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Abstract: Poisson’s ratio (ν) defines a material’s propensity to laterally expand upon compression,
or laterally shrink upon tension for non-auxetic materials. This fundamental metric has traditionally,
in some fields, been assumed to be a material-independent constant, but it is clear that it varies with
composition across glasses, ceramics, metals, and polymers. The intrinsically elastic metric has also
been suggested to control a range of properties, even beyond the linear-elastic regime. Notably,
metallic glasses show a striking brittle-to-ductile (BTD) transition for ν-values above ~0.32. The BTD
transition has also been suggested to be valid for oxide glasses, but, unfortunately, direct prediction of
Poisson’s ratio from chemical composition remains challenging. With the long-term goal to discover
such high-ν oxide glasses, we here revisit whether previously proposed relationships between
Poisson’s ratio and liquid fragility (m) and atomic packing density (Cg) hold for oxide glasses, since
this would enable m and Cg to be used as surrogates for ν. To do so, we have performed an extensive
literature review and synthesized new oxide glasses within the zinc borate and aluminoborate families
that are found to exhibit high Poisson’s ratio values up to ~0.34. We are not able to unequivocally
confirm the universality of the Novikov-Sokolov correlation between ν and m and that between
ν and Cg for oxide glass-formers, nor for the organic, ionic, chalcogenide, halogenide, or metallic
glasses. Despite significant scatter, we do, however, observe an overall increase in νwith increasing
m and Cg, but it is clear that additional structural details besides m or Cg are needed to predict and
understand the composition dependence of Poisson’s ratio. Finally, we also infer from literature
data that, in addition to high ν, high Young’s modulus is also needed to obtain glasses with high
fracture toughness.
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1. Introduction

Poisson’s ratio (ν) is the negative ratio of the transverse strain to the longitudinal strain of a
material under uniaxial stress in the elastic regime. It relates to the shear modulus (G) and bulk
modulus (B), as

ν =
3B− 2G
6B + 2G

(1)

For isotropic materials in three dimensions [1], this limits ν to be within −1 and 0.5, as the values of
G and B are always positive. Different material families and compositions exhibit pronounced diversity
in their elastic properties and thus Poisson’s ratio. Materials with ν ~ 0.5 are highly incompressible and
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tend to deform through shape change, while materials with ν ~ 0 are highly compressible. So-called
auxetic materials, with negative values of ν, swell under tension [2–4]. At ν ~ 0.2, a transition between
two different types of stress patterns in frozen-in solid has been reported, namely shear and uniform
deformation [5]. Various macroscopic properties have been linked to Poisson’s ratio [6], including
some outside the elastic regime, such as densification [7], connectivity [8], and ductility [9].

Oxide glasses exhibit interesting properties such as transparency, high hardness, high chemical
durability (in many cases), and low-cost of raw materials. The brittleness of oxide glasses has been a
major hindrance for their use in various engineering and functional applications [10]. As the crack tip
formation and growth mechanisms are not well understood, it is challenging to design ductile oxide
glasses. Post-processing approaches such as chemical strengthening [11] are thus currently used to
improve the mechanical performance. However, molecular dynamics (MD) simulations suggest that
silicate glasses can exhibit some nanoscale ductility [12,13], and it is also possible for silica glass to
feature ductility induced by electron-beam irradiation [14]. Interestingly, as shown for metals [15] and
metallic glasses [9], high G/B ratio (and thus low Poisson’s ratio) favors brittleness. In other words,
a correlation between fracture energy (Gfrac), i.e., energy required to create two new fracture surfaces,
and Poisson’s ratio has been observed, which also manifests itself by a brittle-to-ductile (BTD) transition
around νBTD = 0.32 not only for metallic glasses but various non-crystalline solids (Figure 1) [6,9,16].
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Figure 1. Dependence of fracture energy (Gfrac) on Poisson’s ratio (ν) for a range of materials, showing 
a brittle-to-ductile transition in the range of ν from 0.30 to 0.33. The figure is reproduced with the data 
from Lewandowski et al. [9] and Tian et al. [17]. We also extend it with new Gfrac data for silicate 
glasses [10,18–21], borate, chalcogenide, and metallic glasses [10,20], and graphene [22,23] obtained 
by single-edge pre-crack beam (SEPB), chevron notch (CN), single edge notch beam (SENB), 
indentation fracture (IF), or tensile testing methods. The error of ν and Gfrac is estimated to be 0.01 and 
15%, respectively. The dashed line is a guide for the eye. 

