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Abstract: Piezoelectric materials have the intrinsic reversible ability to convert a mechanical strain
into an electric field and their applications touch our daily lives. However, the complex physical
mechanisms linking mechanical and electrical properties make these materials hard to understand.
Computationally onerous models have historically been unable to adequately describe dynamic
phenomena inside real piezoelectric materials, and are often limited to over-simplified first-order
analytical, quasi-static, or unsatisfying phenomenological numerical approaches. We present a
generalized dynamic analytical model based on first-principles that is efficiently computable and
better describes these exciting materials, including higher-order coupling effects. We illustrate the
significance of this model by applying it to the important 3m crystal symmetry class of piezoelectric
materials that includes lithium niobate, and show that the model accurately predicts the experimentally
observed impedance spectrum. This dynamic behavior is a function of almost all intrinsic properties
of the piezoelectric material, so that material properties, including mechanical, electrical, and dielectric
coefficients, can be readily and simultaneously extracted for any size crystal, including at the nanoscale;
the only prior knowledge required is the crystal class of the material system. In addition, the model’s
analytical approach is general in nature, and can increase our understanding of traditional and novel
ferroelectric and piezoelectric materials, regardless of crystal size or orientation.

Keywords: piezoelectricity; analytical model; impedance spectroscopy; electromechanical
impedance spectroscopy

1. Introduction

Understanding the dynamic properties of a piezoelectric material that is subjected to mechanical
vibrations or alternating electrical fields is of great importance: most real applications require dynamic
solicitations at varying frequencies [1–5]. Presently, electrical impedance spectroscopy (EIS), in a
piezoelectric context also referred to as electromechanical impedance spectroscopy (EMIS), is widely
used to characterize piezoelectric and ferroelectric materials [6–9]. In this method, the material
is subjected to an alternating voltage signal of varying frequency; this signal is converted by the
material into a mechanical strain, which in turn is converted into a voltage response that can be
measured. This makes this technique particularly useful in cases where the piezoelectric material has
a novel geometry or is at the nanoscale, as becoming increasingly common in modern applications.
The impedance spectrum thus obtained contains rich information on the chemical, mechanical, and
electrical properties—the challenge being correctly extracting this information. In order to extract the
material properties, the impedance spectrum, including resonance frequencies, must be accurately
modeled. This model is compared to the experimental impedance spectrum and material parameters,
including electromechanical coefficients, thereby determined [10–13].
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However, the accuracy of this analysis is directly dependent on the quality of the model.
Unfortunately, existing models are not suitable in many cases [14]. Attributing physical meaning
to phenomenological numerical approaches, such as equivalent circuit analyses [15–17], is often
challenging. Therefore analytical models are generally preferred, with the Butterworth Van-Dycke
model being the most commonly employed [18]. However, this model is one dimensional and does not
describe the coupling between multiple resonances or losses that would occur in a finite, real, sample.
Improvements on this approach, the modified Butterworth Van-Dycke model [19] and the generalized
Butterworth Van-Dycke model [20] take into account acoustic losses, dielectric losses, and losses in
the electrodes, but still do not describe the coupling between two or more modes. In addition, all
of these models make simplifying approximations from piezoelectric equations and do not predict
harmonics. The most recent model, developed by Michel Brissaud in 2010 [21,22], uses an analytical
method based on the basic equations of piezoelectricity. Although this model is the most accurate
and complete available to date, only the three principal plane waves were considered. Thus, all shear
modes and coupling with shear waves are not predicted. Moreover, many assumptions are needed,
and the model is limited to the 6 mm crystal class of piezoelectric materials only. We therefore propose
a more complete analytical model that greatly reduces the number of underlying assumptions, extends
to mechanical shear waves [23], is applicable to any sample geometry or crystal symmetry, and is
entirely based on first-principles.

