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Abstract: This article analyses the connection of the two types of floors on the ground (floors on joists
and self-supporting floors), with the external wall made of a hemp–lime composite for the occurrence
of thermal bridges. Several factors that may affect the heat transfer in the junction were taken into
account: the level of the floor on the ground, the wall thickness, the thermal conductivity of the
composite, and the location of the timber frame construction. The technology of using hemp and
lime is relatively new, and there is a lack of such analyses in the literature. The two-dimensional (2D)
heat-transfer in the described construction joints was analyzed based on the finite-element method
with the use of the THERM 7.4 software. The results were presented as averaged and linear thermal
transmittance coefficients dependent on the above mentioned factors. The possibility of surface
condensation was also checked. The differences in the values of the thermal transmittance of the
junction between the two variants of ground floors reached around 0.13%–1.67% and the values of
linear thermal transmittance factor reached approximately 2.43%–10.13%. The junctions with the
highest floor level showed a decrease in the thermal transmittance value by about 3.00%–5.77% and in
the linear thermal transmittance, by about 21.98%–53.83%, compared to the junctions with the lowest
floor level. Calculations showed that almost all analyzed junctions are free from surface condensation
causing mould growth, because the minimum temperature factors f0.25 were higher than 0.78 (except
for junctions with the lowered floor levels). The junction with a floor on the timber joists showed
better thermal parameters than the junction with a self-supporting floor in each of the analyzed
variants. By increasing the level of floor insulation, it is possible to limit the thermal bridges and
improve the thermal properties of the junction.

Keywords: hemp–lime; building partition; thermal bridge; thermal transmittance; thermal
conductivity; condensation

1. Introduction

The building and construction sector accounts for about 40% of world energy consumption and
about 25% of global greenhouse gases emissions [1]. In order to reduce its impact on the natural
environment, the European Union introduced a directive on energy performance of buildings in 2002 [2]
(with amendment in 2010 [3] and 2018 [4]). Under this amendment, by the end of 2020, all buildings
shall be characterized by nearly zero-energy consumption (“nearly zero-energy buildings”). The level
of energy efficiency of a building depends to a large extent on the thermal insulation of the partitions
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used, limiting the fuel consumption for heating and decreasing the emissions of carbon dioxide into the
atmosphere [5]. However, the energy consumption and greenhouse gas emission in the construction
sector are also related to the phase of obtaining and production of building materials. Traditional
insulation materials, such as extruded, expanded polystyrene, expanded polyurethane, or glass wool,
are produced using non-renewable natural resources. These materials have high embodied energy
in the range of 118.67–229.02 MJ eq per f.u. and high global warming potential in the range of
5.05–13.22 kg CO2 eq per f.u. [6]. It is, therefore, important to use thermal insulation materials that
are environmentally friendly throughout their whole life cycle. The insulation materials with a low
carbon footprint are often based on ingredients of plant origin. For example, industrial hemp shives,
which are pieces of wooden parts of the hemp stem, are used for this purpose. They form a filler in
a lime-based composite. The hemp–lime composite is used as filling for a wall with a load-bearing
timber frame (Figure 1). In addition, the hemp–lime composite can be applied as a thermal insulation
for floors (Figure 1) and roofs.

Figure 1. A timber frame wall (a) and floor of the joist construction (b) filled with a hemp–lime mixture.

There are several steps for filling a partition with the composite: laying of the hemp–lime mixture
in the formwork by hand, mechanical spraying of the permanent shuttering, laying of hemp–lime
blocks, and assembly of large-size elements [7,8]. The composite is characterized by a low apparent
density in the range of 256–627 kg/m3 [9,10], satisfactory insulating properties (an exemplary range of
the thermal conductivity coefficient is 0.082–0.151 W/(m·K) [11]), high vapor permeability (a diffusion
resistance coefficient of 5–6 [10], high mass absorptivity (110.8–134.5% for the composites with apparent
density of 411.6–438.7 kg/m3) [12]), high total porosity in the range of 72%–80% for composites
with an apparent density of 256–460 kg/m3 [9], low mechanical properties (compressive strength in
the range of 0.23–0.85 MPa) [11,12], and a high thermal capacity (which for exemplary composites
described in the literature was 1300 J/kg·K [10]). Due to the high hygroscopicity of the material,
the walls made of the composite exhibit the ability to regulate the humidity level in the rooms [7,8].
In addition to the insulating function, the composite also has the function of stiffening the timber wall
construction [13]. The lime binder, as a material with a high pH, protects the shives against biological
corrosion and protects the composite against fire action [7]. In addition to hydrated lime, binder
additives are used, accelerating the binding and improving the physical and mechanical properties
of the composite. Examples of such additives are metakaolinite [12], zeolite [14], MgO cement [14],
and ground granulated blast furnace slag [10]. In the construction industry, hemp fibers are also used as
a thermal insulation material due to their low lambda value at a level of 0.04 W/(m·K) [15]. Hemp fibers
and shives, as well as other cellulose materials [16,17], are also used as micro-reinforcements and fillers
in mortars and plasters.