The problem for oxide glasses is the fact that they mostly exhibit ν < 0.30, with only few oxide 
glasses reported with ν > 0.34 [24,25]. As such, the existence of a BTD transition for oxide glasses 
needs additional verification. However, recent MD simulations on permanently densified SiO2 
glasses have confirmed the existence of a BTD transition, although the value of νBTD was found to 
depend on the average coordination number [26]. Moreover, a recent study has explained the 
empirical BTD transition based on microscopic dynamical properties [16], building on the 
observation that ductility is closely related to the secondary β-relaxation [27,28], while Poisson’s ratio 
is proposed to be related to the effective Debye-Waller factor. The study suggests that ductile 
materials can withstand deformation at higher rates because they exhibit faster β-relaxation [16].  

Figure 1. Dependence of fracture energy (Gfrac) on Poisson’s ratio (ν) for a range of materials, showing
a brittle-to-ductile transition in the range of ν from 0.30 to 0.33. The figure is reproduced with the data
from Lewandowski et al. [9] and Tian et al. [17]. We also extend it with new Gfrac data for silicate
glasses [10,18–21], borate, chalcogenide, and metallic glasses [10,20], and graphene [22,23] obtained by
single-edge pre-crack beam (SEPB), chevron notch (CN), single edge notch beam (SENB), indentation
fracture (IF), or tensile testing methods. The error of ν and Gfrac is estimated to be 0.01 and 15%,
respectively. The dashed line is a guide for the eye.

The problem for oxide glasses is the fact that they mostly exhibit ν < 0.30, with only few oxide
glasses reported with ν > 0.34 [24,25]. As such, the existence of a BTD transition for oxide glasses
needs additional verification. However, recent MD simulations on permanently densified SiO2 glasses
have confirmed the existence of a BTD transition, although the value of νBTD was found to depend
on the average coordination number [26]. Moreover, a recent study has explained the empirical BTD
transition based on microscopic dynamical properties [16], building on the observation that ductility is
closely related to the secondary β-relaxation [27,28], while Poisson’s ratio is proposed to be related to
the effective Debye-Waller factor. The study suggests that ductile materials can withstand deformation
at higher rates because they exhibit faster β-relaxation [16].

In an attempt to overcome the brittleness of oxide glasses, it is thus of great interest to discover
high-ν oxide glasses (ν > 0.32). Unfortunately, there are presently no composition-dependent models
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available for predicting ν, and thus, inefficient Edisonian trial-and-error composition design is currently
utilized [29]. It is therefore of interest to find predictable surrogates for Poisson’s ratio. Most notably,
liquid fragility (m) has been proposed to be positively correlated with the ratio of bulk and shear moduli
(and thus Poisson’s ratio) for a broad range of glassy systems covering covalent and hydrogen-bonded,
van der Waals and ionic glasses, i.e., a range of organic molecules, oxide, halogenide, and chalcogenide
glasses [30,31]. Angell’s liquid fragility is defined as the slope of the base-10 logarithm of viscosity
versus Tg-scaled inverse temperature curve at Tg, where Tg is the glass transition temperature
(m = d log (η)/d log (Tg/T) at Tg) [32]. This is the fragility index used in this work, although we note
that other definitions of fragility exist [33]. The proposed m-ν relation is of interest, since tools such as
topological constraint theory [34,35] and coarse-graining (related to structural connectivity) [36,37]
can be used to predict m. Since the original study by Novikov and Sokolov in 2004 [30], a similar m-ν
dependence has been found for metallic glasses, although the change in fragility with modulus ratio
varies for different systems [38–40]. It has been noted that the correlation is only observed within a
narrow range of m due to the limited amount of data on bulk metallic glasses [40]. The proposed linear
relationship between m and the bulk-to-shear modulus has been seriously questioned by Yannopoulos
and Johari [41], who have argued that some data points were erroneously plotted, showing that no
general correlation for neither organic, inorganic, nor metallic glasses exists when including more
data. The lack of correlation between m and elastic properties has then been suggested to be due
to the strong sensitivity of ν to temperatures above Tg, as strong melts (low m) exhibit Poisson’s
ratio that is almost constant before and after the glass transition, while fragile melts (high m) show
a significant change in Poisson’s ratio above Tg [8]. There have been studies supporting the m-ν
correlation. For example, building on a proposed relation between Poisson’s ratio and packing density
(see below) Duval et al. [42] argue that the relation between m and ν is due to the structural fluctuations
being breathing-like (with change of volume) in strong liquids and shear-like (without change of
volume) in fragile liquids. Greaves et al. [6] have also argued that the correlation between m and ν
depend on the glass system, showing linear correlations for binary alkali silicates and metallic glasses,
but with different slopes.

