

Quadratic parallel model
was successfully used to

predict the keff.

Xiao et al.
[56]

MWCNT/stearic
acid/PVP;

EG/stearic acid/PVP;
Graphene/stearic

acid/PVP

ND 0.17–0.21 ND Teflon
d = 0.05
l = 190

(Platinum)

The study also presented
an experimental

apparatus to evaluate the
PCM performance during

cooling.

Choi et al.
[37]

Graphite nanoplates/
myristic acid ND 0.15–0.21 ND ND

d = 0.04
l = 19

(Nickel)

DSC analysis were
performed to evaluate
thermal reliability after

100 thermal cycles.

Ince et al.
[35]

As far as the C-PCMs are concerned, those with finely dispersed passive phase particles are
generally used. In these cases, the molten PCM can be poured in the container before testing. Semi-rigid
C-PCM could also be characterized by this technique, especially in cases where wire and thermocouples
are encapsulated in rigid, insulating parts [29].
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As reported in literature and defined in standard practices [44,58], this measurement method should
be applied only to low conductivity materials (0.02–15 W/mK), although Wang [36] and Hailot [57]
have used it to successfully test samples with a maximum ETC of about 60 W/mK. The presence of the
insulation layer could lead, in any case, to underestimation of thermal conductivity [55]. The application
of the method to C-PCMs with porous passive phase is limited, more than the actual pore length size,
by their rigid shape. In any case, the test can be applied in the case of isotropic materials. Concerning
activation temperatures of C-PCM for which the method has been applied to C-PCMs, these are lower
than 70 ◦C, often room temperature. Higher temperature could be critical and ASTM C115 upper limit
is 1500 ◦C (taking into account radiative effects). In any case, an upper limit is represented by the
temperature at which the material is no longer dielectric.

2.5. Transient Plane Heat Source (TPS) Method

The transient plane heat source (TPS) method is a transient technique, standardized in ASTM D
5930 [59]. TPS uses a thin strip or disk within which electric resistances act as a heat source [47,48,60,61].
The heat source shape results in alternative names given to the method of “hot plate” and “hot disk”
tests, the latter being currently the most popular. Embedded in them or close to them are temperature
sensors. The plate heat source is sandwiched between two plane samples of the material to be tested,
as schematically shown in Figure 5.
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Figure 5. Schematic view of transient plane heat source method (adapted after [61] with permission
form Elsevier).

Starting from an initial condition of thermal equilibrium, a stepwise short heat flow pulse is
supplied through the TPS. The increase in temperature at TPS is monitored. For a given heat flow, the
temperature increase is proportional to the supplied heat flow pulse and inversely proportional to the
thermal diffusivity of the sample [47]. Moreover, the temperature increase is directly proportional to
the square root of the test time. Thus, thermal diffusivity can be derived once geometrical features,
heat flow, and the evolution of the temperature at the sensor are known [47,48,59].

Similar to other transient methods, the plane hot source techniques allow quick measurements
once thermal equilibrium of the system at the test temperature is reached (or a very slow temperature
increase of the system is considered so that its temperature is almost homogeneous). Specific relations
between these parameters and thermal conductivity are given in the literature referring to this method
(see as examples [47,48,59])

The theoretical assumptions of the method, used in calculations to derive thermal conductivity,
should also, in this case, be met in order to obtain good measurements. Among these, the ones to be
carefully considered for C-PCMs are the usual assumption that only conductive heat transport occurs,
with the same consequences discussed for previous test methods.