2. Materials and Methods

Consider a single crystal of any piezoelectric crystal class with a given stiffness, piezoelectric, and
permittivity matrix. We assume, for sake of argument, that the sample is a rectangular cuboid in an
orthonormal basis defined with three vectors

→
x1,
→
x2,
→
x3, as shown in Figure 1, although in principle

the model can accommodate any sample geometry. The symbols used to describe the model are
summarized in Table 1. The dimensions of the piezoelectric material are 2·a1 along x1 axis, 2·a2 along
x2 axis and 2·a3 along x3 axis. Two electrodes are on two parallel faces. Arbitrarily, the electrodes
are assumed on faces normal to the x3 axis. They are assumed to be ideal conductors with a relative
potential V on the top electrode and zero on the bottom electrode. The current I is defined in receptor
convention between the electrodes. The sample is assumed mechanically free on its six faces.
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Table 1. Symbols used in the present article to describe the model.

ai
Half dimension of the sample along the

direction xi (m) T Time (s)

CE
Stiffness matrix under constant electric

field (N/m2) U Displacement field (m)

CD
Stiffness matrix under constant dielectric

displacement field (N/m2) V Electrical potential of the top electrode (V)

D Dielectric displacement field (C/m2) Z Electrical impedance of the sample (Ω)
E Electric field (V/m) α Wave number (rad/m)

e Piezoelectric stress constant matrix (C/m2) εS
Permittivity under constant strain field

(F/m)
h Piezoelectric stress modulus matrix (N/C) ε′ Permittivity’s real part (F/m)
j Imaginary unit ε” Permittivity’s imaginary part (F/m)

Q Electric Charge (C) ηE
Mechanical loss factor under constant

electric field (N·s/m2)
S Strain tensor (1) σ Electrical conductivity (S/m)
T Stress tensor (N/m2) ω Pulsation of the sample (rad/s)

Resonances in the sample are the result of standing waves due to a dynamic solicitation [24].
Those standing waves are the consequence of waves propagating along the x1, x2, and x3 axes. Indeed,
these axes are the only directions that allow a reflected wave to superpose with its incident wave.
Using Christoffel’s equations [25], there are three waves per direction (usually one longitudinal wave
and two shear waves) propagating with three velocities. The linearity of the equations means that the
mechanical displacement is a linear superposition of the nine standing waves. Thus, there are nine
unknown parameters Ai,j to determine:

U(x1, x2, x3, t) =
3∑

i=1

(Ai,1·fi,1(x1)+Ai,2·fi,2(x2)+Ai,3·fi,3(x 3))·e
j·ω·t. (1)

from this form of displacement, the strain tensor can be easily deduced, using Einstein summation
notation [26]:

Sij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, S =



S11

S22

S33

S23

S13

S12


=



S1

S2

S3

S4

S5

S6


. (2)

without loss of generality, S and E are arbitrarily chosen as independent variables in order to write the
governing piezoelectric expressions [27] as:{

T = cE·S− et
·E

D = e·S + εS·E
. (3)

Since the metal electrodes are assumed to be perfect conductors, the electric potential is uniform
throughout each electrode. Moreover, the electrical current is assumed to flow entirely through the
piezoelectric crystal between the electrodes. The electrical boundary conditions are therefore given by:∫ a1

−a1

E1dx1= 0, (4a)

∫ a2

−a2

E2dx2= 0, (4b)



Materials 2019, 12, 2502 4 of 12

∫ a3

−a3

E3dx3= −V, (4c)∫ a2

−a2

∫ a3

−a3

D1dx2dx3= 0, (4d)∫ a1

−a1

∫ a3

−a3

D2dx2dx3= 0, (4e)∫ a1

−a1

∫ a2

−a2

D3dx1dx2= Q. (4f)

The free surfaces mean that the stresses normal to the six faces of the sample are zero. The
mechanical boundary conditions are therefore given by:

∀x2, x3, x1 = {−a1, a1}, T1= 0, (5a)

∀x1, x3, x2 = {−a2, a2}, T2= 0, (5b)

∀x1, x2, x3 = {−a3, a3}, T3= 0, (5c)

∀x1, x3, x2 = {−a2, a2}, T4= 0, (5d)

∀x1, x2, x3 = {−a3, a3}, T4= 0, (5e)

∀x2, x3, x1 = {−a1, a1}, T5= 0, (5f)

∀x1, x2, x3 = {−a3, a3}, T5= 0, (5g)

∀x2, x3, x1 = {−a1, a1}, T6= 0, (5h)

∀x1, x3, x2 = {−a2, a2}, T6= 0. (5i)