Besides liquid fragility, Poisson’s ratio has been suggested to be positively correlated with the
atomic packing density (Cg) [6,8,43], which is defined as the ratio between the volume occupied by the
ions and the corresponding effective volume of glass. Cg could potentially be a good surrogate for
Poisson’s ratio, since the compactness of the sample affects the vibrational modes [42] and materials
with a high Cg should exhibit relatively strong interatomic interactions [16]. Based on experimental
data, an empirical relation between ν and Cg has been proposed (ν = 0.5–1/7.2Cg) [43], but it has been
found to overestimate the Poisson’s ratio for borate and phosphate glasses and underestimate it for
germanate and aluminate glasses [8]. A reason for an overestimated Poisson’s ratio of borate glasses
might be the low average coordination number as explained for the prediction of Young’s modulus [44].

The purpose of this work is to revisit the validity and universality of the proposed m-ν and Cg-ν
correlations. This is done to determine whether prediction of liquid fragility or atomic packing density
can be used to guide the discovery of oxide glasses with high Poisson’s ratio (ν > 0.32), which are
expected to be ductile following the relation in Figure 1. To do so, we perform an extensive literature
review to obtain liquid fragility, density, and Poisson’s ratio data for various glass systems. Since
experimental data on oxide glasses with ν > 0.30 are scarce, we also synthesize a total of 20 new oxide
glasses, particularly aluminoborate and zinc borate glasses as these have been found to have relatively
high Poisson’s ratio [45,46]. To further expand the dataset, we also determine the missing property
(e.g., m if only Cg and ν are known) from previously synthesized glasses in our laboratory [18,46–49].
Moreover, we subject selected oxide glasses to high-temperature densification to induce a higher Cg

value in bulk samples and then probe whether it correlates with an expected increase in ν. Finally,
we also discuss the implications of the findings for designing tough oxide glasses.
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2. Experimental

2.1. Sample Preparation

Oxide glasses were prepared by the traditional melt-quenching technique using reagent grade
chemicals (see Table 1). Three families of glasses were synthesized, namely Zn-borates, aluminoborates,
and Ca-Zr-silicates. Zn-borates were prepared from H3BO3 (Hoenywell, North Caroline, USA) and
ZnO (VWR, Leuven, Belgium), and doped with La2O3 (Sigma-Aldrich, Steinheim, Germany), Ta2O5

(Sigma-Aldrich, Steinheim, Germany), and/or GeO2 (Alfa Aesar, Massachusetts, USA). Aluminoborates
were prepared from H3BO3 and Al2O3 (Sigma-Aldrich, Steinheim, Germany) with additions of
BaCO3 (ChemPUR, Karlsruhe, Germany), MgCO3 (Acros Organics, New Jersey, USA), CaCO3

(Sigma-Aldrich, Steinheim, Germany), Li2CO3 (Merck, Darmstadt, Germany), Cs2CO3 (Sigma-Aldrich,
Steinheim, Germany), Ga2O3 (Sigma-Aldrich, Steinheim, Germany), and/or Ta2O5 (Sigma-Aldrich,
Steinheim, Germany). Ca-Zr-silicates were produced from SiO2 (Merck, Darmstadt, Germany), ZrO2

(Hoenywell, North Caroline, USA), and CaCO3. All glasses were post-annealed for 30 min at around
Tg (Tg ± 5 ◦C) (Tg is determined by differential scanning calorimetry), prior to density and Poisson’s
ratio characterization to ensure similar thermal history.

Some of the synthesized glasses (sample size approx. 13 × 13 × 2.5 mm3) were then subjected to
isostatic compression at their respective ambient pressure Tg value in a nitrogen gas pressure chamber
containing a multizone cylindrical furnace [50]. The applied pressure was 1 GPa and the compression
time was 30 min, which is needed for obtaining a fully densified structure [51]. After the treatment the
samples were first cooled to room temperature, then relaxed to ambient pressure at room temperature
(but the glasses remain partially densified).

