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Abstract: The growing utilization of various mineral additives in the building industry has caused 
concern worldwide to reduce the emissions of carbon dioxide from Portland cement (OPC) 
production. The present paper is focused on the determination of the degree of hydration of blended 
binding systems based on Portland cement. Blast furnace slag, fly ash, and ceramic powder are used 
in the study; they are applied by 12.5 wt.% up to 50% of OPC replacement. The evolution of the 
hydration process is monitored using thermogravimetry in selected time intervals to determine the 
degree of hydration; its ultimate value is obtained from numerical estimation using the Michaelis-
Menten equation. However, due to the application of active mineral additives, the correction in 
terms of equivalent binder is conducted. Corrected values of the degree of hydration exhibit good 
fit with compressive strength. 

Keywords: supplementary cementitious materials; fly ash; blast furnace slag; ceramic powder; 
degree of hydration; thermogravimetry 

 

1. Introduction 

Global warming and consequent climate change have become crucial problems worldwide. 
They are the consequence of carbon dioxide emissions related to human industrial and agricultural 
activities. That is why the development of new environmentally friendly technologies is one of the 
main focuses of the scientific community, in all technical disciplines. 

The building industry is one of the most polluting industries, in which cement production is 
responsible for approximately 5% of global CO2 emissions [1,2]. The progress achieved in cement 
processing (more efficient milling, alternative fuels) is mainly being focussed on, since it could 
substitute a significant part of cement clinker without the loss of required properties (supplementary 
cementitious materials, SCM) [2]. The SCM, or mineral additives, are successfully applied for periods 
of long duration, because they positively contribute to themechanical and predominantly long-term 
durability performance of concrete. Their positive environmental impact is powered by the fact that 
the most frequently used ones, such as fly ash, and blast furnace slag, rank as industrial wastes or by-
products [2,3]. 

Blast furnace slag (BFS) originates during pig iron production as a by-product, which has found 
wide utilization in the building industry in past years. The specific property of BFS, in comparison 
with other mineral additives, is the content of lime (CaO), which determines its latent hydraulic 
properties concurrently with glass phases. However, for its practical use in the cement industry, its 
sudden cooling during iron production is necessary to ensure its stability [4]. The level of utilization 
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of BFS well corresponds with the cement industry and valid standard EN 197-1 [5], which defines 
individual cement types, where CEM IV could contain up to 95% of BFS. This material is also often 
applied as an OPC replacement to improve selected technological properties, such as shrinkage 
reduction [6], reduction of hydration heat [4], and enhancement of durability [2]. A positive impact 
on the hydration processes in presence of BFS allows for the self-healing ability of concrete [7]; 
however, relatively high levels of replacement are necessary (over 50%). The beneficial impact of BFS 
application on the environment is well known and supported by a number of studies [3,8]; however, 
with respect to the actual situation in the market, a gradual lack of BFS is expected. 

Fly ash (FA) is a by-product originating during electric energy production in coal-fired power 
plants. The quality of the coal, burning regime, and flue gas desulphurization technology 
significantly determines the quality of the fly ash [9–11]. The varying properties and composition of 
FA, especially non-burned carbon, has a negative effect on the air entraining of fresh mix. On the 
other hand, suitable fly ash contributes to increased porosity, whereas the pore system is formed by 
higher amount of smaller pores [12]; smooth particles of FA have a positive impact on the release of 
fine air bubbles [13,14]. Fly ash has become an important constituent of concrete technology, because 
it affects positively the number of engineering properties. It is often used in concrete mixes during 
the production of large structures [15,16], due to its positive impact on the evolution of hydration 
heat. Such concrete also tends to reduce cracking due to shrinkage, what positively affects final 
durability. This is why fly ash holds a significant position in self-compacting concrete (SCC) 
manufacture, where it can substitute up to 60% of OPC [12,17]; however, very high levels of 
replacement in the binary system limit such concrete for severe exposure classes, according to EN 206 
[18]. On the other hand, advanced ternary systems, typically in presence of limestone filler (LF), 
exhibit increased durability [12,17,19].  