The electric field and the dielectric displacement field at a specific point of the material are
unknown. It is therefore necessary to rewrite the above equations with only V and Q instead of E and
D. The piezoelectric Equations (3) therefore need to be integrated along each face of the sample in
order to satisfy the mechanically boundary conditions. For example, the equation of the first stress
component becomes:

∫ a2

−a2

∫ a3

−a3

T1(a1)dx3dx2 = 0 =

∫ a2

−a2

∫ a3

−a3

cE·S(a1)dx3dx2 + (ek,1)
t
·

∫ a2

−a2

∫ a3

−a3


E1(a1)

E2(a1)

E3(a1)

dx3dx2, (6)

∫ a2

−a2

∫ a3

−a3


E1(a1)

E2(a1)

E3(a1)

dx3dx2 =


∫ a2

−a2

∫ a3

−a3
E1(a1)dx3dx2

0
−2·a2·V

, k ={1, 2, 3}. (7)

Explicitly, E1 can be expressed as a function of D1 thanks to the second piezoelectric equation:

a2∫
−a2

a3∫
−a3


E1

E2

E3

dx3dx2 =


ε−1

S1,1
·

a2∫
−a2

a3∫
−a3

(D 1−e1,j·S(a 1))dx3dx2

0
−2·a2·V


=


ε−1

S1,1
·e1,j·

∫ a2

−a2

∫ a3

−a3
S(a1)dx3dx2

0
−2·a2·V

, j ={1, 2, 3, 4, 5, 6},

(8)



Materials 2019, 12, 2502 5 of 12

∫ a2

−a2

∫ a3

−a3

cE·S(a1)dx3dx2 + (ek,1)
t
·


ε−1

S1,1
·e1,j·

∫ a2

−a2

∫ a3

−a3
S(a 1)dx3dx2

0
−2·a2·V

= 0. (9)

Similarly, using all nine mechanical boundaries conditions (Equations (5a–i)), a system representing
the displacement field with nine equation and nine unknowns is obtained. The solution gives the
expression of the unknowns as a function of V, Q, the frequency, and the intrinsic parameters of the
material. The displacement field is now well described.

According to the crystal class and the component considered, the following piezoelectric stress
equations can be used to simplify calculations:

T = CD·S− ht
·D, (10)

CD= CE + et
·ε−1

S ·e, (11)

h = ε−1
S ·e. (12)

The second piezoelectric Equation (3) must be used to obtain the impedance spectrum. To satisfy
electrical boundaries conditions, it is necessary to integrate the equation over the entire volume of
the sample:

∫ a1
−a1

∫ a2

−a2

∫ a3

−a3
T1


D1

D2

D3

dx1dx2dx3 = e·
∫ a1
−a1

∫ a2

−a2

∫ a3

−a3
Sdx1dx2dx3 + εS·

∫ a1
−a1

∫ a2

−a2

∫ a3

−a3


E1

E2

E3

dx1dx2dx3. (13)

In order to have a relation between V and Q, only the third component of the equation is pertinent,
so that:

2·a3·Q = e3,j·

∫ a1

−a1

∫ a2

−a2

∫ a3

−a3

Sdx1dx2dx3−εS3,3 ·4·a1·a2·V. (14)

We now have a generalized analytical model that describes the behavior of any piezoelectric
material, regardless of crystal symmetry.

3. Results and Discussion

3.1. Application to the 3m

In order to better illustrate the significance of the general dynamic analytical model derived above,
we apply it to the 3m crystal class, one of the most challenging crystal symmetries. The 3m crystal
symmetry class is a trigonal point group corresponding to several common piezoelectric materials,
including lithium niobate [28]. Due to the multifold symmetry of the 3m crystal class, these types
of materials have notoriously complex impedance spectra, with numerous resonances and coupled
modes, even in a sample with simple geometry [29,30]. Conventional models are unable to predict
most resonances and therefore fail to accurately predict the impedance spectrum [31,32].