The thermal insulation materials (as well as plant based thermal insulations) produced nowadays
are increasingly more effective. Nevertheless, there are places or surfaces in the building with increased
heat transfer to the outside, such as thermal bridges, which can increase heat losses in the heating
season by up to 30% [18,19]. These include, among others, structural elements cutting through the
continuity of thermal insulation (balconies, columns), construction joints (such as a floor on the ground
with an external wall or a roof with an external wall), and a change in the shape of building elements.
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The share of bridges in heat losses mainly depends on the construction of the building and the
insulating properties of the external partitions. Complicated shapes of the building envelope are often
the cause of the occurrence of thermal bridges. Kosny et al. [20] proved that in some buildings, up to
50% of the elevation area consists of three-dimensional envelope structural details. A study by Ge
et al. [21] showed that for a typical high-rise multi-unit residential building, a balcony cross-section
area representing 4% of the total exterior wall may contribute up to 11% of the space heating energy
consumption, depending on the thermal performance of the windows and the opacity of its walls.
The research carried out by Citterio and co-authors [22] showed that the relative effect of thermal
bridges on the annual heating energy demand varies by 7% in typical houses built in the seventies to
28% for modern high-quality houses. According to [23], structural junctions can increase heat transfer
to 30%, which results in an increase in the energy demand for heating. Cappelletti et al. [24] showed,
in turn, that the influence of thermal bridges on the energy needs of a building for space heating can be
as high as 67% for a building with double-layer brick walls with U = 0.15 W/(m2K) in a typical Italian
climate zone. The results of other studies [25] showed that the improvement of thermal bridges is an
effective way to reduce the energy demand for heating (by 25% in the case of terraced houses and
17.5% in the case of semi-detached houses). Another study on the occurrence of thermal bridges in
typical constructions showed that improved building envelope details minimizing thermal bridges can
result in up to 10% energy savings, which is comparable to increasing the insulation levels and using
triple-glazed windows [26].

Another unfavorable phenomenon related to thermal bridges is the change in the temperature
distribution and its reduction on the surface of the partitions. The risk of surface condensation,
interstitial condensation, and the growth of mould during the winter are increased. Thus, the air
quality in the room is reduced [27]. The presence of moisture and mould is a threat to the health of
residents [28,29]. Moulds produce allergens (substances that may cause allergic reactions), irritants,
or even toxic substances. Inhaling or touching mould spores can cause an allergic reaction. They can
also cause asthma attacks and other respiratory diseases. Methods for reducing the risk of mould
growth in thermal bridges were investigated. Fantucci et al. [30] proved that the presence of a fine
insulation rendering coat has a significant effect on mould growth risk reduction at the interior side of
a vertical wall, i.e., a concrete slab junction.

The elimination of thermal bridges is very important in the case of walls made of materials
based on plant components, because they are particularly exposed to biological corrosion [29,31].
The examples include such materials as straw, a mixture of clay and straw, and a hemp–lime composite.
In natural building technologies, such as strawbale or hempcrete, a timber frame construction is
used [8,32]. Timber elements are usually covered with a thermal insulation material. The thermal
conductivity coefficient of pinewood is about 0.16 W/(m·K) [33] and does not significantly differ
from the thermal conductivity coefficient of straw: 0.073 W/(m·K) [34] or a hemp–lime composite:
0.082–0.151 W/(m·K) [11]. The filling with the hemp–lime composite improves the stiffness of the
timber frame construction, which means that a reduced cross-section of the columns can be applied,
compared to the timber frame filled with mineral wool, where the number of horizontal or vertical
stiffeners is limited [7]. However, at the points of construction junctions, there is a larger number of
timber elements than in other parts of partitions. Therefore, these areas are potential thermal bridges.

In connection with the aforementioned problems, this article analyzes various junctions—a
combination of an external wall, a foundation wall and the floor on the ground, made in timber
technology with a fill in the form of a hemp–lime composite. The influence of several factors (the
position of the wooden wall frame, wall thickness, the thermal conductivity of the composite, the floor
level on the ground, and the type of floor construction) on the thermal properties (averaged thermal
transmittance and linear thermal transmittance) of the junctions was checked. Using second order
polynomial regressions with an interactions statistical model (built by the authors), the significance of
the influence of a given factor on the results was assessed. The possibility of surface condensation
was also estimated. The temperature distribution in the described construction joints was calculated
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using the THERM 7.4 software. Our own recipes for walls and floor hemp–lime mixes were used
for the analyses. The literature describes thermal bridge analyses in the area of windows, ceilings,
and wall studs in construction technology with the use of hemp–lime composite [35,36], but there is
lack of analyses on the occurrence of thermal bridges in different variants of connections between the
wall and the ground floor. Many junction configurations were considered to determine the effect of
individual factors on thermal transmittance. The results presented in the article may be helpful in the
design of buildings using this technology.

2. Materials and Methods

2.1. Materials Used in Calculations

In the conducted analyses, hemp–lime mixtures were applied in the walls, in the floor between
the joists (loose mix), and in the self-supporting floor (as a dense layer of the floor). The recipes for the
composites and their apparent densities (an average of three samples) are shown in Table 1.

Table 1. Recipes of hemp–lime mixes (weight ratio), apparent density and thermal conductivity of the
tested composites.

Composite
Symbol

Binder: Hemp
Shives Ratio

Binder:
Water Ratio

Apparent
Density
[kg/m3]

Thermal
Conductivity

Coefficient
[W/(m·K)]

Standard
Deviation
[W/(m·K)]

Wall mix A 1.4:1 1:1.45 362.5 0.080 ± 0.002
Wall mix B 1.6:1 1:1.45 402.0 0.088 ± 0.003

Floor mix A 1:1 1:1.5 238.0 0.065 ± 0.002
Floor mix B 2.1:1 1:1.35 627.5 0.112 ± 0.005

A hemp–lime mixture with a minimum content of lime binder was used as the insulation of the
floor based on timber joists. These ratios are proposed (with a different binder) [37] as roof insulation
between rafters, but in practice, this binder is used in the same way between timber joists in the floor.
In this case, the binder should only coat the shives to protect them against biological corrosion. It is not
required to bind the shives with a binder, because the mixture performs only an insulating function.
This mixture was referred to as “floor mix A”. Another mixture, referred to as “floor mix B”, containing
a larger amount of binder (in order to increase strength), is used in self-supporting floors. The presented
floor mix proportions (with a different binder) are used in practice [37]. A hemp–lime mixture was
used as an insulating material in the wall; two variants, differing in the proportion of binder to shives,
were employed. The binder: hemp shives ratios of the wall mixes result from our own experience and
are also used in practice, depending on the expected thermal parameters. According to the previously
conducted tests, the binder: filler ratio in “Wall mix A” turned out to be minimal, in which the mixture
retained the appropriate viscosity, enabling the formation of composite samples. The choice of this
proportion was also related to the expectedly low thermal conductivity of the composite. In turn,
the binder: filler ratio in “Wall mix B” was selected to show the influence of lambda on the heat flow in
the analysed junctions, guided by the literature [11,38] and our own research, which proved that the
thermal conductivity coefficient of the composite increases along with the binder content.