Secondly, the theory has been developed for the case of symmetrical samples, infinite in length
and width, with the possibility to measure together the thermal conductivity and thermal diffusivity
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of a homogeneous material. During the time of the measurement, the heat pulse has effects only
within a distance that can be referred to as “penetration depth”, proportional to the square root of
the material thermal diffusivity [59]. Only in cases where the distances of sample boundaries from
the heat source exceed the penetration depth, the geometry of the sample has negligible effects on the
measurement results [48,59]. Thus, both sample thickness and the lateral size exceeding the probe
size should increase with material thermal diffusivity, which can be unknown at the beginning of the
test and needs validation at the end of it. An additional requirement is that the penetration depth
ranges roughly between 0.5 and 1 times the hot disk diameter [48]. The technique is suitable for a wide
range of thermal diffusivity of samples, and thermal conductivity in the range from 0.005 to 500 W/mK
has been measured [48], thus for a wide range of materials with different combinations of thermal
conductivity, specific heat, and density, even if the abovementioned ASTM standard is for plastics.

Another factor which can induce errors in the thermal properties derived by this method is
thermal contact resistance, which alters the evolution of the thermal field within the system and thus
can affect test results [47]. As in the case of axial flow methods, the specimen surface (as well as that of
the probe) must be flat in order to minimize thermal contact resistance, as proved on C-PCMs [61].
Contact pressure should also be considered.

Among other theoretical features to be taken into account in view of a correct application of
the method, the material needs to be homogeneous and isotropic [47]. Some modification of both
technique and relations is needed in the case of orthotropic structures, provided that the heat flow
direction is the axial one. In this case, test results are always related to thermal properties in both the
axial direction and the transverse plane.

The above features have to be considered for the case of C-PCMs.
Theoretically, the method could be applicable to C-PCM for which finely dispersed passive phase

is embedded in the active phase, materials which have low thermal homogenization length compared
to the typical sample thickness provided by standards for homogeneous materials of corresponding
thermal properties. Thermal homogenization length might be thought of as the distance at which the
thermal response becomes independent of the structure, and hence, it is a multiple of the characteristic
length of the structure, i.e., five times or more.

Of course, these materials could be tested by plane heat source methods only below their
activation temperature, as they can keep their shape. The survey on the scientific literature provided
evidence of the application of this method to porous C-PCMs, tested at temperatures not exceeding
60 ◦C, as summarized in Table 3. The C-PCM had both inorganic (LiNO3/KCl eutectic [28]) and
organic materials as active phases. In the latter case, paraffin [39,61,62], polyethylene glycol [26]
n-octadecane [23] RT44HC [28]. As far as the passive phase is concerned, porous passive phases were
often compressed expanded graphite, and the presence of thermal properties anisotropy has been
considered in [29].
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Table 3. Phases, experimental parameters and literature sources for transient plane heat source tests
on C-PCMs.

Composite PCMs Testing T
[◦C]

Thermal
Conductivity

[W/mK]

Sample
Dimension

[mm3]
Commercial Device Reference

EG/polyethylene glycol 25 0.3–1.4 ND TPS2500, Hot Disk Inc.,
Göteborg, Sweden

Wang et al.
[26]

Cement
mortar-EG/n-octadecane 25 1.8–2.2 100 × 100 × 10 TPS2500, Hot Disk Inc.,

Sweden
Zhang et al.

[27]

Nickel foam/paraffin
Copper foam/Paraffin ND 0.3–4.9 100 × 100 × 10 TPS2500, Hot Disk Inc.,

Sweden
Xiao et al.

[39]

EG/LiNO3-KCl 25 4–16 ND TPS2500, Hot Disk Inc.,
Sweden

Huang et al.
[28]

EG/paraffin ND 0.7–14.0 π(30)2
× 30

TPS2500, Hot Disk Inc.,
Sweden Li et al. [62]

LPE graphene/paraffin 7/42 0.1–85.0 ND TPS2500, Hot Disk Inc.,
Sweden

Goli et al.
[61]

EG/RT44HC 30/60 4–16 π(20)2
× 10

TPS2500, Hot Disk Inc.,
Sweden

Ling et al.
[29]

Xiao et al. [39] studied the passive phase in the form of metallic foams, with pore sizes ranging
from 5 to 25 pores per inch (PPI). The pore structure with 5 PPI was relatively coarse with respect to
the specimen thickness of 10 mm, and a relatively large experimental scatter was also observed in
repeated tests.