In this illustration, we consider a rectangular sample oriented along the basic Cartesian directions
(x, y, z). The electrodes are on faces normal to the z-axis. For the 3m crystal class, the mechanical
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stiffness matrix in a constant electric field, the piezoelectric matrix, and the permittivity matrix are,
respectively, given by [33]

CE =



cE11 cE12 cE13 cE14 0 0
cE12 cE11 cE13 −cE14 0 0
cE13 cE13 cE33 0 0 0
cE14 −cE14 0 cE44 0 0

0 0 0 0 cE44 cE14

0 0 0 0 cE14 cE66


, (15)

e =


0 0 0 0 e15 −e22

−e22 e22 0 e15 0 0
e31 e31 e33 0 0 0

, (16)

εS =


εS11 0 0

0 εS11 0
0 0 εS33

. (17)

As shown above, the first step in applying our general dynamic analytical piezoelectric model
requires determining the form of the displacement field from Christoffel’s equations. The waves
propagating with velocity v along a unit vector (x1, x2, x3) are a solution to the following equation:

L·C·Lt
·U = −ρv2U, (18)

L =


x1 0 0 0 x1 x1

0 x2 0 x2 0 x2

0 0 x3 x3 x3 0

, (19)

U =


u1

u2

u3

. (20)

where U is the displacement, C the effective stiffness of the material, and ρ the density of the material.
The effective stiffness matrix C is different from CE or even CD, as C is the stiffness of the sample with
ideal electrodes and neglecting losses; a generalization that takes into account losses is presented later
in the manuscript. With the electrodes on faces normal to a unit vector (x1, x2, x3),

C = CE+et
·

ε−1
S ·


x1 0 0
0 x2 0
0 0 x3


·e. (21)

The eigenvectors and the eigenvalues of the Christoffel equation describe all the waves propagating
along a certain direction. For the 3m crystal class, we therefore find that:

C =



cE11 +
e2

31
εS33

cE12 +
e2

31
εS33

cE13 +
e31·e33
εS33

cE14 0 0

cE12 +
e2

31
εS33

cE11 +
e2

31
εS33

cE13 +
e31·e33
εS33

−cE14 0 0

cE13 +
e31·e33
εS33

cE13 +
e31·e33
εS33

cE33 +
e2

33
εS33

0 0 0

cE14 −cE14 0 cE44 0 0
0 0 0 0 cE44 cE14

0 0 0 0 cE14 cE66


, (22)
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U(x, y, z, t) =
3∑

i=1

(
Ax,i·Vx,i· sin(αx,i·x)+Ay,i·Vy,i· sin

(
αy,i·y

)
+Az,i·Vz,i· sin(αz,i·z)

)
·ejωt, (23)

αx,i =
ω

vx,i
. (24)

where Vx,1 is the first eigenvector of the Christoffel equation for the x direction, vx,1 is the associated
velocity, ω is the pulsation, and Ax,1 is the undetermined constant due to the linear superposition
assumption. The next step is to determine these constants from the piezoelectric equations. Analogous
to the general case above, the expression of the strain field is deduced from the displacement field, so
that the system of nine equations to solve the nine unknowns becomes∫ a2

−a2

∫ a3

−a3

T1dx3dx2= 0 =

∫ a2

−a2

∫ a3

−a3

cE·S(a1)dx3dx2+e31·2·a2·V, (25a)∫ a1

−a1

∫ a3

−a3

T2dx3dx1= 0 =

∫ a1

−a1

∫ a3

−a3

cE·S(a2)dx3dx1+e31·2·a1·V, (25b)∫ a1

−a1

∫ a2

−a2

T3dx1dx2= 0 =

∫ a1

−a1

∫ a2

−a2

cD·S(a3)dx2dx1−h33·Q, (25c)∫ a1

−a1

∫ a2

−a2

T4dx2dx1= 0 =

∫ a1

−a1

∫ a2

−a2

cE·S(a3)dx2dx1, (25d)∫ a1

−a1

∫ a3

−a3

T4dx3dx1= 0 =

∫ a1

−a1

∫ a3

−a3

cD·S(a2)dx3dx1, (25e)∫ a1

−a1

∫ a2

−a2

T5dx2dx1= 0 =

∫ a1

−a1

∫ a2

−a2

cE·S(a3)dx2dx1, (25f)∫ a2

−a2

∫ a3

−a3

T5dx3dx2= 0 =

∫ a2

−a2

∫ a3

−a3

cD·S(a1)dx3dx2, (25g)∫ a1

−a1

∫ a3

−a3

T6dx3dx1= 0 =

∫ a1

−a1

∫ a3

−a3

cE·S(a2)dx3dx1, (25h)∫ a2

−a2

∫ a3

−a3

T6dx3dx2= 0 =

∫ a2

−a2

∫ a3

−a3

cD·S(a1)dx3dx2. (25i)