The mixture consisted of hemp shives obtained from industrial hemp stalks Białobrzeskie
(Podlaskie Konopie, Białystok, Poland), a lime binder made of hydrated lime (CL-90s class) (Lhoist,
Tarnów, Poland), and water. In this case, the use of a binder-accelerating additive was not necessary
due to the loose form of the non-loadbearing hemp–lime compound. The binder of other composites
consisted of hydrated lime CL90s class (Lhoist, Tarnów, Poland), amounting to 75% by weight, gypsum
(Atlas, Pińczów, Poland), making 15%, and pozzolan–metakaolin (Astra Polska, Gdańsk, Poland),
making 10%. Gypsum was used in order to accelerate the setting process, and pozzolan was used to
partially achieve the hydraulic properties of the composites.
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2.2. Thermal Conductivity of Hemp–Lime Composites Used

Thermal conductivity was measured in a FOX314 plate apparatus (TA Instruments, New Castle,
DE, USA) consisting of a cooling and heating plate with a heat flux sensor, in accordance with the ISO
8302 method [39]. A thermal conductivity test of the composites was carried out on specimens with
the following dimensions: 50 × 300 × 300 mm. The measuring setup with an exemplary sample is
presented in Figure 2. The “Floor mix A” mix, due to its loose form, was placed in a frame made of
expanded polystyrene. Before the tests, the samples were dried at a constant temperature of 50 ◦C.

Figure 2. Heat flow meter—Fox 314 apparatus with the hemp–lime composite (Wall mix A) sample.

The temperature set on the heating plate was 25 ◦C, while on the cooling plate it was 0 ◦C.
The thermal conductivity test results were averaged over the results obtained from five specimens,
the final coefficients are shown in Table 1. These parameters were used in the calculation of thermal
bridges of the analysed junctions.

The obtained results for the wall and floor are comparable with others presented in the literature.
In the technical sheet provided by the producer of the lime binders and shives [37], the thermal
conductivity of the floor mixes used in self-supporting floors was 0.11 W/(m·K), while the thermal
conductivity of the roof insulation mixes (which could also be used as the insulation of the floor
based on timber joists) was 0.06W/(m·K). Benfratello et al. [38] presented the value of the thermal
conductivity coefficient for a wall composite with apparent density of 377 kg/m3, equal to 0.089 W/(m·K).
In other studies [40], a composite with a density of 330 kg/m3 was characterized by a lambda value
of 0.078 W/(m·K). On the other hand, using a higher proportion of a binder to hemp shives (2:1 by
weight), the composite with a density of 508 kg/m3 was characterized by a thermal conductivity of
0.117 W/(m·K) [10].

In the case of the wall mixes, the obtained thermal conductivity values were used in further
computer analyses of thermal bridges as limit values for the thermal conductivity coefficient.
In addition, indirect values from the 0.080–0.088 W/(m·K) interval, namely 0.082 W/(m·K), 0.084 W/(m·K),
and 0.086 W/(m·K), which are likely to be achieved using a binder to filler ratio from 1.4:1 to 1.6:1,
were used to illustrate the relationship between the thermal quality of a joint and the thermal
conductivity of a wall material. The increase in the thermal conductivity value of the composite along
with the binder content is confirmed in the literature [11,38].

2.3. Schemes Adopted for Calculation

The ground floor junction was modelled in several variants to analyse the occurrence of thermal
bridges. The timber wall was placed on the foundation wall made of concrete blocks and a strip
foundation. The timber load-bearing frame was located centrally in relation to the wall thickness, or it
was placed on the inside of the wall. The frame consists of studs with a cross-section of 50 × 150 mm,
spaced axially every 500 mm (Figure 3).
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Figure 3. External walls with a timber frame construction located centrally with respect to the wall
thickness (a) and at the inner side of the wall (b). Dimensions in mm.

The thickness of the composite layer considered was 350 and 400 mm and the following markings
were used:

- 350i—a wall with a 350 mm thick composite layer and a frame placed on the inside of the wall
- 350c—a wall with a 350 mm thick composite layer and with the frame placed centrally with

respect to the wall thickness
- 400i—a wall with a 400 mm thick composite layer and a frame placed on the inside of the wall
- 400c—a wall with a 400 mm thick composite layer and with a frame placed centrally with respect

to the wall thickness.

The floor on the ground was designed in two ways. In the first one, the construction of the floor
was made of timber joists, and the spaces between them were filled with a loose, lightweight mix of
hemp–lime (floor mix A). This solution is illustrated in Figure 4.

Figure 4. Ground floor junction with a floor on the ground with a structure in the form of timber joists.
The scheme shows the assumed floor levels (−100, −50, 0, +50, +100). Dimensions in [mm].

In the second method, loads are transferred to the subsoil using a layer of hemp–lime composite
of a higher density (floor mix B), which also serves as thermal insulation. An additional thermal
insulation layer (substructure) in the form of an expanded clay aggregate was designed to increase the
effectiveness of thermal insulation. The layer of hemp–lime composite should not be too thick due to
the limited possibility of drying. For this reason, a thickness of 100 mm was adopted, and the proper
thermal insulation was ensured by an additional layer of expanded clay aggregate. When the layer of
the hemp–lime mix is placed on the ballast of the drainage aggregate, the waterproofing insulation is
not used [7,8]. The floor scheme is shown in Figure 5.
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Figure 5. Ground floor junction with the floor on self-supporting ground. The diagram shows the
assumed floor levels on the ground (−100, −50, 0, +50, +100). Dimensions in mm.

