

Supplementary Materials: Synthesis, X-ray Crystal Structure, and Photochromism of a Sandwich-Type Mono-Aluminum Complex Composed of Two Trilacunary α-Dawson-Type Polyoxotungstates

Chika Nozaki Kato, Daichi Kato, Toshifumi Kashiwagi and Shunpei Nagatani

Figure S1. TG/DTA data of TBA-1.

Figure S2. A Dawson unit of $[H_{14}Al(B-\alpha-P_2W_{15}O_{56})_2]^{7-}$ (1) with atom numbering.

Figure S3. UV-vis spectrum at 350 - 800 nm of TBA-1 in DMSO with a small portion of water.

Figure S4. UV-vis spectrum at 300 – 460 nm of **TBA-1** in DMSO/methanol (83:17 vol%) solution (solid line) and in DMSO/methanol/water (75:10:15 vol%) solution (dashed line).

Bond length (Å)					
W(1)-O(1)	1.690(14)	W(1)-O(9)	2.143(15)		
W(1)-O(13)	1.874(3)	W(1)-O(14)	1.818(19)		
W(1)-O(17)	2.431(11)	W(1)-O(19)	1.838(13)		
W(2)-O(2)	1.708(19)	W(2)-O(10)	2.104(12)		
W(2)-O(14)	1.970(17)	W(2)-O(15)	1.854(13)		
W(2)-O(17)	2.330(11)	W(2)-O(20)	1.866(10)		
W(3)-O(3)	1.762(16)	W(3)-O(11)	1.895(11)		
W(3)-O(15)	1.896(12)	W(3)-O(16)	1.972(10)		
W(3)-O(18)	2.357(10)	W(3)-O(21)	1.982(13)		
W(4)-O(4)	1.758(12)	W(4)-O(19)	1.948(13)		
W(4)-O(22)	1.905(6)	W(4)-O(23)	1.991(15)		
W(4)-O(26)	2.385(11)	W(4)-O(28)	1.871(11)		
W(5)-O(5)	1.71(2)	W(5)-O(20)	1.944(11)		
W(5)-O(23)	1.857(15)	W(5)-O(24)	1.903(13)		
W(5)-O(26)	2.436(12)	W(5)-O(29)	1.891(15)		
W(6)-O(6)	1.727(16)	W(6)-O(21)	1.840(12)		
W(6)-O(24)	1.909(13)	W(6)-O(25)	1.943(9)		
W(6)-O(27)	2.387(11)	W(6)-O(30)	1.993(11)		
W(7)-O(7)	1.68(2)	W(7)-O(28)	1.980(12)		
W(7)-O(28) ¹	1.980(12)	W(7)-O(31)	2.394(12)		
W(7)-O(32)	1.821(11)	W(7)-O(32) ¹	1.821(11)		
W(8)-O(8)	1.72(2)	W(8)-O(29)	1.967(17)		
W(8)-O(30)	1.839(11)	W(8)-O(31)	2.418(12)		
W(8)-O(32)	1.972(11)	W(8)-O(33)	1.793(4)		
P(1)-O(12)	1.443(17)	P(1)-O(17)	1.559(11)		
P(1)-O(17) ¹	1.559(11)	P(1)-O(18)	1.526(16)		
P(2)-O(26)	1.465(13)	P(2)-O(26) ¹	1.465(13)		
P(2)-O(27)	1.542(17)	P(2)-O(31)	1.536(14)		
Al(1)-O(11)	1.900(12)	Al(1)-O(11) ²	1.900(12)		
Al(1)-O(11) ³	1.900(12)	Al(1)-O(11) ¹	1.900(12)		
Al(1)-O(12)	1.876(16)	Al(1)-O(12) ²	1.876(16)		

Table S1. Bond length (Å) of TBA-1.

Symmetry Operators: (1) –X+1,Y,Z (2) X,–Y,–Z+1 (3) –X+1,–Y,–Z+1.