2.6. Laser Flash Method

The laser flash method is another method based on heat flow pulse experimental technique to
measure thermal diffusivity [45,46,63,64]. The technique, schematically illustrated in Figure 6, derives
its name from the use of a laser source to obtain a high energy pulse, whose duration is negligibly short
compared to the time for its diffusion through sample thickness. During the pulse, the laser beam is
homogeneously distributed within the sample, which is flat. Heat is absorbed by a sample surface
blackened by graphite, which optimizes heat input also in the cases of transparent, semi-transparent,
and reflective samples [63]. Heat is then considered to propagate axially along the thickness of a flat
specimen. After the pulse, adiabatic conditions for the specimen are considered [63]. Once the sample,
typically disk-shaped and initially to be in thermal equilibrium at the test temperature, is hit by the
stepwise heat input flow on one side, its temperature change on the opposite sample side is recorded
(Figure 6).
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Figure 6. Scheme of the laser flash (LF) method applied to a C-PCM sample (adapted from [32] with
permission of Elsevier).

The above temperature increase can be theoretically modeled by considering axial conductive
propagation of the heat pulse. A simple relation between the time t0.5 at which half of the temperature
increase is reached, the sample thickness L and thermal diffusivity α is then derived [48]:

α = 1.388 × L2/t0.5, (1)

Thus, a simple analysis of experimental results leads to the calculation of the material thermal
diffusivity [29,38]. As for the other methods, careful measurements can be obtained once experimental
conditions reproduce at best the theoretical ones. In order to meet the assumption of axial flow and
adiabatic conditions, the specimen contact with other parts of the systems is minimized, and non-contact
(high-speed) temperature devices are generally used [45,46,63,64]. Adiabatic conductive conditions are
also met by holding the sample in a vacuum environment (no convection transport in environment),
by calibrating the temperature measurement device with a black body [45,63] and/or blackening both
specimen surfaces by graphite [45]. Nevertheless, for very high-temperature measurements (exceeding
about 1200 ◦C), corrections have to be considered during data analysis to take into account radiative
losses [63].

The method is suitable for a wide range of temperatures and thermal diffusivity values (0.1–1000
mm2/s according to ASTM E1461 [46]), including high conductivity metals and thermal insulators,
within which fall the thermal diffusivities of all C-PCM classes.

Laser flash technique has been used for several C-PCMs, as summarized in Table 4.
Notwithstanding the possibility to test materials at high temperature, mainly in the sample solid range,
test data have been reported only up to 37 ◦C [34] for C-PCM, where active phases were all organic
characterized by relatively low activation temperature. Sample discs were characterized by diameters
between 10 and 20 mm, while sample thickness was in the order of 2–3.3 mm, conventional for LF
technique, for which the small size of the specimen is one of the main advantages with respect to other
measurement methods.
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Table 4. Phases, experimental parameters and literature sources for laser flash tests on C-PCMs.

Composite PCMs Testing T
[◦C]

Thermal
Conductivity

[W/mK]

Sample
Dimension

[mm3]
Commercial Device Reference

Carbon nanofibers/paraffin 25 0.25–3.00 π(9)2
× 3.3 ND Elgafy et al. [65]

Porous nichel/erythriol 25 0.861–14.2 π(5)2
× 2

TC-7000, Rigaku, Tokyo,
Japan Oya et al. [66]

Graphite nanosheets/
paraffin ND 0.33–4.47 ND

LFA-447 Nanoflash,
NETZSCH, Selb,

Germany
Chen et al. [32]

Graphene aerogel/
octadecanoic acid 25 0.184–2.635 π(6)2

× 2
LFA-447 Nanoflash,

NETZSCH, Germany Zhong et al. [33]