In the calculations, the level of the floor was changed. Five levels were considered: the base level
0 and the floor level raised by 50 mm and 100 mm, as well as the floor level reduced by 50 and 100 mm.
These are marked as “−100”, “−50”, “0”, “+50”, “+100,” and shown in Figures 4 and 5.

2.4. Simulation

The Basis of Calculations

The temperature distribution in the described construction joints was calculated with the use of
the THERM 7.4 software (Lawrence Berkeley National Laboratory, Berkeley, CA, USA) [41], commonly
used in the thermal evaluation of building partitions and construction joints [42–44].

The code was validated in [45] in accordance with the procedures of the standard [46], based on a
comparison of the numerical results with a strict analytical solution. This is considered very accurate
and is one of the most reliable methods of validation [47–49]. The validation of a 2D method consisted
of modelling two cases (half of a rectangular column and a fragment of an insulated building element)
and comparing the temperature distribution in the given points. All the results lie within the requested
0.1 K difference in temperature and 0.1 W/m difference in heat flow, and according to [45], the code can
be classified as “a two dimensional high precision calculation method”.

Experimental validation of the models, to the knowledge of the authors, would not be possible.
The connection of building partitions with the ground is too large to be examined in a climatic chamber
or under any laboratory conditions. Measuring temperature and heat fluxes in a joint operating in
real environment conditions would not give reliable results either, because of the outside temperature
variations, making it impossible to maintain steady state conditions (even with a stabilized internal
temperature), necessary for the evaluation of linear thermal transmittance coefficients.

In the code, two-dimensional heat transfer equations are solved numerically for specific elements
using the finite element method. The modelling process consists of the following stages:

• Model definition (including geometry definition, assignment of material properties and
boundary conditions);

• Mesh generation;
• Calculation of temperature and heat fluxes by the Finite Element Analysis Solver;
• Reporting of the post-processed results for the element.

The results are displayed in a graphic form as isotherm and heat flux outlines, allowing for the
visual and qualitative evaluation of a thermal bridge. Information about the thermal transmittance
coefficient (U [W/(m2

·K)]), averaged for the whole element, can be used for further quantitative
assessment of a joint, namely calculation of the linear thermal transmittance coefficient ψ [W/(m·K)].
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The calculation procedure according to ISO 10211 [46] requires modelling of the element in such
a way that it is extended at least 1 m or a triple thickness of the element away from the geometrical
centre of the thermal bridge, in order to restore one-dimensional heat flow at the cut-off plane (treated
as an adiabatic). In the described cases, the triple thickness of the element is the dominant criterion.
The dimensions of the ground (together with the floor layers) should extend to 0.5·B inside the building
and 2.5·B outside the building and below ground, where B is the width of the floor. In the pictures of
the isotherms presented below, some of the partitions and the area outside the building and below
ground were cut shorter, but this was only made for the clarity of the presentation.

The linear thermal transmittance coefficient ψwas calculated according to EN ISO 10211 [46] with
Formula (1) using external dimensions and, to compare the results, by means of Formula (2) using
internal dimensions (Figure 6):

ψe = L2D
−

(
hw + h f

)
·Uw − (0.5·B + w)·Ug (1)

ψi = L2D
− hw·Uw − 0.5·B·Ug (2)

where L2D is the thermal coupling coefficient obtained from the 2D analysis of the modelled element as
a multiplication of the averaged thermal transmittance U and the joint’s length [W/(m·K)]; hw is the
minimum distance from junction to the cut-off plane [m]; hf is the height of the top of the floor slab
above the ground level [m]; Uw is the thermal transmittance coefficient of the external wall (W/(m2

·K));
Uf is the thermal transmittance coefficient of the foundation wall (W/(m2

·K)); B is the width of the floor
[m]; w is the width of the external wall [m]; Ug is the thermal transmittance coefficient of the floor
[W/(m2

·K)].

Figure 6. Dimensions of the partitions used in Equation (1): w = 0.39 or 0.44 m, hw = 3·w = 1.17 or
1.32 m, hf = 0.34 m, B = 8.00 m (recommended by [46]).

The values of the Uw and Ug coefficients were calculated in compliance with the ISO 6946 [50]
and ISO 13370 standards [51] (accordingly). The layers that are not uniform (walls and floor parts
consisting of timber studs and insulation between them) were initially modelled in THERM in order to
obtain the equivalent thermal conductivity values used in the calculations and further modelling of
the junctions. The dimensions of the floor were assumed to be 8 m × 12 m.

The thermal conductivity of the materials and elements used in modelling, together with the
boundary conditions, are compiled in Tables 2 and 3. The thermal conductivity value of materials other
than hemp–lime were acquired from the ISO 10456 standard [33]. The absolute error of the numerical
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analyses (calculated as the absolute value of the difference between heat inflow and outflow divided
by the mean heat flux through the joint) was in the range of 0.0% to 0.1%.

Table 2. The thermal conductivity of the main materials and elements.

Building Material/Element Thermal Conductivity λ [W/(m·K)]

Hemp–lime mix (wall) 0.080–0.088
Hemp–lime mix (floor A) 0.112
Hemp–lime mix (floor B) 0.065

Timber construction element 0.16
OSB board 0.13

Lime plaster 0.70
Expanded clay aggregate 0.10

Concrete 1.30
Ballast of compacted sand 2.0

Ground soil 2.0

Table 3. Boundary conditions adopted in modelling.

Surface Temperature
[◦C]

Surface Resistance
[(m2
·K)/W] Description

Internal surface of the wall +21 0.13 Heat flow horizontal, simplified *
Internal surface of the floor +21 0.17 Heat flow downwards, simplified *
External (wall and ground) −18 0.04 Simplified *

Internal (wall and floor) +21 0.25 Condensation risk, simplified *
Cut-off planes - - Adiabatic

* The simplified model means that convective and radiative heat exchange is described by one common
surface resistance.