In order to simplify these expressions, the piezoelectric stress equation in a constant dielectric
displacement field was used for Equations (3), (5), (7) and (9). Resolving this system of equations
allows us to determine the displacement field as a function of the frequency, V, Q, the geometry, and
the intrinsic properties of the material. In order to obtain the relationship between V and Q, the
piezoelectric equation of the dielectric displacement (Equation (14)) is needed. Solving this equation,
the impedance can be expressed as a function of the frequency, geometry, and intrinsic properties by:

Z =
V

−j·ω·Q
. (26)

In a more generalized case, and for improved accuracy, when the impedance expression as
a function of intrinsic properties, geometry and frequency is computed, it is also possible to take
into account loss effects. The model can be generalized to include any number of loss mechanisms,
including, but not limited to mechanical dampening, dielectric losses, ionic conductivity, etc.

To do so, coefficients of the material need to be substituted with complex expressions. Although
such an operation improves the accuracy of the model, the merits should be carefully balanced with the
consequence of an increased computational difficulty in fitting the experimental impedance spectrum.
The mechanical damping of the crystal may be not negligible in certain conditions like high temperature,
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high frequency or for certain materials like piezoelectric polymers [34]. For example, in this case the
stiffness matrix must include imaginary components to take into account the losses, and becomes:

cE = c′E−j·c′′E= c′E−j·ηE·ω. (27)

At high temperature or high frequency, dielectric losses could also affect the impedance
spectrum [35,36]. To take these into account, the permittivity matrix has to be substituted with

ε = ε′ − j·ε′′ . (28)

Sometimes, an electrical conductivity σmay appear inside the sample due to ionic diffusion or
other processes, especially at high temperature and low frequency [37]. Then, the permittivity matrix
has to be substituted with

ε = ε′−j·ε′′ +
σ

j·ω
. (29)

In all cases, taking into consideration these, or any other, piezoelectric loss mechanisms does
not change the approach of the model, but does add some computational complexity. The ability to
extend our model to include any loss mechanism of interest is of particular value to understand the
underlying physical mechanisms in the piezoelectric material considered.

3.2. Experimental Illustration

In order to demonstrate how our analytical dynamic model compares to experimental observations,
we take the model derived above for the 3m crystal class and use it to analyze lithium niobate,
a technologically important piezoelectric material. For this experiment, we employed a Z-cut
congruently grown single crystal of lithium niobate and a Y-cut congruently grown single crystal
of lithium niobate; both crystals were cut from the same ingot grown by a proprietary Czochralski
method and supplied by MTI Corporation, California. The geometry for both samples was a square of
10 mm width and 0.5 mm thickness, although in principle any arbitrary geometry could have been
used. A 100 nm thick platinum electrode on a titanium dioxide adhesion layer was sputtered onto
both complete sides of the crystal to produce a parallel plate metal-oxide-metal (MOM) capacitor
structure (10 mm× 10 mm electrodes). The impedance spectrum was measured with a Keysight E4990A
impedance analyzer at room temperature using platinum probes and a two-terminal measurement
from 20 Hz to 10 MHz [36]. The datasets generated and analyzed during the current study are available
from the corresponding author on reasonable request.