Ceramic powder (CP) obtained from red clay ceramics was used in lime based composites in 
ancient times. Currently, its importance is rising due to the high amount of construction and 
demolition waste (C&D). The character of the ceramics offers a number of suitable applications in the 
field of solidification of heavy metals [20] or composites that are resistant to high temperatures 
[21,22]. However, its application as partial cement replacement lies is of primary scientific interest 
[23–25]. Its pozzolanic properties are determined by the process of firing, when the applied 
temperature (600–800 °C) causes the formation of reactive amorphous phases due to clay 
dehydroxylation [24,26]. CP contains approximately half the amount of reactive components in 
comparison with fly ash; however, the physical effect of its use allows one to formulate composite 
materials with high mechanical and durability performance [27,28]. 

The efficiency of SCM application is often described by using the pozzolanic strength activity 
index (PSAI) to describe the strength gain/loss for that replacement level [29–31]; however, 
mechanical properties are not convenient for the durability assessment. For this reason, the 
performance index (PI) was introduced, which allows for the comparison of a single studied property 
[32,33], including factors relating to durability. Nevertheless, the efficiency of mineral additives in 
technical praxis is included in the mix design through the k-value, which performs the contribution 
of a given additive in relation to OPC. According to EN 206 [18], k-value is for blast furnace slag 0.6–
0.9 and 0.2–0.4 for fly ash, respectively; however, its implementation in the calculation of 
water/cement ratio differs depending on the actual type of cement and applied SCM replacement 
used. Unfortunately, this valid mechanism based on the durability assessment according to w/c ratio 
is applicable for selected cement types for the replacement of up to 33.3% of cement, which partially 
blocks the further implementation of various SCM to concrete. The inappropriateness of this solution 
is well documented in work of Gruyaert et al. [34] and proved by practical experiences with the “XF” 
concrete classes. On the other hand, Ribeiro et al. documents [35] the deficiency of the k-value concept 
concerning the long-term carbonation depth. 

It is very complicated to establish the exact reaction capacity of blended systems due to the 
obvious heterogeneity of cement and the additive used. Reaction kinetics could be easily monitored 
by using calorimetry, which well documents reaction kinetics on the basis of heat evolution at early 
ages. However, from a long-term point of view it is more suitable to apply the hydration degree (α), 
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which is most frequently determined using thermogravimetry. In addition, this method allows for 
the monitoring of carbonation. However, the fundamental problem of hydration degree 
determination is the assumption of the ultimate reaction capacity, or chemically bound water. 
Because there are no specific values of ultimate chemically bounded water for single additives, this 
essential problem is also mentioned by Deboucha et al. [36], who verified the proposed model via the 
experimental results of compressive strength development. The hydration degree shows the exact 
expression of the hydration mechanism, which offers an effective formulation of mix composition, 
especially for blended systems [36,37]. 

The degree of hydration is conventionally used in applied research and technical praxis for the 
prediction of various engineering properties of cement-based composites. However, the factors 
described above complicate its estimation. This paper is focused on the estimation of the hydration 
degree, which includes design procedures determined by valid standards. 

2. Materials and Methods  

The main aim of the experimental program was the determination of hydration degree using a 
combination of thermogravimetry and compressive strength measurement. Three various active 
additives were used in the paper—fly ash, blast furnace slag, and ceramic powder; their chemical 
composition determined by using device Thermo ARL 9400 XP (Waltham, MA, USA), and is 
introduced in Table 1. Mineral additives were applied, such as Portland cement CEM I 52.5 
substitution. Applied replacement levels were 12.5, 25.0, 37.5, and 50.0 wt.%. Studied cement pastes 
were prepared with constant water to binder ratio of 0.55. Accompanying mortar mixtures were 
prepared with the above introduced binder systems and pure standard silica sand in ratio 1:4 
(binder:sand) with similar w/b. The dosage of water was slightly increased, because studied Ceramic 
powder (CP) consumes part of mixing water due to its higher absorption; this corresponds to findings 
of Kannan et al. [28]. Despite different porosity along the series, the experiment structure and 
selection of constant w/b, respectively, reflects the commonly used approach in the technical praxis. 
All samples were cured under wet conditions to omit the carbonation of studied samples. The phase 
composition of the used mineral additives is introduced in Table 2. The XRD analysis of raw materials 
was performed by help of PAnalytical Aeris (Malvern Panalytical Ltd., Royston, UK) diffractometer 
equipped by CoKα tube operating at 40 kV and 7.5 mA. The incident beam path consisted of beta-filter 
iron, Soller slits 0.04 rad and divergence slit 1/2°. The diffracted beam path was equipped with 9 mm 
anti-scatter slit and Soller slits 0.04 rad. The used detector was PIXcel1D-Medipix3 detector (Malvern 
Panalytical Ltd.) with active length 5.542°. The scan ranged from 5 to 85°, step size 0.0027°, and 
counting time 2.0325 s. Data were evaluated by Profex software (ver. 3.12.1) (Solothurn Switzerland). 
The amount of amorphous portion was determined with help of added internal standard (20% of 
ZnO). Obtained Rietveld plots are illustrated in Figure 1. The particle size distribution was performed 
using laser diffraction for all studied binding materials due to understanding the reactivity and filler 
effect; resulting particle size distribution is shown in Figure 2. 