Table 1. Atomic packing factor (Cg), glass transition temperature (Tg), liquid fragility (m), and
Poisson’s ratio (ν) of various oxide glasses, either synthesized for this work or taken from previous
studies [18,46–49,52]. The errors in Cg, Tg, m, and ν are estimated to be within ±0.002, 2 ◦C, 1,
and 0.01, respectively.

Composition (mol%) Cg
(-)

Tg
(◦C)

m
(-)

ν
(-)

Ca-Zr-Silicates 45CaO-5ZrO2-50SiO2 0.523 789.2 53.3 0.280
50CaO-5ZrO2-45SiO2 0.524 806.2 52.0 0.288

Zn-Borates 55ZnO-45B2O3
(a) 0.566 (a) 556.5 57.2 0.300 (a)

2La2O3-53ZnO-45B2O3
(a) 0.565 (a) 557.4 56.5 0.311 (a)

5La2O3-50ZnO-45B2O3
(a) 0.572 (a) 565.3 60.0 0.316 (a)

10La2O3-45ZnO-45B2O3
(a) 0.580 (a) 552.4 54.8 0.318 (a)

5La2O3-10GeO2-50ZnO-35B2O3 0.554 576.3 41.4 0.311
2Ta2O5-53ZnO-45B2O3 0.581 559.6 42.7 0.316
5Ta2O5-50ZnO-45B2O3 0.577 563.7 48.3 0.315
2Ta2O5-55ZnO-43B2O3 0.583 547.6 49.9 0.336
5Ta2O5-55ZnO-40B2O3 0.550 563.7 48.3 0.317
10Sb2O3-55ZnO-35B2O3 0.498 502.4 39.9 0.278
2La2O3-55ZnO-43B2O3 0.583 533.0 38.9 0.302
5La2O3-55ZnO-40B2O3 0.551 557.1 46.4 0.309
10La2O3-55ZnO-35B2O3 0.539 542.2 42.2 0.310
2La2O3-2Ta2O5-53ZnO-43B2O3 0.617 538.7 50.2 0.316
5La2O3-2Ta2O5-50ZnO-43B2O3 0.580 539.5 44.6 0.325
5La2O3-5Ta2O5-50ZnO-40B2O3 0.569 547.2 43.1 0.312

Aluminoborates 25MgO-20Al2O3-55B2O3
(b) 0.565 (b) 636 (b) 56.5 0.283

25CaO-20Al2O3-55B2O3
(b) 0.551 (b) 615 (b) 54.8 0.220

25SrO-20Al2O3-55B2O3
(b) 0.537 (b) 590 (b) 60.0 0.266

25BaO-20Al2O3-55B2O3
(b) 0.545 (b) 554 (b) 57.2 0.290

18.75Li2O-6.25BaO-20Al2O3-55B2O3 0.531 484.4 39.6 0.284
20Li2O-5MgO-20Al2O3-55B2O3

(c) 0.553 (c) 482 (c) 40.6 0.247
25Cs2O-20Al2O3-55B2O3

(d) 0.479 (d) 416 (d) 48.8 0.319 (d)

25Cs2O-5Ga2O3-15Al2O3-55B2O3 0.480 421.2 28.0 0.324
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Table 1. Cont.

Composition (mol%) Cg
(-)

Tg
(◦C)

m
(-)

ν
(-)

25Cs2O-10Ga2O3-10Al2O3-55B2O3 0.474 418.7 25.3 0.320
25Cs2O-2Ta2O3-18Al2O3-55B2O3 0.474 432.1 28.7 0.318
23Cs2O-2Ta2O3-20Al2O3-55B2O3 0.470 433.6 22.2 0.316
21Cs2O-4Ta2O3-20Al2O3-55B2O3 0.475 449.7 27.7 0.300

Aluminoborosilicates 25Na2O-75SiO2
(e) 0.49 (e) 475 (e) 33.3 0.25 (e)

25Na2O-12.5B2O3-62.5SiO2
(e) 0.52 (e) 539 (e) 43.8 0.22 (e)

25Na2O-25B2O3-50SiO2
(e) 0.55 (e) 544 (e) 48.7 0.22 (e)

25Na2O-37.5B2O3-37.5SiO2
(e) 0.56 (e) 525 (e) 48.8 0.24 (e)