One of the limitations of the research is excluding, from the analyses, the influence of the
foundation wall on the linear thermal transmittance. The wall construction was assumed to be made of
concrete, which is a typical solution in buildings with a timber frame construction. It was not changed
during the analyses, as the authors wanted to concentrate on other factors, such as construction of the
partitions (walls and floor) and floor level.

2.5. Statistical Models

A lot of variables which may affect the results have been taken into account. The variables are:

• Type of the floor construction: the floor on timber joists or a self-supporting floor;
• Level of the floor—from −100 mm to +100 mm;
• Wall thickness—350 mm or 400 mm;
• Thermal conductivity of hemp–lime composite (wall mix)—from 0.080 W/(m·K) to 0.088 W/(m·K);
• Location of timber frame construction (centrally in relation to wall thickness, at the inner side of

the wall).

Each of these factors has an effect on the thermal parameters of the junction, but it would be
useful from a practical point of view to determine which factor exerts the greatest influence on
thermal transmittance and linear thermal transmittance. Second order polynomial regressions with
interactions were built (Equations (3) and (4)). The statistical model concerns the results of thermal
transmittance value calculations and linear thermal transmittance values calculated on the basis of
external dimensions:

U = U(l, λ, w, f ) (3)

ψ = ψ(l, λ, w, f ), (4)
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where U is the thermal transmittance (W/(m2
·K)); ψ is the linear thermal transmittance (W/(m·K)); l is

the level of floor on the ground (−100 mm–100 mm); λ is the thermal conductivity of hemp–lime wall
composite (0.08 W/(m·K)–0.088 W/(m·K)); w is the thickness of the hemp–lime layer in the wall (350 mm
or 400 mm); f is the timber frame (two locations: the timber frame construction located centrally in
relation to the wall thickness or at the inner side of the wall).

The final functional forms of models U and ψ are the effect of cutting off all the variables that
were non-significant. In the models there are significant variables of higher orders. Therefore, it is not
possible to unambiguously answer the question of which factor has the greatest impact on thermal
transmittance [52]. Table 4 shows the models for the averaged thermal transmittance and linear thermal
transmittance of both floor–wall junctions.

Table 4. Models for the averaged thermal transmittance and linear thermal transmittance: (1)—floor
on timber joists, (2)—the self-supporting floor.

Dependent Variable:

Averaged Thermal Transmittance Linear Thermal Transmittance
(1) (2) (1) (2)

λ 0.465 *** 0.221 *** −2.688 *** −2.570 ***
l −0.0003 *** −0.001 *** −0.001 *** −0.002 ***
l2 0.00002 *** 0.00003 *** 0.0001 *** 0.0002 ***
w −0.001 *** −0.002 *** −0.002 *** −0.002 ***
f −0.002 *** 0.002 *** −0.014 *** 0.009 ***
λ·w −0.007 *** - - -
λ· f 0.041 *** - 0.224 *** -
l·w - - −0.00002 *** −0.00003 ***
l· f −0.0001 *** −0.0001 *** −0.0004 *** −0.0005 ***
l2· f 0.00000 *** - 0.00002 *** -

Constant 0.242 *** 0.263 *** 0.113 *** 0.090 ***

Observations 100 100 100 100
R2 0.999 0.997 0.998 0.995

Adjusted R2 0.999 0.997 0.998 0.995
Residual Std. Error 0.0002 0.0004 0.001 0.002

F Statistic 12,234.860 *** 4919.966 *** 5098.955 *** 2594.745 ***

Note: *** p < 0.01.

The parameters of both models for particular dependent variable are quite similar, so the impact
of each independent variable is almost the same in both models. There is one exception in thermal
transmittance models, where the effect of thermal insulation is twice as large in model (1) as in model
(2). All four models are a very good fit. The percentage of the explained variance of dependent
variables by predictors in all models is higher than 99%, which means that all functional forms of the
considered relationship describes them very well. All insignificant effects were removed from models
by a backward elimination technique. Global tests (F Statistic) are all significant, which means that
there is a relationship between the response and the linear combination of the predictors. Very low
values of a residual standard error show that thermal transmittance (linear thermal transmittance) is
well described by the model [53].

Interpretation of all the above-mentioned models is difficult because of their nonlinear nature.
However, the estimation of average mean effects of predictors hints at the nature of the relationship.
The average mean effect of the timber frame is small but positive for all models. Thermal insulation
has a positive effect in the model for thermal transmittance, but a negative one for linear thermal
transmittance. The rest of predictors have a negative average mean effect on thermal transmittance
and linear thermal transmittance.



Materials 2019, 12, 2392 11 of 20

All estimations of model parameters were performed with the ordinary least squares method in
the R statistical environment [54]. The assumptions of the Gauss–Markov theorem for linear models
were fulfilled.

2.6. Possibility of Water Vapour Condensation

External partitions should be designed taking into account the risk of surface condensation causing
mould growth. Moisture condensation on the internal surfaces of the partitions may occur in places
where the temperature is lower than the dew point temperature. Thermal bridges are susceptible to
this phenomenon because of the local temperature drop connected with the increase of heat transfer.
The condition of surface condensation occurrence was checked based on the ISO 13788 standard [55].
The design for the avoidance of mould growth requires that in the critical area, the temperature factor
at the internal surface fRsi is higher than the design temperature factor fRsi,max appointed for the critical
month (which is the month with the highest fRsi,min value). Both of the factors should be calculated
using the increased thermal resistance at the internal surface (Rsi = 0.25 (m2

·K)/W):

f0.25 =
θsi − θe

θi − θe
≥ f0.25,max =

θsi,min − θe

θi − θe
(5)

where θsi is the surface temperature in the critical area (◦C), θsi,min is the minimum acceptable surface
temperature (◦C), θi is the internal temperature (◦C), and θe is the external temperature (◦C).