Table 1. Chemical composition of used binding components (%) [38]. 

Component Ceramic Powder Blast Furnace Slag Fly Ash Portland Cement 
SiO2 50.7 36.0 52.4 18.5 

Al2O3 20.0 9.0 35.9 6.5 
Fe2O3 6.2 0.3 4.9 2.4 
CaO 11.6 43.5 1.2 64.9 
MgO 4.8 8.3 0.8 1.0 
K2O 3.2 0.5 1.4 1.2 

Na2O 1.3 0.5 - 0.1 
TiO2 0.8 0.3 2.4 - 
SO3 1.0 0.5 0.2 4.9 

Table 2. Phase composition of used additives (%). 



Materials 2019, 12, 2420 4 of 16 

 

Component Summary Formula Fly Ash 
Blast Furnace 

Slag 
Ceramic 
Powder 

Amorphous portion - 62.8 83.4 27.1 
Quartz SiO2 5.8 - 25.2 

Hematite Fe2O3 - - 2.8 
Albite NaAlSi3O8 - - 14.0 

Microcline KAlSi3O8 - - 7.0 
Muscovite KAl2(AlSi3O10)(OH)2 - - 12.9 

Illite K0.65Al2(Al0.65Si3.35O10)(OH)2 - - 3.4 
Diopside CaMgSi2O6 - - 4.8 

Akermanite Ca2MgSi2O7 - 2.8 2.4 
Mullite Al6Si2O13 31.1 - - 

Anhydrite CaSO4 - 7.5 - 
Merwinite Ca3MgSi2O8 - 5.8 - 

 
Figure 1. X-ray diffractograms of studied mineral additives (Q = quartz; Musc = muscovite; I = illite; 
Alb = albite; Anh = anhydrite; Aker = akermanite; Merw = merweinite; and Mull = mullite). [39] 
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Figure 2. Particle size distribution of studied mineral additives. 

Thermogravimetry. Thermogravimetric analysis was carried out by approximately 50 mg of the 
grind powder by monitoring weight loss in the range 105–1000 °C after 1, 7, 28, and 90 days, 
respectively. The thermal analysis was conducted directly in the above-mentioned ages; thus, the 
hydration of the samples was not arrested. The DTA-TG measurement (Schimadzu DTG-60H, Kyoto, 
Japan) was carried out in air atmosphere, and the heating rate was 10 °C/min. The amount of 
chemically bound water (H) and calcium hydroxide (CH) were expressed as wt.% of the dry sample, 
according to Equations (1) and (2). The exact boundaries of decomposition were identified by help of 
the derivative curves (DTG) [40,41]. The amount of water bound in Calcium Silicate Hydrate (CSH) 
and Calcium Aluminate Hydrate (CAH) hydrates was calculated as difference between total bound 
water and water bound in portlandite (Equation (3)). 𝐻 =  ௪భబఱି ௪ఱఱబ௪ఱఱబ , (1)

𝐶𝐻 =  ௪రఱబି ௪ఱఱబ௪ఱఱబ · ଻ସଵ଼ *, (2)𝐻௛௬ௗ  =  𝐻 − 𝐻஼ு, (3)

* 74/18 is the ratio of molar weight of decomposed Ca(OH)2 and water H2O. 
Nevertheless, even though paste samples were cured under wet conditions, decomposition in 

