

Comparative study of electrophoretic deposition of doped BaCeO₃-based films on La₂NiO_{4+δ} and La_{1.7}Ba_{0.3}NiO_{4+δ} cathode substrates

Elena Kalinina^{1,2,*}, Elena Pikalova^{2,3,*}, Alexandr Kolchugin^{2,3}, Nadezhda Pikalova^{2,3} and Andrey Farlenkov^{2,3}

- ¹ Institute of Electrophysics UB RAS, Yekaterinburg 620016, Russia
- ² Ural Federal University, Yekaterinburg 620002, Russia
- ³ Institute of High Temperature Electrochemistry UB RAS, Yekaterinburg 620137, Russia
- * Correspondence: jelen456@yandex.ru, Tel.: +7343-267-87-82 (E.K.); e.pikalova@list.ru, Tel.: +7343-362-31-94 (E.P.)

Supplementary Materials

Figure S1. X-ray diffraction (XRD) patterns of the micro-sized BaCeO₃ (BCO) and BaCe0.89Gd0.1Cu0.01O₃₋₀ (BCGCuO) powders.

Figure S2. XRD patterns of the micro-sized La₂NiO_{4+δ}-based (LNO) and La_{1.7}Ba_{0.3}NiO_{4+δ} (LBNO) powders.

Figure S3. Morphology of the micro-sized BCGCuO powder after final milling.

Figure S4. Morphology of the micro-sized BCO powder after final milling.

Figure S5. Morphology of the micro-sized LNO powder, obtained by the solid state reaction method after final milling.

Table S1. Chemical analysis of the BCGCuO powder after the synthesis, in at. %.

Ba	20.51
Ce	18.32
Gd	1.80
Cu	0.15

Figure S6. X-Ray energy-dispersive (EDX) spectra for the BCGCuO film, deposited on the LNO substrate and sintered at 1450°C (surface).

Table S2. Averaged chemical composition the BCGCuO film, deposited on the LNO substrate and sintered at 1450°C in at. % (surface):

Elements	1 spectrum	2 spectrum	3 spectrum
О	61.24	66.76	63.76
Al	0.00	0.57	0.00
Ni	0.00	0.00	0.00
Ba	0.00	0.00	0.00
La	18.91	16.10	17.73
Ce	18.32	15.33	17.20

Gd	0.54	0.59	0.52
Au	0.99	0.66	0.79
Sum	100.00	100.00	100.00

Figure S7. EDX spectra for the BCGCuO film, deposited on the LNO substrate and sintered at 1450°C (cross section).

Table S3. Averaged chemical composition the BCGCuO film, deposited on the LNO substrate and sintered at 1450°C in at. % (cross section):

Elements	1 spectrum	2 spectrum	3 spectrum
0	57.14	56.60	54.98
Al	0.70	0.85	0.00
Ni	0.56	13.66	14.39
Ba	0.00	0.71	0.77
La	20.78	28.18	29.86
Ce	19.97	0.00	0.00
Gd	0.85	0.00	0.00
Sum	100.00	100.00	100.00

Figure S8. The overall EDX spectrum for the BCGCuO/BCO film, deposited on the LNO substrate (surface).

Table S4. Averaged chemical composition of the the BCGCuO/BCO film, deposited on the LNO substrate (surface) (at. %):

Elements	Overall spectrum
0	60.19
Ba	20.07
Ce	19.74
Sum	100.00

5 of 6

Materials 2019, 12, 2545

Figure S9. EDX spectra for the BCGCuO film, deposited on the LBNO substrate and sintered at 1450°C (surface).