Sulfonated graphene/
polyethylene glycol 37 0.263–1.042 π(5)2

× 2
TC-7000H, Sinku-Riko
Inc., kanagawa, Japan Li et al. [34]

Polydimethylsiloxane-
graphene-nickel foam/paraffin 25 0.092–1.626 ND LFA-447 Nanoflash,

NETZSCH, Germany Liang et al. [38]

Among the assumptions for the applicability of the LF method [63], there is the homogeneity
of sample material. This assumption also allows to derive the material thermal conductivity by
multiplying the measured thermal diffusivity by the material-specific heat capacity at constant pressure
and density. This has been done for C-PCMs for the case of passive phases of micrometric size, either
dispersed into an active phase matrix or arranged to form a porous matrix to be filled by an active
phase, such as, for example, in [32–34,65]. In these cases, specific heat and density of the composite
have been either measured or calculated on the basis of those of the active/passive phases and their
volume fractions in C-PCMs. The ETCs of the C-PCM listed in Table 4 range from 0.092 to 14.2 W/mK
and confirm, in all cases, the enhancement produced by the presence of high-conductivity passive
phase. As far as the investigated porous C-PCMs are concerned, the structure length size varied from
some micrometers for the compacted graphite nanosheets tested by Chen et al. [32] to hundreds of
micrometers (up to about 500) for porous Ni foam tested by Oya [66] and Liang [38]. In these studies
the effective thermal conductivity of C-PCM was probably derived from thermal diffusivity as was
done for the previously mentioned studies on C-PCM, independently of the representative length
scale of the porous matrices and of the sample thickness and testing parameters (which are not always
specified).

The length scale of phases distribution in C-PCMs for LF measurements should be carefully
considered. As discussed by Zhang et al. [3], for modeling the thermal response of C-PCM in
transient situations, the different heat transport properties of the composite phases could generate
non-equilibrium temperature conditions. In the case of LF tests, active and passive phase points laying
at the same distance from the heat input surface could reach at a given time different temperatures.
This is different from the theoretical basis for the derivation of the formulas used to derive thermal
diffusivity by the LF method. A two-temperature energy equation related to active and passive phase,
mainly focused to the situation of phase transition (for which also the contribution of natural convection
within pores becomes important), has been developed. The model is quite complex to be applied
to the case of the LF technique. Qualitatively speaking, it is clear that the classical assumption and
thus the equation for homogeneous material in the LF method can be applied only in cases for which
point-to-point temperature differences on the back surface of the sample are small, which is likely to
occur if the sample thickness exceeds the thermal homogenization length, e.g., in the case of extremely
fine length scale of pores or passive phase particles.

Moreover, the effect of material anisotropy should be taken into account for some C-PCMs.
The effect of passive phase orientation on the thermal transport properties has been demonstrated
by Chen et al. [32]. The presence of axisymmetric properties and, at the same time, the difference in
temperature which can be obtained in a composite structure at the temperature measurement surface
has been considered by McMasters et al. [66] for a carbon fibers composite (not a C-PCM), in which
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case a careful elaboration of temperature data led to results not so different from those obtained by
considering the material as homogeneous, even if with anisotropic properties.

It should be, in any case, considered that, beyond some tenths of a millimeter pore size,
the measurement of thermal transport properties of composite material and the usual specimen
thickness range, the laser flash apparatus becomes no more representative of the effective structure.

3. Experimental Setup for Thermal Response of coarse porous C-PCMs

Coarse porous C-PCM can be produced by filling with a PCM material (active phase) relatively
large-sized (millimetric size) porous matrix of passive phase. When the former is an organic material
and the second a metallic one, the thermal conductivity of the latter is two or three orders of magnitude
larger than that of the active phase. The above C-PCM can be then used as a “PCM material” in larger
thermal energy storage (TES) components, with a proper set of properties (within which ETC and
ETD), which will simplify the design of the TES component and the evaluation of their overall thermal
response, for example, by FE analyses.