The model was analytically resolved using Matlab on an Intel® Core™ i5-4300U processor for
LiNbO3 in less than one hour. Once analytically resolved, numerically evaluating the analytical model
to extract the material parameters from any given impedance spectrum was then realized in under 0.2 s.
This compares favorably to conventional numerical models that can take hours or days to resolve on the
same processor, depending on the complexity of the numerical model selected (e.g., FEA, equivalent
circuit analysis, etc.). The apparent noise visible in the impedance spectrum at high frequency is the
result of numerous small resonances. Indeed, the densities of resonances increase with the frequency,
due to harmonics. As shown in Figure 2, the analytical model (using complex piezoelectric parameters,
as discussed above, to take into account loss mechanisms) is able to accurately fit the experimental data
over a wide frequency range. The accuracy is therefore comparable or better than the most onerous
and complex conventional numerical models.
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No resonances are found below 100 kHz, neither in the experimental data, nor in the model.
All major resonances are correctly and simultaneously predicted by the model, some representative
resonances of which are discussed below. For example, for the sample geometry chosen, Figure 3
shows the shear resonance at 3.5 MHz with its antiresonance at 4.3 MHz, as well as the thickness
compression resonance around 6.3 MHz. Our assumption of the linear superposition of nine waves
gives good results, although we do not predict all minor, higher order harmonics. Nevertheless, this is
the first dynamic analytical model able to describe, at the same time, compression and shear modes in
a piezoelectric material.Materials 2019, 12, x FOR PEER REVIEW 9 of 12 
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3.3. Experimental Observations Predicted by Analytical Model

A generalized dynamic analytical model to predict the electromechanical impedance spectrum of
piezoelectric materials over a wide frequency range, from 20 Hz to at least 10 MHz was developed
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and an implementation of this model illustrated experimentally in the case of lithium niobate. Only
very few assumptions are necessary: linear piezoelectric equations, linear superposition of mechanical
vibrations, negligible leakage currents on the surface (but not necessarily inside the volume of the
material), perfect metal electrodes, and an arbitrary but known geometry. In addition, no literature
material parameters need to be inputted to use the model; quite the contrary, the dynamic analytical
model can be used to extract almost any intrinsic material property from the impedance spectrum with
only knowledge of the crystal symmetry of the material necessary.

Figure 4 shows two radial resonances, one with the two radial waves in-phase at 360 kHz and
the other with the two radial waves out-of-phase at 282 kHz. The radial mode is composed of two
waves with different velocities; this typically precludes traditional models from predicting the radial
resonance at 282 kHz, although it is an important feature of the lithium niobate impedance spectrum.
Although our model accurately predicts all important resonances, smaller resonances, such as the
higher order secondary complex mode at 320 kHz, are not described. This is likely due to limitations
of the linear superposition assumption. In addition, some minor harmonics are not predicted at
the right frequency. This is probably due both to minor limitations in our model (particularly the
linear superposition assumption), as well as imperfect experimental conditions (sample is not entirely
mechanically free). Nevertheless, the analytical model shows an excellent prediction for the complex
3m crystal symmetry class, significantly better than can be obtained by conventional analytical models
or phenomenological frameworks.
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Shear-modes are analytically predicted and every predicted resonance can be experimentally
observed, which is essential for accurately determining associated material coefficients. The model is
computable even for a very complex piezoelectric material, such as lithium niobate of the 3m crystal
symmetry class.

4. Conclusions

A generalized dynamic analytical model to predict the electromechanical impedance spectrum of
piezoelectric materials was developed that can be used for any piezoelectric crystal symmetry class, no
matter the orientation or sample geometry. We provide, as an illustration, how this model can be used
to study a few representative resonance modes in lithium niobate, although naturally this model can
be used to study any resonance mode desired. Thus, the model presented in this manuscript can be
easily generated and exploited for the impedance spectroscopy resonance method. The impedance
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spectrum of a sample is a function of almost all intrinsic properties of the piezoelectric material, so
that intrinsic material properties, including mechanical, electrical, and dielectric coefficients, can be
readily and simultaneously extracted for any size crystal system, including at the nanoscale; the only
prior knowledge required is the crystal class of the material. In addition, as this model is entirely
based on first principles and can be used to study the effect of any applicable loss mechanism, it
provides valuable insight into physical phenomena underlying the piezoelectric mechanisms inside
these important and exciting materials.

Author Contributions: H.d.C., P.B., and R.J.Z. designed the experimental setup. H.d.C performed the experimental
measurements and data analysis. H.d.C. and R.J.Z. developed the analytical model. H.d.C., P.B., and R.J.Z.
prepared the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC)
Discovery Grant number RGPIN-2015-04185, and the APC was funded by École de Technologie Supérieure.
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