25Na2O-50B2O3-25SiO2
(e) 0.56 (e) 511 (e) 50.6 0.25 (e)

25Na2O-62.5B2O3-12.5SiO2
(e) 0.56 (e) 495 (e) 50.2 0.25 (e)

25Na2O-75B2O3
(e) 0.56 (e) 473 (e) 51.4 0.27 (e)

25Na2O-12.5Al2O3-62.5SiO2
(e) 0.49 (e) 567 (e) 32.8 0.23 (e)

25Na2O-12.5Al2O3-12.5B2O3-50SiO2
(e) 0.51 (e) 545 (e) 50.4 0.24 (e)

25Na2O-12.5Al2O3-25B2O3-37.5SiO2
(e) 0.52 (e) 514 (e) 43.3 0.25 (e)

25Na2O-12.5Al2O3-37.5B2O3-25SiO2
(e) 0.52 (e) 493 (e) 46.4 0.26 (e)

25Na2O-12.5Al2O3-50B2O3-12.5SiO2
(e) 0.52 (e) 480 (e) 48.9 0.27 (e)

25Na2O-12.5Al2O3-62.5B2O3
(e) 0.52 (e) 465 (e) 39.0 0.29 (e)

25Na2O-25Al2O3-50SiO2
f) 0.49 (e) 792 (e) 38.5 0.21 (e)

25Na2O-25Al2O3-12.5B2O3-37.5SiO2
(e) 0.49 (e) 611 (e) 30.0 0.25 (e)

25Na2O-25Al2O3-25B2O3-25SiO2
(e) 0.49 (e) 511 (e) 28.4 0.26 (e)

25Na2O-25Al2O3-37.5B2O3-12.5SiO2
(e) 0.50 (e) 468 (e) 30.7 0.28 (e)

25Na2O-25Al2O3-50B2O3
(e) 0.50 (e) 459 (e) 32.4 0.29 (e)

25Na2O-30Al2O3-45B2O3
(e) 0.50 (e) 528 (e) 31,9 0.27 (e)

25Na2O-30Al2O3-32.5B2O3-12.5SiO2
(e) 0.50 (e) 469 (e) 27.9 0.29 (e)

(a) Glasses and/or data are from Ref. [52]; (b) Glasses and/or data are from Ref. [48]; (c) Glasses and/or data are from
Ref. [46]; (d) Glasses and/or data are from Ref. [18]; (e) Glass is from Ref. [49].

2.2. Characterization

We determine the values of m, Cg, and ν for both the newly-synthesized glasses and those missing
from previous studies [18,46–49], as shown in Table 1. First, the densities (ρ) of the glasses were
determined using the Archimedes principle with ethanol as the immersion medium. The measured
density and chemical composition were used to calculate the molar volume (Vm) and in turn atomic
packing factor (Cg) using Equations (2) and (3), respectively.

Vm =
1
ρ

∑
i
xiMi (2)

Cg =
1

Vm

∑
i
xiVi. (3)

Here xi, Mi, and Vi are the mole fraction, molar mass, and ionic volume (or metallic radii),
respectively, of each compound. Structural assumptions regarding valence and coordination number
of each cation are described in detail in the Supporting Information, while the anionic oxygen, nitrogen,
and fluorine radii were assumed to be 1.35, 1.46, and 1.285 Å, respectively, as reported by Shannon [53].
The packing density of metallic glasses was calculated by using the metallic radii of the pure metal [54],
as suggested by Rouxel [8].

Given the small sample size for many of the studied glasses (due to their poor glass-forming
ability), we did not determine the liquid fragility (m) using direct viscosity measurements. Instead
we determined it using differential scanning calorimetry (DSC) on a STA 449F1 instrument (Netzsch,
Selb, Germany). Small disc-shaped specimens of 40–60 mg and Ø ~ 4 mm were prepared for
measurements. DSC upscans were performed in Pt crucibles and argon atmosphere (50 mL/h) at
different heating rates subsequent to cooling the glasses from well above the glass transition at the
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same rate. The heating/cooling rates were 5, 10, 20, and 30 ◦C/min. The fragilities were corrected for a
systematic error using Equation (4), as described in Zheng et al. [55].

m = 1.289(mDSC −m0) + m0 (4)

Here, m, mDSC, and m0 are the liquid fragility determined from viscosity, the liquid fragility
determined from DSC, and the fragility of a perfectly strong glass that equals 14.97, respectively.