the range of calcite takes place; it is caused by the partial carbonation and the presence of non-
aqueous phases in the used additives. This is why the weight loss in the range of approximately 650–
850 °C was determined for all studied additives, which was subtracted proportionally according to 
applied replacement from the obtained weight loss during pastes testing, see Equation (4). This 
procedure allowed one to determine the amount of carbonated Portlandite, which has to be included 
into the calculation of chemically bounded water (Equation (3)) where wa,c , s mean, respectively, 
weight loss of used additive in the range of calcite and factor assessing the used substitution. This 
step has crucial sense in case of application limestone filler and an additive with content of calcite. 
The final determination of chemically bounded water can be expressed according to Equation (5). 𝐶𝐻௖௔௥௕  =  (௪లఱబି ௪ఴఱబ)௪ఱఱబ −  𝑠 · 𝑤௔,௖, (4)𝐻௛௬ௗ  =  𝐻 − 𝐻஼ு − 𝐻஼ு௖௔௥௕. (5)
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Degree of hydration. Determination of degree of hydration (α) is derived from common 
equation (Equation (6)), which performs the ration of actual (wB) and ultimate amount of chemically 
bounded water (wB∞). In accordance with cement chemistry, ultimate value can be calculated on the 
basis of mineral composition of clinker. Bhatty et al. [37] applied the value 0.24, derived using Bogue’s 
formulas. However, it is necessary to estimate this crucial value. Michaelis-Menten equation seems 
to be suitable tool for the solution, because it well describes the reaction kinetics with given capacity; 
its common formulae is shown below (Equation (7)), 

𝛼 =  ௪ಳௐಳಮ, (6)

𝑣 =  𝑉௠௔௫ 𝑇𝐾 + 𝑇, (7)

where Vmax, T, K, and v mean ultimate reaction capacity, time (hours), constant (-), and degree of 
conversion, respectively. The illustration of this formulae for selected factors is shown in Figure 3. 
Although the cement-based binder hydration performs a complex of single reactions, the suitability 
of this approach was successfully applied by Deboucha et al. [36] and Monteagudo et al. [42]. Using 
that function, hydration mechanism could be easily approximated, where Vmax performs ultimate 
value of chemically bounded water and v content of hydrates in selected time (hours) determined by 
thermogravimetry. Estimation of the ultimate value was processed by Matlab using least square 
method (LSM), which offers the optimal fit of experimentally acquired data. 

 
Figure 3. Illustration of Michaelis-Menten function. 

Equivalent binder mass. Effectiveness of various mineral additives could be evaluated in terms of 
compressive strength considering control mixture of OPC at selected age, usually 28 days—so called 
strength index (SI). This index, in fact, performs equivalent properties, when value 1 is equal to OPC. 
This means that the higher SI is the higher contribution to strength gain. This approach is partially 
adapted to k-value concept, when equivalent mass of binder is derived for the calculation of water-
to-cement ratio (Equation (8)) in accordance to EN 206 [18], and k-value in fact performs conservative 
value of PSAI. There are introduced k-values for blast furnace slag, fly ash (class F), and silica fume 
in Table 3 applied in [36]. It is necessary to note that k-values could differ per a national standard. 

𝑤/𝑐 =  ௠ೢ௅೐೜  =  ௠ೢ଴.ଽହ·௠೎ା௞·௠ೌ, (8)

w/c—water to cement ratio (-) prescribed for selected exposure classes; 
Leq—equivalent mass of binder; 
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mw—dosage of water (kg); 
mc—dosage of OPC (kg); 
k—k-value (-); 
ma—dosage of used additive (kg);  
0.95—reflects content of clinker in the used Portland cement. 

Table 3. k-values for selected mineral additives [36]. 

Mineral Additive k-Value 
Blast furnace slag 0.9 

Silica fume 2.0 
Fly ash (F class) 0.4 

Compressive strength. Prismatic samples of dimensions 40 mm × 40 mm × 160 mm were used 
for the determination of compressive strength in accordance with EN 196-1 [43]. Compressive 
strength was determined on the fragments of the original prisms. Measurement of compressive 
strength was conducted after 1, 7, 28, and 90 days of curing under wet conditions using the set of 
three samples. 

3. Results and Discussion 

Performed experimental program was focused on the monitoring of the hydration process of 
blended binder systems on the basis of Portland cement, which was gradually replaced by the fly ash, 
blast furnace slag, and ceramic powder. Thermogravimetric measurements (product model, 
manufacturer, city, country) were used for the determination of the chemically bounded water in the 
hydrates. Final values of obtained chemically bounded water in hydrates (Hhyd) are shown in 
following figures. The determination is described in Equations (1)–(5). 