Focusing the attention on the ECT, several models have been produced during the years to
calculate it on the basis of the volume fractions of phases, in some cases also taking into account their
arrangement [15,67–73]. Successful results were generally obtained. Among other factors, high TCR
and contact surface between active and passive phases or by improper geometrical correspondence
to a regular model might be considered, in some cases, as sources of discrepancies. The ETC of
composite materials, (within which those of C-PCMs) have been modeled and typically tested in
steady-state conditions, where no local temperature difference between active and passive phase
exists. Nevertheless, as previously mentioned, discussing the applicability of transient methods to
derive ETC of C-PCM, characterized by huge differences in thermophysical properties of the two
phases, in transient conditions local temperature differences can be generated. These cannot be
easily modeled, and, correspondingly, the ETC of the materials becomes dependent on the operating
conditions [67,68] or the calculated ETC appears to be correlated to the pore size since as the pore size
increases, the active/passive contact surface (per unit volume) reduces [73–75]. The effect of pore size
also leads to the progressive importance of convection heat transport compared with conductive heat
transport as, for the same active phase and temperature, pore size increases [74]. The combination of the
two phenomena could lead to a pore size which optimizes, by making it faster, the thermal response of
porous C-PCM in heating [74]. A complete understanding and modeling of thermophysical properties
is of paramount importance in C-PCMs, whose applications are related to thermal cycles across the
activation temperature of their active phase. Due to their assumptions, conventional methods cannot be
used to consider what happens within a C-PCM during a thermal transient including phase transition.
Steady-state methods, which actually can supply valid, effective, thermal conductivity also for coarse
C-PCMs, cannot, by definition, be used during phase transitions. Transient methods measure the
thermal diffusivity of homogeneous material, but in the case of a phase transformation occurring
within the tested C-PCM, dealing with the test results to understand what is actually occurring within
the C-PCM is not an easy task, even if the phase transition is simplified to occur at a single temperature.

There is thus the need to identify, by experimental tests and/or experimentally validated numerical
models, what is the range of conditions where the material can be considered as homogeneous or to
develop an experimentally validated model for effective thermal properties in transient conditions that
it can be used to implement the C-PCM material properties in FE codes used to simulate the thermal or
thermomechanical response of the overall structure.

Since the above requests on experimental tests cannot be matched by the conventional transient
techniques, an experimental setup design has been considered to perform experimental tests under
different conditions on coarse porous C-PCMs. The considered test rig should potentially be able to
test porous materials with pore size up to 7 mm and at temperatures up to about 300 ◦C. Of course,
in addition to these porous-PCMs, other C-PCM or PCM structures with inhomogeneous structure
could be tested.
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The experimental set-up was designed considering some previous examples of testing rigs to
evaluate the transient thermal response of porous C-PCM with concrete matrix [54,74–77], using
“modified” axial flow meter which allows dynamic conditions to be reached in the sample, considering
either symmetric [76] or asymmetric [54,74,75] boundary conditions in the usual vertical heat flow [76,77]
or in horizontal arrangement to check the effect of convection [74]. In the present case, the selection
was for a system with a vertical heat flow arrangement. As a matter of fact, calculations performed
for C-PCMs for which calculations of the Rayleigh number for the porous structures at the maximum
temperature considered for the present work were lower the critical value for considering not negligible
the effects of convection in porous structures heated from the bottom [77]. The possibility to monitor
both temperature and the heat input/output at the two opposite surfaces was met by the use of heat
flow probes, specifically the high-temperature FCR-200-M-K supplied by Wuntronic GmbH (Munich,
Germany), with max service temperature 550 ◦C and max heat flux range 15,800 W/(m2K), sensitivity
560 (W/m2)/mV. Their circular flat surface is 15.9 mm diameter and made of stainless steel. They further
acted as K-type thermocouples (measurement point E).