Samples were ground using SiC paper to obtain coplanar surfaces. The longitudinal and transverse
wave velocities (VL and VT, respectively) were measured by an ultrasonic thickness gauge (38DL Plus;
Olympus, Tokyo, Japan) using the pulse-echo method with 20 MHz delay line. The thickness of the
samples were measured with a digital micrometer (Mitutoyo, Kawasaki, Japan) with a precision of
0.01 mm. Poisson’s ratio (ν) was calculated from VL and VT, following Equation (5). For literature
studies, which did not report the value of ν, it was calculated either from wave velocities using
Equation (5), or from the other elastic moduli based on the isotropic nature of the oxide glasses (see,
e.g., Equation (1)).

ν =
V2

L − 2V2
T

2
(
V2

L −V2
T

) (5)

3. Results and Discussion

3.1. Studied Compositions

The compositions of the oxide glasses synthesized and/or characterized in this study are given in
Table 1, along with the values of Cg, Tg, m, and ν. The glasses are made of various network formers,
covering silicates, borates, aluminoborates, and aluminoborosilicates with various network-modifying
oxides. The glasses also exhibit a wide range of Poisson’s ratio values (approximately from 0.21 to
0.34), and some glasses thus exhibit ν > νBTD. However, it is outside the scope of the present study to
determine the fracture toughness of these glass samples, which, in most cases, are too small in size to
be tested via self-consistent fracture toughness methods [10]. The liquid fragility values range from 22
to 60, while the atomic packing density ranges from 0.48 to 0.61. The zinc borate glasses generally
feature the highest values of Cg and ν.

We have identified literature data of Poisson’s ratio using the SciGlass database, in addition to
searching traditional glass journals using keywords such as “Poisson’s ratio”, “mechanical properties”,
and “elastic properties”. Furthermore, we added the keyword “fragility” to obtain liquid fragility
data on similar glass systems. In order to obtain Cg data, we have identified studies reporting density,
molar volume, or Cg values.

3.2. Poisson’s Ratio vs. Packing Density

Figure 2 shows the dependence of Poisson’s ratio on atomic packing density for various
glass systems, covering both the present results and literature data. Due to the large number
of points in the center of the plot, Figure 2 shows the density of Cg vs. ν data points for the
various glass families, which can be identified in Figure S1 in the Supporting Information. Data
for the following glass types are included: metallic [9,20,56–59], oxynitrides [8,20,60,61], pure
oxides [8,20,62–73], alkali silicates [8,18,24,63,65,72,74,75], alkali borates [18,64,67,68,76–78], alkaline
earth silicates [8,79], alkali-alkaline earth borates [80], alkali-alkaline earth silicates (including Pb, Ti, and
Fe) [8,20,62,65,67,73,81–85], phosphosilicates [82], germanosilicates [86], aluminosilicates [8,18,60,61,
69,70,87–95], zinc borates [20,45,76,96], lead borates [20,45,65,96–98], aluminoborates [18,46,87,99],
germanates [87,100], aluminoborosilicates [18,20,101], borosilicates [18,20,62,67,71,101], borates
containing bismuth or tellurium [97,102–105], halogenides (flourides and oxyflourides) [62,106–109],
vanadates [110,111], tellurites [66,112–124], phosphates [20,66,68,106,125–131], rare earth aluminates [8],
and oxycarbides [8,20]. In the Supporting Information, we discuss the assumptions (based on structural
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data) used to calculate Cg with information from Refs. [18,46,49,53,66,68,76,81,86,87,90,96,97,99,110,
111,122,123,125,126,128,130–148].
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We do not observe a strong correlation between Cg and ν (Figure 2), although an overall positive
correlation might be apparent, in agreement with the earlier work of Rouxel [8]. However, we note
that the present glasses in Table 1 as well as those from literature show a broad range of ν values for
the same Cg value, e.g., around Cg ~ 0.48 (Figure 2). The majority of the data cluster in the center of
the diagram, showing an approximate sigmoidal-like trend with a transition of ν at Cg = 0.5. That is,
within a limited range of Cg, ν increases from around 0.18 to 0.28 for a majority of the glasses, followed
by a smaller increase towards ν = 0.40 for metallic glasses with Cg ~ 0.75. As seen in Figure S1 in the
Supporting Information, the Makishima-Mackenzie model [43] does not describe the Cg vs. ν trend as
well as the sigmoidal-like trend described by Rouxel [8]. Finally, we should note that the majority of
studies included in Figure 2 are on silicate and borate glasses, which exhibit similar Cg values. This is
the origin of the clustering of data around Cg = 0.5 in the plot. On the other hand, many of the data
points for phosphate (ν = 0.25–0.3) and tellurite (ν = 0.2–0.25) glasses are different, with relatively high
Cg (>0.5) and low Cg (<0.5) values, respectively.