Pastes with addition of fly ash. There is introduced evolution of water bounded in hydrates in 
cement paste with addition of fly ash in the Figure 4, where the difference in the kinetics of hydration 
of pure cement paste and blended system, especially after 24 h, is obvious. On the other hand, during 
the first week there is evident gradual increase of the amount of hydrates. This is caused by the 
delayed hydration in presence of FA. The substitution by fly ash exceeding 25.0% exhibited very low 
progress of hydration, with final (90 days) amount of hydrates of 65% and 51%, respectively, 
compared to the control mixture.  

 
Figure 4. Chemically bounded water in hydrates—pastes with fly ash. 
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Pastes with addition of blast furnace slag. Slightly different results were determined in case of 
paste with blast furnace slag, Figure 5. Initial amount of hydrates of paste incorporating BFS exhibit 
higher values in comparison with the FA. This is caused by the different substance of the blast furnace 
slag, which contains certain amount of lime, ensuring its latent hydraulic activity. This essential 
property allows considerably higher substitution for practical application; it is visible in the amount 
of hydrates of paste with the replacement by 12.5% and 25.0%, respectively, which performs the most 
frequently used substitutions in concrete technology. 

Pastes with addition of ceramic powder. Ceramic powder performs an alternative source of 
active additive to cement-based composites; however, its pozzolanic properties are low in 
comparison with traditionally used mineral additives, Figure 6. Its reduced activity is visible in the 
evolution of hydrates in hardened pastes in time. The amount of hydrates after 90 days for the highest 
applied replacement was nearly similar to that for blast furnace slag after 24 h. 

 
Figure 5. Chemically bounded water in hydrates—pastes with blast furnace slag. 

 
Figure 6. Chemically bounded water in hydrates—pastes with ceramic powder. 
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theoretical amount of hydrates in case of full hydration. Obtained coefficients and ultimate values in 
terms of Michaelis-Menten equation (Equation (7)) are introduced in Table 4. 

Table 4. Estimated ultimate content of chemically bounded water using Michealis-Menten equation. 

Replacement 
(%) 

Fly Ash Blast Furnace Slag Ceramic Powder 
Hhyd∞ (%) K (-) Hhyd∞ (%) K (-) Hhyd∞ (%) K (-) 

0 13.14 5.44 13.14 5.44 13.14 5.44 
12.0 10.80 22.00 11.55 6.19 12.22 40.78 
25.0 10.08 28.20 11.33 4.60 9.73 23.25 
37.5 8.40 17.67 10.22 8.62 7.82 22.84 
50.0 6.41 21.60 8.68 11.38 5.56 22.11 

Thanks to knowledge of ultimate values of chemically bounded water, it is possible to calculate 
(Equation (6)) the degree of hydration for given time intervals, thus describing the evolution of 
hydration in time. Obtained values are shown in Table 5, where the significant lack of this procedure 
is evident—estimation of ultimate value of binder with prolonged hydration. Determined ultimate 
values introduce estimation on the basis of relatively short-term measurement with respect to the 
process of hydration of blended system. Zobal et al. in [16] published results of the long-term 
properties of Orlik dam concrete, where high level of Portland cement substitution was applied due 
to the needed hydration heat reduction. Relative increase of mechanical performance after 40 years 
was 100% for the replacement by 50% of fly ash. However, it is necessary to note that special Portland 
cement with coarser grading was used for the construction of the studied Orlik dam. The necessity 
of the correction is obvious in the results shown in Table 5. It is highly unlikely that pastes 
incorporating fly ash or blast furnace slag completed hydration after 90 days. This is why a correction 
was applied, taking into the consideration the different kinetics of hydration of blended system. 

Table 5. The degree of hydration (-) of studied materials in time. 

Studied Materials 
The Degree of Hydration (-) 

1 day 7 days 28 days 90 days 
Ref 0.83 0.88 1.05 1.01 

FA-12.5 0.51 0.93 0.92 1.00 
FA-25.0 0.46 0.84 0.95 1.00 
FA-37.5 0.59 0.85 0.99 1.02 
FA-50.0 0.58 0.74 1.00 1.05 
BSF-12.5 0.80 0.95 1.02 0.98 
BSF-25.0 0.84 0.97 1.02 0.97 
BSF-37.5 0.74 0.92 0.96 1.05 
BSF-50.0 0.68 0.93 0.98 1.00 
CP-12.5 0.39 0.79 0.89 1.04 
CP-25.0 0.51 0.89 0.99 0.97 
CP-37.5 0.51 0.89 0.97 0.98 
CP-50.0 0.53 0.82 0.99 1.01 