The system has been considered for C-PCMs with thermal conductivity higher than ceramic
materials in [69] and the square cross-section samples were characterized by a length in the direction
of heat flow twice as the lateral size, so that temperature measured at different positions along it
will be relatively different. In the current development stage of the system, illustrated in Figure 7,
a sample size of about 35 mm × 35 mm × 70 mm has been considered to test different course porous
structures. The idea was to supply heat at one sample surface, while the other is thermally insulated,
as well as the lateral surfaces. Further, samples of Al or Al alloys have been used the preliminary
tests, with pore sizes ranging between about 10 and 5 PPI. In order to avoid leakage of molten PCM,
1 mm Al layer in thermal contact with the porous Al structure has been provided at specimen surfaces.
Moreover, a 3 mm thick Al plate had been sandwiched between the sample and the heat flux sensor to
homogenize temperature at the bottom of the C-PCM sample (point A).
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Figure 7. (a) Simplified representation of the “experimental set-up n. 4”: (1) Sample, (2) heat flux
sensor, (3) Al cylinder, (4) base insulator, (5) Al plaque, (6) weight pans, (7) lateral insulator, (8) heat flux
sensor’s cable, (9) K-type thermocouples at point E, (10) electrical hot-plate, (11) N-type thermocouples
at points A–D, (12) mustimeter, (13) PC for data acquisition. (b) Picture of the experimental setup.

The transient response of the material (which can also be monitored by visual analyses in porous
media with active phases becoming transparent as melting occurs [73,74]) was here more conventionally
derived by means of thermocouples. Four Inconel-coated N-type thermocouples were placed within
each sample, in PCM regions, at regular distances from the samples’ basis (A-0 mm, B-19.4 mm, C-40.4
mm, D-61.4 mm from the sample basis) and in symmetrical positions, along the cross-section diagonals
at 12.4 mm from sample axis. Preliminarily, 2 mm diameter drilled holes allowed the correct positioning
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of thermocouple within each sample. In the current version of the system, neither temperature nor
heat flow control is considered at the basis of the specimen.

In order to monitor the inward thermal flux and to guarantee axial flux in the C-PCM, the heat
flux sensor (16 mm in diameter) was connected via an Al cylinder through a homogenization 10 mm Al
plate in contact with the heat source. Both the cylinder and the heat probe were embedded in alumina
box to avoid lateral heat losses. On the other side of the probe, a 3 mm thick Al plate was placed to
allow homogeneous temperature and axial flow at the bottom of the prismatic samples.

The lateral and upper surfaces of the sample were thermally insulated with 32 mm thick K-FLEX
ECO insulator, with thermal conductivity 0.040 W/mK at 25 ◦C and suitable for applications up to
150 ◦C.

On the basis of the literature survey, particular care was taken to reduce TCR, specifically that
between the interface of the Al plate and the sample and the probe. Nevertheless, since the temperature
at the heat flux probe/plate was known (point E), the apparent thermal contact resistance between
points A and E was derived as the ratio between these temperature difference and the heat flow.
The (apparent) TCR was observed to be almost constant during tests, dependent on the actual positions
of the sample, the Al plate below it and heat probe, and reduced by light pressure on the upper part of
the thermal insulation system obtained by 20 N weight pans.

4. Validation and Preliminary Tests

In the current version of the system, experimental tests in heating were carried out by setting
the temperature of the bottom heater at a fixed value and simply monitoring both the heat flux and
temperatures. The set of tests was carried out on specimens of the same geometry but characterized by
different porous structures and active phase always of organic type. As the test setup was optimized
during preliminary tests, TCR decreased from about 40 K/W to less than 10 and in the first set of tests
actually carried out TCR ranged from 7 to about 20 K/W.