In addition to composition variation, the properties of bulk glasses can also change permanently
due to post-treatment, such as isostatic high-temperature densification [51,149], which always leads
to an increase in Cg (note that the change in Cg is measured ex situ under ambient conditions, after
the glass is fully decompressed). As shown in Figure 3, the pressure-induced increase in Cg does
not systematically result in an increase in ν, casting doubt on the universality of the proposed Cg-ν
correlation. Zinc borate, aluminoborate, and sodium borate glasses feature a decrease in ν, while SiO2

and aluminotitanophosphate glasses feature an increase in ν upon isostatic compression at 1 GPa
around Tg. The soda-lime borate glasses show a complex behavior with a monotonic increase in ν
and Cg with increasing pressure (0–0.57 GPa) for low total modifier content (15 mol%), while ν first
increases for pressures up to 0.2 GPa but then decreases at higher pressures for glasses with higher
total modifier content (25 and 35 mol%). The lack of decrease in νwith increasing Cg could be due to
the interplay of changing coordination numbers, bond lengths, and bond angles. Densification usually
causes two phenomena (i) an increase in Cg, e.g., due to decreased modifier-oxygen bond lengths [150],
which typically leads to an increase in Poisson’s ratio, and (ii) an increase in the network connectivity,
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e.g., through increasing coordination number of network formers, which typically decreases the
Poisson’s ratio [8]. These two competitive effects make it difficult to understand the effect of pressure
(densification) on the Poisson’s ratio. Finally, we note that a general problem with the calculation of Cg

is the various assumptions needed when insufficient structural data are available [8].
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Figure 3. Effect of high-temperature densification, as quantified by the increase in atomic packing
factor (Cg), on the Poisson’s ratio (ν) of selected glasses: zinc borates (this study), aluminoborates
(this study and Ref. [46]), soda-lime borates (Ref. [80]), sodium borate (Ref. [68]), SiO2 (Ref. [68]), and
aluminotitanophosphates (Ref. [68]). The errors associated with ν and Cg are 0.01 and 0.002, respectively.

3.3. Poisson’s Ratio vs. Liquid Fragility

Next, we revisit the correlation between liquid fragility and Poisson’s ratio. Considering first the
oxide glasses from Table 1 with ν ≥ 0.28, we find no apparent correlation between ν and m (Figure 4).
Hence, the data for these oxide glass-formers with relatively high ν values support the criticism of
the Novikov and Sokolov correlation [8,41]. Figure 5 further tests the m-ν correlation by including
literature data on various oxide glass formers (Figure 5a) and all types of glass families (Figure 5b). The
oxide glass-formers include pure oxides (SiO2, B2O3, GeO2) [30,151], borates [18,64,67,76,78,151–153],
silicates [18,89,152,154], aluminoborates [18], aluminoborosilicates [18,101], borosilicates [18,101], and
tellurites [114,121,155]. For these systems, we highlight two observations. First, multiple liquid
fragility data are obtained for pure oxides though having same (or very similar) Poisson’s ratio, e.g.,
three data points are shown in Figure 5a for SiO2 (ν = 0.145 [31]). Second, for some glass systems
the values of m and ν are obtained from different studies when only one of the properties is reported.
In those cases, we have compared the density, molar volume, or atomic packing density values to
ensure the similarity of the materials. The additional glasses in Figure 5b include metallic [38–40,156],
ZIF-62 [157], organic [30,31], ionic [30,151], halogenide [30], and chalcogenide glasses [30].