3. Results and Discussion

3.1. Heat Flow Analysis

The graphs (Figure 7a,b) show the changes in the average thermal transmittance coefficient for the
ground junction with all the design variants of the analysed walls filled with hemp–lime composites
characterized by a thermal conductivity coefficient of 0.08 W/(m·K), depending on the level of the
floor ground. The average thermal transmittance is a value from the THERM models, describing the
thermal transmittance averaged over the surface of the modelled elements (internal or external).

Figure 7. The averaged thermal transmittance of the ground junction in all construction variants of
walls filled with hemp–lime composite (λ = 0.080 W/(m·K)) depending on the floor level on the ground:
(a) floor on joists; (b) self-supporting floor.

• The influence of the timber frame location on the thermal transmittance value within every floor
level (constant thermal conductivity, 0.080 W/(m·K))

In both cases of the floor construction, better thermal parameters were exhibited by a junction
with a timber frame placed centrally with respect to the wall thickness. In the case of the floor on joists,
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the thermal transmittance coefficients were lower by 0.0003 W/(m2
·K)–0.0019 W/(m2

·K), while for the
self-supporting floor, the coefficients were lower by 0.0006 W/(m2

·K)–0.0024 W/(m2
·K), relative to

junctions with the timber frame placed on the inside of the wall (taking into account both the wall
thickness of 350 and 400 mm, but with the same value of λ = 0.080 W/(m·K)). Thermal insulation of the
wall and floor maintains continuity over the entire length of the junction. The differences in the thermal
transmittance factor are greater for the case of a self-supporting floor, but in both cases they decrease
as the level of the floor increases. The differences caused by the two locations of the timber frame
(considering the wall thickness of 350 and 400 mm) in the value of the thermal transmittance coefficient
of the junction at the level “−100” are 0.79%–0.86% (floor A), 1.03%–1.04% (floor B), and 0.14% (floor A)
and 0.28–0.45% (floor B) at the level “+100”.

The impact of the timber frame location is statistically significant. Examination of the edge effects
proved that for a constant λ = 0.08 W/(m·K), and with varying other parameters, the influence of the
timber frame location is significant and indicates lower thermal transmittance values for the junctions
with a timber frame placed centrally with respect to the wall thickness.

• The influence of the floor level on the thermal transmittance value in every wall’s thickness and
the location of the timber frame (constant thermal conductivity, 0.080 W/(m·K))

As the floor level is raised above the ground, the thermal transmittance value is reduced.
This is related to an increase in the contact area between the floor and the wall thermal insulation.
The differences between the thermal transmittance coefficient at “−100” and “+100” levels ranges from
0.0070 to 0.0086 W/(m2

·K) (3.16–4.04%) for a junction with a floor based on joists and from 0.0111 to
0.0130 W/(m2

·K) (5.05–6.13%) for a junction with a self-supporting floor, taking into account the wall
thickness and the location of the timber frame. In both cases, the greatest difference is for the wall
“350i” and the smallest is for the wall “400c”. The influence of the level of the floor on the thermal
transmittance value of the junction is statistically significant for both types of floor construction.

• The influence of the type of floor construction (on joists or self-supporting) on the thermal
transmittance value (constant: λ = 0.080 W/(m·K), a variable: wall thickness, location of the timber
frame, and floor level)

A better thermal floor construction for the level below “0” is the floor on the joists. At the “−100”
level, the thermal transmittance value is lower for this solution by 0.0031–0.0036 W/(m2

·K) (1.36–1.62%)
than for a junction with a self-supporting floor. This is due to the fact that the hemp–lime composites
used as floor insulation differ in their thermal conductivity, so in the case of “a”, the wall insulation is in
contact with a material with better thermal parameters (despite the fact that the thermal transmittance
coefficient for floors in both variations is equal). However, with an increase of the level of the floor, the
differences decrease, because the contact area between the floor and wall insulation increases. At the
floor level “+100”, the situation is reversed. The thermal transmittance factor of the junction with the
floor on joists is higher by 0.0003–0.0011 W/(m2

·K) (0.66%–2.33%). It may be the impact of the timber
joists that become a thermal bridge, along with enlarging their contact space with wall insulation.
Statistical tests show the lack of significance of the differences in thermal transmittance values between
both floor constructions (for λ = 0.080 W/(m·K) and other variables).

The graphs (Figure 8a,b) present the changes in the value of the average thermal transmittance
coefficient for ground junctions with the wall thickness of 400 mm with the timber frame placed centrally
with respect to the wall thickness filled with a hemp–lime composite with a thermal conductivity
coefficient in the range 0.08–0.088 W/(m·K), depending on the floor level on the ground.
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Figure 8. Averaged thermal transmittance coefficient of ground junction with “400c” wall filled with
a hemp–lime composite with values of λ = 0.08–0.088 W/(m·K), depending on the floor level on the
ground: (a) floor on joists, (b) self-supporting floor.

• The influence of the thermal conductivity values on the thermal transmittance values within each
floor level (constant wall thickness and timber frame location)

The differences between the thermal transmittance values when using different hemp–lime
composites (extreme thermal conductivity) on the example of a “400c” wall are 0.0014–0.0015 W/(m2

·K)
(0.64%–0.71%) for a junction with a floor on joists and also 0.0014–0.0016 W/(m2

·K) (0.63%–0.76%) for a
self-supporting floor, compared separately within each floor level. These differences are comparable
regardless of the level of the floor on the ground, but they increase as the level of the floor decreases.
As indicated by statistical analyses, with a constant wall thickness and location of the timber frame (in
this case “400c”), the thermal conductivity has a positive effect on the thermal transmittance value.
For the “400c” wall, the differences between the thermal transmittance values for extreme thermal
conductivity are statistically significant for the junction with a floor on joists and for the junction with
a self-supporting floor.