The preliminary as well as the first set of tests were used to validate the test set-up. The total
heat entered in the sample at the time the minimum temperature reached 100 ◦C was calculated
assuming the specimen were made of 4 overlapped parts, the temperature of which was the one read
by the corresponding thermocouple. By knowing the phases volume fractions, specific heat, densities
and the melting enthalpy of the active phase, considering as part of the sample also the Al box and
considering adiabatic lateral and upper surfaces, the total heat entering the sample from its bottom
surface was calculated (Qtot). It was observed that Qtot was always greater than the heat flow derived
by integrating the heat flow passing through the probe in the same time span (QA). The analysis
of all test data showed that as TCR increases, Qtot/QA increases (see Figure 8a), meaning that an
increasing part of the total heat flow passes through the part of the Al system not in contact with the
heat flux probe. The points derived from experimental tests have been fitted linearly, setting that the
total heat flow is equal to that derived from measurements by the heat flow sensor in the case of zero
TCR. The above correlation once more highlights the actual need to minimize TCR, as well as the
need for validations of the system. The correlation between TCR and Qtot/QA represented by the
fitting line in Figure 8 was considered to be valid at each test time and can be was used to derive the
overall heat flow once known the heat flux at the probe and the temperature difference between it and
the bottom thermocouple. A validation test was carried out by varying TCR by weight pan removal
and repositioning during the test. This caused a sudden increase in thermal resistance from 7.5 to 33
and back to 7.5 K/W in an intermediate stage of the test. The result of these changes led to unusual
temperatures-time curves (solid lines in Figure 8b).
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Figure 8. (a) Correlation between the thermal contact resistance (Ra) and the ratio between total heat
entered at the bottom surface of the sample (Qtot) and that derived from probe heat flux (QA). (b)
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A–D at different depth of the specimen, all laying in the active phase.

FE simulations were used to calculate, for the total heat flux history at the sample basis,
the temperature evolution of the active phase in points A–D of a regular C-PCM structure modeling the
porous passive phase. Results, shown in Figure 8b, are in very good agreement with experimental data,
which validates the procedure adopted to calculate the total heat flow rate. The correspondence between
experimental and modeled tests also suggest that the effects both of discontinuities in the passive
phase and of local TCR between active/passive phases are negligible. Accordingly, FE simulations can
be adapted to suitably design experimental tests in an improved experimental setup with temperature
or heat flux control to derive ETC and ETD and their ranges of validity.

The actual difference between total and measured heat flow prevents the possibility to compare the
thermal history of different C-PCM materials under repeatable heat flow and temperature conditions
unless in the case of close thermal resistance values. Nevertheless, the authors observed that, under
several experimental test conditions, the thermal response of the C-PCM response was different from
the expected one on the basis of the thermal response of a homogeneous PCM. The DSC curves of small
size, homogeneous samples show well defined narrow peaks at the activating temperature. Vice-versa,
constant heat flow leads to a sudden reduction of the heating rate of small-scale samples in the narrow
temperature range at which phase change occurs. Greater mass sample can lead to broader peaks,
which keeps a regular shape.

The thermal response of the macroscopic samples of C-PCM with coarse pores, presented in
terms of heating rate vs. measured temperature at different positions of the sample, all located in the
active phase region clearly display broad temperature ranges in which heating rate is reduced. Further,
the presence of anomalous behavior, such as double peaks or sudden increases in temperature, can be
noticed in Figure 9a. These effects are not only correlated to an extension of the temperature range for
phase transition, but rather to the fact that at a fixed time the phase transition is at different stages of
completion in different points of the sample. In these conditions, heat can be driven to or released by a
part of the sample, and this can change the heating rate in other points of the sample. The phenomenon
has also been described by FE simulations run for the same testing conditions (see Figure 9b).
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Figure 9. Experimental (a) and modeled (b) heating rate vs. temperature at points A–D, in the active
phase of coarse porous C-PCM. FE model considered the porous material as a cubic rod-side lattice.