There appears to be a weak positive correlation between liquid fragility and Poisson’s ratio, but it
is significantly scattered and not universal as previously reported for organic, inorganic, and metallic
glasses [41]. Here, we have also included oxide glasses, but these do not strengthen the possible
correlation between m and ν. We note that Greaves et al. [6] have shown a positive m-ν correlation with
varying slope for each glass system. The oxide glass systems used in that study were binary silicates,
but as seen in Figure 5a, there is no strong correlation when considering a wider range of oxide glass
families. It thus appears that the correlation can only be found within very narrow compositional
variations, as those in binary sodium or potassium silicates. When considering all the glass families
(Figure 5b), it is also evident that no universal correlation is observed, since a very wide range of ν
values (around 0.15 to 0.40) is seen for a relatively narrow range of m values (around 25 to 35).
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3.4. Implications for Design of Tough Oxide Glasses

In order to design mechanically tough oxide glasses, it is important to control the factors that
influence the fracture toughness (KIc). Therefore, besides fracture energy (Gfrac) and Poisson’s ratio
(Figure 1), we analyze the effect of Young’s modulus (E) on KIc. Under plane strain, we have [158],

KIc =

√
G f rac E

(1− ν2)
(6)

To understand what criteria need to be fulfilled to design high-KIc oxide glasses, we have calculated
Gfrac for various systems based on the measured literature values of KIc, E, and ν. Glasses from literature
include metallic [9,20,159–163], silicates [18–21,82,164–166], borates [20,166,167], phosphates [126,166],
tellurites [166], chalcogenides [20,166,168,169], flourides and oxyflourides [164,166], oxynitrides [20],
and oxycarbides [20]. As discussed, there is a pronounced effect of ν on Gfrac when ν exceeds ~0.32
(Figure 1). In contrast, there is no correlation between E and ν (see Figure S2 in the Supporting
Information), whereas there is an expected correlation between KIc and Gfrac (see Figure S3 in the
Supporting Information). Even though only ν affects Gfrac, KIc is also increasing with E (Figure 6).
This highlights the importance of tailoring future glass composition with a combination of high Gfrac

and E. In turn, this confirms the importance of producing high-ν oxide glasses (due to the ν-Gfrac

relation) in order to improve the fracture toughness. We note that the correlation between KIc and E for
metallic glasses is vague (Figure 6), which might be due to the difficulty in measuring KIc of metallic
glasses [170,171], while ν, in contrast, is easy to measure. In summary, there are three ways to increase
the fracture energy: (i) increase the ductility (or by surrogate Poisson’s ratio), (ii) increase the ultimate
strain at constant E, and/or (iii) increase E at constant ultimate strain. All of these increase the area
under the stress-strain curve, but note that (ii) and (iii) assume that fracture remains fully brittle.
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4. Conclusions

We have tested the validity of previously proposed relationships between Poisson’s ratio on
the one hand and liquid fragility and atomic packing density on the other hand. This was done by
performing an extensive literature review and by preparing new oxide glasses, especially within the
zinc borate and aluminoborate families that exhibit Poisson’s ratio (ν) above 0.30, up to 0.34. This is
relevant for oxide glasses, since these are believed to undergo a brittle-to-ductile transition for ν~0.32.
Although two overall increasing trends in Poisson’s ratio with both liquid fragility and atomic packing
density are observed, it is also clear that no universal relationships are observed when considering
the wide range of compositions herein, including oxide, metallic, halogenide, chalcogenide, ionic,
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and organic glass families. This work suggests that additional structural details besides, e.g., packing
density, are needed to predict the Poisson’s ratio of oxide glasses.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/15/2439/s1,
Calculation of atomic packing density (Cg) and the structural assumptions made. Figure S1: Dependence
of Poisson’s ratio (ν) on atomic packing density (Cg) for various glass systems, including those from Table 1.
References for literature data are given in the main text. Cg is calculated according to Equation (3), building on
the structural assumptions described in the Supporting Information. The errors associated with ν and Cg are
smaller than the size of the symbols (0.01 and 0.002, respectively). The empirical Makishima-Mackenzie model
(MM-model, solid line) [43] is also represented (black line). Figure S2. Dependence of Young’s modulus (E) on
Poisson’s ratio (ν) for various glass systems. References for all data are given in the main text. Errors on E and
ν are estimated to be smaller than 2 GPa and 0.01, respectively. Figure S3. Dependence of measured fracture
toughness (KIc) on the calculated fracture energy (Gfrac) for various glass systems (references are given in the main
text). Note that the axes are logarithmic and that KIc (together with E and ν) are used in the calculation of Gfrac
based on Equation (6) from the main manuscript. Errors in KIc and Gfrac are estimated to be smaller than 0.05 and
15%, respectively.
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