• The influence of the thermal conductivity values on the thermal transmittance values at extreme
levels of floors

In the case of a self-supporting floor, the differences between the average thermal transmittance
values for the ground junction are more pronounced (regardless of the thermal conductivity value
of the wall composite). This is due to the inferior thermal performance of the thermal insulation in
the self-supporting floor, despite the same thermal resistance of the floors in both variants and the
analogous contact surfaces of the floor insulation with the wall insulation. The differences between the
thermal transmittance values between the floor level “−100” and “+100” are 0.0069–0.0070 W/(m2

·K) for
the junction with the floors on joists and 0.0111–0.0130 W/(m2

·K) for the junction with self-supporting
floors and increase along with the thermal conductivity coefficient of the hemp–lime composite in the
wall. The thermal transmittance value differences for junctions with the floor level “+100” and “−100”
are statistically significant in both cases (floor on joists, self-supporting floor). A comparison of the
extreme floor position (−100, 100) gives a difference in thermal transmittance values, which increases
along with the lambda value.

The graphs (Figure 9a,b) show the changes in the linear thermal transmittance coefficient for
ground junctions with all construction variants of the analyzed walls filled with hemp–lime composites
with a thermal conductivity coefficient of 0.080 (W/m·K), dependent on the floor level.
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Figure 9. Linear thermal transmittance coefficient (calculated using the external dimensions) of the
ground junction in all construction variants of walls filled with hemp–lime composite (λ= 0.080 W/(m·K))
dependent on the floor level on the ground: (a) floor on joists; (b) self-supporting floor.

• The influence of the timber frame location and the wall thickness on the linear thermal transmittance
value within every floor level (constant thermal conductivity, 0.080 W/(m·K))

In both cases of the floor construction on the ground, better thermal parameters are exhibited by a
junction with a timber frame placed centrally with respect to the wall thickness. The element with
higher thermal conductivity (wood) is then surrounded by insulating material (hemp–lime composite).
In the case of the floor on joists, linear thermal transmittance values are lower by 0.0011 W/(m·K)–
0.0096 W/(m·K), while for the self-supporting floor, they are lower by 0.0027 W/(m·K)–0.0122 W/(m·K),
relative to the junctions with the timber frame placed on the inside of the wall (taking into account both
the wall thickness of 350 and 400 mm, but with the same value of λ = 0.080 W/(m·K)). The differences
between linear thermal transmittance values in both cases decrease as the level of the floor increases.

In turn, comparing the thickness of the walls, lower linear thermal transmittance coefficients were
obtained for walls, with the thickness of the composite layer in the wall equal to 400 mm (except for
the level below “0” in the self-supporting floor, where the linear thermal transmittance factor for the
junction with the wall “400i” was higher than for the junction with the wall “350c”). This relationship
was observed in both cases of the floor construction on the ground. The differences in comparison to
the junction with the ”350” wall were about 0.0072 W/(m·K)–0.0095 W/(m·K) (4.51%–5.94%) (floor A)
and about 0.0072 W/(m·K)–0.0120 W/(m·K) (4.29%–6.28%) (floor B). The differences between linear
thermal transmittance values in both cases decrease as the level of the floor increases.

The influence of the timber frame location is statistically significant and indicates lower linear
thermal transmittance values for junctions with the timber frame placed centrally with respect to the
wall thickness.

• The influence of the floor level on the linear thermal transmittance value in every wall thickness
and location of the timber frame ((constant thermal conductivity, 0.080 W/(m·K))

The linear thermal transmittance coefficient decreases with the increase of the floor level,
which means that the thermal bridge in the ground junction is reduced. The differences between the
linear thermal transmittance value at “−100” and “+100” levels range from 0.0360 to 0.0456 W/(m·K)
for a junction with a floor based on joists and from 0.0572 to 0.0689 W/(m·K) for a junction with a
self-supporting floor, taking into account the wall thickness and the location of the timber frame.
In both cases the greatest difference is for the “350i” wall and is the smallest for the “400c” wall.
Along with raising the floor level, the envelope of the building is better insulated by enlarging the
contact area of the floor and wall insulation, thereby limiting the heat escape path. In the case of the
“−100” level, the contact of both insulations is the smallest, the heat freely penetrates through this
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connection, and in the case of the self-supporting floor, the heat flow will be increased due to the higher
thermal conductivity of the hemp–lime composites in relation to the composite in the floor on the
joists. The influence of the level of the floor on the linear thermal transmittance value of the junction is
statistically significant for both types of floor construction.

• The influence of the type of floor construction (on joists or self-supporting) on the linear thermal
transmittance value (constant: λ = 0.080 W/(m·K), variable: wall thickness, location of the timber
frame, floor level)

A better thermal floor construction for the level below “0” is the floor on the joists. At the
“−100” level, the linear thermal transmittance value is lower for this solution by 0.0037–0.0068 W/(m·K)
(2.82%–5.66%) than for a junction with a self-supporting floor. However, while raising the level of
the floor, the differences decrease, because the contact area between the floor and the wall insulation
increases. At the floor level “+100”, the situation is reversed. The linear thermal transmittance-factor
of the junction with the floor on the joists is higher by 0.0138–0.0182 W/(m·K) (8.05%–10.09%).

In order to compare the results, the changes in the linear thermal transmittance (calculated using
the internal dimensions) coefficient dependent on the floor level, are presented in Figure 10a,b.

Figure 10. The linear thermal transmittance coefficient (calculated using the internal dimensions)
of the ground junction in all construction variants of walls filled with hemp–lime composite (λ =

0.080 W/(m·K)), dependent on the floor level on the ground: (a) floor on joists; (b) self-supporting floor.

Higher values for linear thermal transmittance were obtained by calculating them according to
Formula (2), using the internal dimensions. The values are 90.80%–128.06% higher for the floor on the
joists and 83.14%–136.21% for the self-supporting floor. As a result of the calculations based on the
external dimensions, the values at all floor levels are negative, while for the calculations based on the
internal dimensions, the values at “+100”, and partially at “+50” and “0”, are positive. This is caused
by the smaller dimensions of the partitions included in Formula (2).

Figures 11–13 show maps in a colour scale illustrating the temperature distribution in the
ground-level junction for the floor level on grounds “0”, “−100”, and “+100”.