The correction was partially inspired by the EN 206 [18] implementing k-value, which allows the 
calculation of equivalent mass of the binder Leq; additionally, the gypsum content was taken into the 
consideration. The k-values are introduced in Table 3 for traditionally used mineral additives. This 
approach was also used by Deboucha et al. [36]. On the basis of mineralogical properties of studied 
ceramic powder, its k-value was estimated to be 0.2 for following work, because of half amount of 
amorphous phases in comparison to fly ash. The values of corrected degree of hydration are 
introduced in Table 6; they perform more realistic results with various character of studied mineral 
additives. 
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Table 6. The degree of hydration (-) of studied materials in time with correction in terms of equivalent 
binder mass. 

Studied Materials 
The Degree of Hydration (-) 

1 day 7 days 28 days 90 days 
Ref 0.79 0.84 1.00 0.96 

FA-12.5 0.45 0.82 0.81 0.88 
FA-25.0 0.38 0.68 0.77 0.81 
FA-37.5 0.44 0.63 0.73 0.76 
FA-50.0 0.39 0.50 0.67 0.71 
BSF-12.5 0.75 0.90 0.97 0.92 
BSF-25.0 0.78 0.91 0.96 0.91 
BSF-37.5 0.69 0.85 0.89 0.98 
BSF-50.0 0.63 0.86 0.90 0.93 
CP-12.5 0.33 0.67 0.75 0.89 
CP-25.0 0.38 0.66 0.74 0.73 
CP-37.5 0.33 0.58 0.63 0.64 
CP-50.0 0.29 0.45 0.54 0.56 

Fly ash. Evolution of mechanical properties in time were studied in terms of compressive 
strength using mortar samples. Results of mortars with fly ash addition are introduced in Figure 7. 
These results fairly correspond with the evolution of hydrates determined by thermogravimetry. 
However, replacement by fly ash up to 25.0% achieves higher mechanical performance after 90 days 
in comparison with control mixture.  

 
Figure 7. Evolution of compressive strength of mortars with fly ash. 

In particular, compressive strength after 90 days with respect to the control mixture achieved 
104, 97.7, 83.2, and 55.1%, respectively, for gradual substitution by fly ash 12.5, 25.0, 37.5, and 50.0% 
FA. These results correspond with similar experimental works [1,44]. Higher levels of replacement 
exhibited stronger evolution of mechanical properties in time; however, there was a significant decay 
with respect to control mixture. Similar results were obtained by Siddique [45,46]. On the other hand, 
Varga et al. [47] declared that this decay could be supressed by the reduction of water dosage. 
However, according to Atis [48], application of superplasticizer increased shrinkage of samples. 
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Blast furnace slag. Substitution of OPC by blast furnace slag exhibits lower mechanical 
performance in comparison with the fly ash (Figure 8). This is probably caused by the filler effect of 
used FA and more suitable gradation curve of the blend of cement and FA. It is shown by the particle 
size distribution curves introduced in Figure 2. The filler effect is also powered by the increased 
porosity with respect to the applied value of w/b. In particular, compressive strength after 90 days 
with respect to control mixture achieved 73.6, 67.3, 52.8, and 49.1%, respectively, for the gradual 
substitution by blast furnace slag 12.5, 25.0, 37.5, and 50.0%. However, it is necessary to mention that 
efficiency of the BFS application is highly dependent on the used w/b ration, dosage of cement and 
particle size distribution, Figure 2. In addition, blast furnace slag exhibits latent hydraulic properties, 
so its substitution could be obviously higher in comparison with the fly ash; however, it is necessary 
to decrease w/b to achieve better mechanical performance. Similar w/b ratio leads to the increased 
porosity and resulting lower mechanical properties. The physical effect of blast furnace slag is very 
low, because its particle size distribution is very similar to the cement. Oner and Akyuz in [49] studied 
blended system to find an optimal dosage of BFS in cement-based composites. They applied various 
levels of replacement and dosages of mixing water. They concluded positive effect of BFS on 
mechanical performance for inverse mix formulation in terms of w/b ratio and applied replacement 
level. This could explain commonly accepted presumption of better strength performance of BFS in 
comparison to FA, because of application of efficient water reducer and relatively high doses of 
Portland cement [50], and the fact that BFS exhibits higher efficiency [51]. That also confirms the study 
by Zhao et al. [52], who applied relatively low dosage of water-reducing admixture; thus, both set of 
mixtures with BFS and FA reached nearly similar mechanical performance. 