This abovementioned effect has been modeled by considering C-PCMs proving that the peak
irregularities previously discussed, in addition to the active phase and its volume fraction, depended on
the arrangement of the passive phase and on the heating range. Specifically, cubes lattice with square
cavities as originally proposed by Dul’nev [72] have been considered to derive Figure 9b. The model
had been previously successfully applied by Paek et al. to Al foams obtained by bubbling [15].
Other models based on the regular arrangement of unit cell structure have been proposed to model
porous material or composite structure containing inclusions, such as body centered cubic and face
centered cubic for foams obtained by bubbling processes [71] or the tetrakaidekahedral cell used for
SiC foam [71], or even rod-side cubic structures for high porosity [78].

An example of the effect of passive phase modeling is depicted in Figure 10, where the predicted
temperature evolution in two points at a distance of 17.5 mm from the sample bottom, one inside active
phase, the other in the high-conductivity passive phase is shown. Among the previously mentioned
models, rod-side (model 1), body centered cubic (model 2) and face centered cubic (model 4), also the
simplest cubic cell containing spherical cavity (primitive cubic) has been considered (model 3). In all
cases, isochronal heating at the sample bottom at 3 ◦C/min was considered. Figure 10 clearly shows
that C-PCMs with the same effective specific heat and average density in the different arrangement
display different heating in the temperature range where both phases are solid. It is also observed a
different thermal response as far as the phase transition is concerned. Further, in all coarse C-PCMs,
with modeled pore size of 10 PPI, a heating rate of 3 ◦C/min (0.05 ◦C/s) at the sample bottom leads to
up to 10 ◦C temperature difference between close points in active/passive phase. It has been proved
that temperature differences were actually reduced at reduced heating rate.

The above simulations demonstrate that the actual arrangement of the passive phase can affect the
temperature response of C-PCMs. Further, as previously mentioned, local TCR between active/passive
phase could affect it in some cases. Thus, in general, FE simulations can be used to evaluate the range of
operative conditions in which C-PCMs behave as homogeneous materials, but they need experimental
validation under specific heating conditions. A more extensive, but carefully planned experimental
test campaign is needed when the possibility to consider regular structures or to neglect local TRC
are prevented.

A wider range of experimental conditions could be met with the experimental set-up arranged to
control heat flow or temperature at the bottom/upper surface, which is currently under development.
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cell: 1: Rod-side, 2: Body centered cubic, 3: Primitive cubic, 4: Face centered cubic.

5. Conclusions

The literature survey on steady-state and transient test methods used to derive thermal conductivity
of C-PCMs was presented and the potentialities offered by each method to test coarse porous C-PCM
were discussed.

The current version of a complex experimental set-up aimed at characterizing the thermal
behavior of coarse porous C-PCMs was presented, together with its validation and application under
uncontrolled (but monitored) heat flow to C-PCM.

Preliminary experimental results suggest heating rate changes occurring in an irregular way
within a temperature range broader than that of phase transition derived from DSC tests on the active
phase. FE analyses matched the experimental curves corresponding to points in the active phase.
FE simulations on the modeled porous structures further demonstrated that for porous structures
some millimeters coarse, 3 ◦C/min is a heating rate sufficient to lead to inhomogeneous temperature
distributions among the phases during phase change, a situation preventing the possibility to consider
the transient response of the C-PCMs as that of a homogeneous material. The results of FE simulations
are partly related to the models used to represent porous structures, which should be selected carefully
for each actual porous structure.

The practical applicability of the experimental setup, coupled with FE simulations, consists
of identifying the operational ranges within which the material can be considered to behave as a
homogeneous material, making it easier the design of thermal energy storage systems and thermal
energy management systems design. In the lab-scale field the method will provide information
to check the applicability of transient methods for thermal conductivity characterization of PCMs.
The experimental set-up here presented will be upgraded to allow the most complex and controlled
boundary conditions needed to experimentally identify the abovementioned operational ranges.
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