Due to the higher thermal conductivity of insulation materials in the self-supporting floor (the
hemp–lime composite and expanded clay aggregates) compared to the hemp–lime mixture in the floor
variant on timber joists, a larger area of the insulation material in the self-supporting floor variant is
subject to negative temperatures. The level of the floor on the ground determines the temperature on
the entire contact surface between the floor and the wall insulation. In the case of a floor with a level of
“−100”, the area of positive temperatures is the smallest. On the other hand, in the case of a floor with
a “+100” level, the situation is reversed—the area of positive temperatures is the largest (among the
analysed variants), which may improve the thermal comfort in the room.
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Figure 11. Temperature distribution in the ground junction with the “400c” wall filled with a hemp–lime
composite (λ = 0.080 W/(m·K)) and with the floor on the ground at the adopted level “0”: (a) floor on
joists; (b) self-supporting floor.

Figure 12. Temperature distribution in the ground junction with the “400c” wall filled with a hemp–lime
composite (λ = 0.080 W/(m·K)) and with the floor on the ground at the adopted level “−100”: (a) floor
on joists; (b) self-supporting floor.

Figure 13. Temperature distribution in the ground junction with the “400c” wall filled with a hemp–lime
composite (λ = 0.080 W/(m·K)) and with the floor on the ground at the adopted level “+100”: (a) floor
on joists; (b) self-supporting floor.
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3.2. Possibility of Water Vapour Condensation

The temperature factors for the described junctions are presented in Table 5. As the values did not
differ significantly in the analysed range of the hemp–lime (wall mix) thermal conductivity, only the
parameters for the hemp–lime mix with the thermal conductivity of 0.080 W/(m·K) are given.

Table 5. Temperature factors f0.25 [◦C].

No. Type of Joint Wall Thickness and the Location of the Timber Frame

350c 350i 400c 400i

1. Timber joists floor
level “+100” 0.86 0.86 0.87 0.86

2. Timber joists floor
level “+50” 0.80 0.80 0.81 0.81

3. Timber joists floor
level “0” 0.80 0.79 0.81 0.81

4. Timber joists floor
level “−50” 0.78 0.77 0.79 0.78

5. Timber joists floor
level “−100” 0.76 0.74 0.77 0.75

6. Self-supporting floor
Level “+100” 0.86 0.85 0.87 0.86

7. Self-supporting floor
Level “+50” 0.85 0.85 0.86 0.85

8. Self-supporting floor
Level “0” 0.84 0.83 0.85 0.84

9. Self-supporting floor
Level “−50” 0.83 0.81 0.83 0.82

10. Self-supporting floor
Level “−100” 0.79 0.77 0.79 0.78

The critical temperature factor f0.25,max was calculated for the monthly mean relative humidity
at the surface taken as 0.8, and it equals 0.78. It means that in some of the junctions (marked grey
in Table 7), a risk of surface mould growth may occur. Furthermore, due to its construction type,
the differences in the surface temperatures and temperature factors can be observed. In both cases of
floor construction, the temperature factor increases along with the floor level due to the increasing
contact surface of the floor insulation with the wall insulation. Higher temperature factors were
observed in the case of a wall-self-supporting floor junction and in the case of centrally placed timber
frame construction, which means that they are more beneficial in terms of an increased mould risk.
The timber frame placed at the inner side of the wall causes a temperature drop on its surface, because
the timber elements are characterized by a higher thermal conductivity than the hemp–lime composite.
Lower temperature factors in the junctions with the floor on the timber joists may result from the fact
that the wall insulation does not have direct contact with the floor insulation, only with the timber
joist. This can also be seen as higher factors for the wall thickness of 400 mm than for 350 mm, but the
differences are not significant, reaching about 0.01 ◦C.

4. Conclusions

This paper presents an analysis of the occurrence of thermal bridges in various types of the ground
floor of a building with a timber frame structure filled with a hemp–lime composite. Both in the case
of the floor on the ground of the joist structure and the self-supporting floor, the continuity of thermal
insulation in the combination of the floor and the wall was preserved.

A thorough analysis of the obtained results enables one to formulate the following conclusions:

• All of the analyzed variables have a clear effect on the size of the thermal bridge and on the value
of the average thermal transmittance coefficient in the ground junction
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• Lowering the floor level by 100 mm in relation to the “0” level resulted in an increase in the
thermal transmittance value by approx. 2.27%–2.83% for the floor on joists and about 3.79%–4.31%
for the self-supporting floor, while the coefficient linear thermal transmittance was increased by
13.74%–20.30% and 22.16%–29.09%, respectively

• Raising the floor level by 100 mm in relation to the “0” level caused a decrease in the thermal
transmittance value by about 0.76%–1.16% in the case of the floor on joists and about 1.07%–1.71%
in the case of the self-supporting floor, while the linear thermal transmittance ratio was reduced
by 5.04%–7.93% and 6.12%–11.06%, respectively

• The junction with a floor on timber joists has better thermal parameters than a junction with a
self-supporting floor, in each of the analysed variants

• The differences in thermal conductivity are influenced by the quality of the contact zone of the
wall and floor

• The differences in the values of the thermal transmittance of the junction between two variants of
ground floors reach around 0.13%–1.67%, and the values of linear thermal transmittance factor
were approximately 2.43%–10.13%; the greatest differences in results occur when the floor level is
lowered by 100 mm

• Almost all the analysed junctions are free from surface condensation causing a risk of mould
growth. This risk occurs in the case of a junction with a floor on joists located at “−100” and
“−50”, and partly in the case of a self-supporting floor at the “-100” level (in junctions with walls
in which the columns are placed on the inside). A preferable solution in this aspect is the floor on
the ground and placing the timber frame centrally with relation to the wall thickness.

• Linear thermal transmittance was calculated using the steady state analyses, so its application in a
dynamic simulation may be less accurate (however, it is accepted in the ISO 13790 standard).
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