 
Figure 8. Evolution of compressive strength of mortars with blast furnace slag. 

Ceramic powder. Mortar samples with ceramic powder reached very similar mechanical 
performance as those with BFS; however, the highest replacement level exhibited reduced rate of the 
compressive evolution in time (Figure 9). Compressive strength after 90 days with respect to control 
mixture achieved 76.3, 67.3, 67.7, and 39.4%, respectively, for gradual substitution 12.5, 25.0, 37.5, and 
50.0%. Obtained relative high mechanical performance of mortars with addition of ceramic powder 
was achieved thanks to the high water adsorption of used mineral additive, which reduces real 
dosage of mixing and thus porosity of hardened paste.  
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Figure 9. Evolution of compressive strength of mortars with ceramic powder. 

Dominant physical effect of ceramic powder in blended systems was confirmed during previous 
research [53,54]. Pacheco-Torgal and Jalali [39] and Higashiyama [55] studied influence of ceramic 
powder, and they did not find any harmful effect of this additive in terms of compressive strength; 
however, control mixture was slightly higher approximately by 10%. Progressive decay of 
compressive strength obtained corresponds with conclusions of Naceri and Hamina [56], who set 
optimal replacement level by CP up to 10% by weight. On the other hand, Heikal et al. [57] confirmed 
increased mechanical performance of SCC incorporating CP and beneficial effect of the application 
of polycarboxylate-based water reducer. 

Generally, mechanical performance of studied mortars with incorporation of various 
supplementary cementitious materials met the initial expectations. Especially, results of mortars with 
the ceramic powder highlight the problem of physical effect of mineral additives. Inactive particles 
of additives are increasing the internal specific surface of hardened paste, which positively stimulates 
precipitation of the hydrates. This effect is well obvious on the pastes incorporating limestone filler 
[36,40,42]. That is why the application of an inert mineral additive could cause increased mechanical 
performance; on the other hand, durability properties expressed often by using performance index 
[34,58] present more suitable approach for the further incorporation of mineral additives. 
Combination of the hydration of mineral additive and the physical effect takes place in case of the fly 
ash and ceramic powder as well. Hence, the study of hydration mechanism in terms of 
thermogravimetry remains challenging. However, the proposed corrections for the calculation of 
hydration degree of blended systems exhibit good fit with obtained mechanical performance (Figure 
10).  

All data of studied pastes are introduced in Figure 10; nevertheless, lines of particular applied 
additives are visible. There is evident significant shift of the line for BFS-mixtures hydration degree 
in comparison with the others used additives after performed corrections. It is probably caused by 
the estimation of the ultimate amount of chemically bounded water, which was assumed on the basis 
of 90 days measurements. Present lack of the procedure is mentioned in other works [36,57] in 
relation to the application of BFS. Nevertheless, proposed procedure for the determination of 
hydration degree of blended systems reflecting substance of applied mineral additives, partially 
inspired by k-value concept, exhibits good fit.  
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Figure 10. Relation of the degree of hydration and compressive strength. 

4. Conclusions 

The performed experimental program was focused on the determination of hydration degree of 
Portland cement-based mixtures incorporating three various mineral additives: fly ash, blast furnace 
slag, and ceramic powder. Hydration degree was calculated on the basis of thermogravimetry; 
however, obtained data were corrected with respect to the activity index of single studied additive. 
Obtained values were compared with the results of compressive strength determined on the 
accompanying mortar samples. The principal findings of the paper can be summarized as follows: 

• Decomposition of non-aqueous phases in used mineral additive is necessary for inclusion in the 
calculation of hydration degree; 

• The physical effect dominates in the hydration mechanism of ceramic powder. Despite the 
relatively high mechanical performance of mortar samples, their contribution to hydrate 
formation is very low; 

• The inclusion of an activity index inspired by the k-value in the hydration degree calculation 
exhibited good fit with the obtained results of compressive strength. The k-value 0.20 was set 
for ceramic powder with respect to its substance; 

• The estimation of the ultimate value of chemically bounded water is crucial for the 
determination of the hydration degree during time-limited experiments, especially for systems 
incorporating blast furnace slag. 

The estimation of the ultimate reaction capacity of blended binders on the basis of Portland 
cement is the main task for the future, because the determination of the hydration degree is a 
supportive tool for achieving a better understanding of the studied binders. 
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