Table S2. Bond angles (°) of TBA	\-1 .
----------------------------------	--------------

Bond Angles (°)						
O(1)-W(1)-O(9)	91.9(6)	O(1)-W(1)-O(13)	104.8(8)			
O(1)-W(1)-O(14)	98.9(8)	O(1)-W(1)-O(17)	167.2(6)			
O(1)-W(1)-O(19)	102.2(6)	O(9)-W(1)-O(13)	83.3(8)			
O(9)-W(1)-O(14)	87.3(7)	O(9)-W(1)-O(17)	79.0(4)			
O(9)-W(1)-O(19)	165.8(5)	O(13)-W(1)-O(14)	154.7(8)			
O(13)-W(1)-O(17)	83.3(6)	O(13)-W(1)-O(19)	91.5(7)			
O(14)-W(1)-O(17)	71.8(6)	O(14)-W(1)-O(19)	92.0(6)			
O(17)-W(1)-O(19)	87.3(5)	O(2)-W(2)-O(10)	88.2(7)			
O(2)-W(2)-O(14)	100.0(8)	O(2)-W(2)-O(15)	102.3(6)			
O(2)-W(2)-O(17)	166.8(6)	O(2)-W(2)-O(20)	101.4(7)			
O(10)-W(2)-O(14)	85.2(6)	O(10)-W(2)-O(15)	86.4(5)			
O(10)-W(2)-O(17)	80.9(5)	O(10)-W(2)-O(20)	169.6(6)			
O(14)-W(2)-O(15)	155.9(7)	O(14)-W(2)-O(17)	71.9(7)			
O(14)-W(2)-O(20)	89.1(6)	O(15)-W(2)-O(17)	84.5(4)			
O(15)-W(2)-O(20)	95.3(5)	O(17)-W(2)-O(20)	89.1(5)			
O(3)-W(3)-O(11)	99.3(6)	O(3)-W(3)-O(15)	100.8(7)			
O(3)-W(3)-O(16)	98.1(7)	O(3)-W(3)-O(18)	174.9(6)			
O(3)-W(3)-O(21)	97.0(6)	O(11)-W(3)-O(15)	90.6(5)			

O(11)-W(3)-O(16)	90.0(6)	O(11)-W(3)-O(18)	79.6(5)
O(11)-W(3)-O(21)	163.6(5)	O(15)-W(3)-O(16)	160.8(5)
O(15)-W(3)-O(18)	84.3(4)	O(15)-W(3)-O(21)	87.5(5)
O(16)-W(3)-O(18)	76.9(5)	O(16) - W(3) - O(21)	86.5(6)
O(10)-W(3)-O(10)	84.0(5)	O(10) - W(3) - O(21)	07.7(5)
0(18)-W(3)-0(21)	64.0(3)	O(4) - W(4) - O(19)	97.7(3)
0(4)-W(4)-O(22)	100.8(8)	0(4)-W(4)-O(23)	100.6(6)
O(4)-W(4)-O(26)	174.1(5)	O(4)-W(4)-O(28)	100.4(5)
O(19)-W(4)-O(22)	84.0(7)	O(19)-W(4)-O(23)	86.3(5)
O(19)-W(4)-O(26)	80.7(4)	O(19)-W(4)-O(28)	161.6(5)
O(22)-W(4)-O(23)	157.4(7)	O(22)-W(4)-O(26)	84.6(7)
O(22)-W(4)-O(28)	89.2(7)	O(23)-W(4)-O(26)	73.7(5)
O(23)-W(4)-O(28)	93.8(6)	O(26)-W(4)-O(28)	81.7(4)
O(5)-W(5)-O(20)	97.0(7)	O(5)-W(5)-O(23)	94.2(8)
O(5)-W(5)-O(24)	103.5(8)	O(5)-W(5)-O(26)	168.8(7)
$\Omega(5)-W(5)-\Omega(29)$	98 2(8)	$\Omega(20)-W(5)-\Omega(23)$	85.8(6)
O(20)-W(5)-O(24)	87 3(5)	O(20)-W(5)-O(26)	82 3(4)
O(20) W(5) O(24)	164.8(6)	O(23) W(5) O(24)	161 7(6)
(20) - W(5) - O(29)	74.((5)	O(23) = VV(5) = O(24)	02 2(7)
0(23)-W(5)-0(26)	74.6(5)	O(23)-W(5)-O(29)	93.2(7)
O(24)-W(5)-O(26)	87.7(5)	O(24)-W(5)-O(29)	89.0(6)
O(26)-W(5)-O(29)	82.7(5)	O(6)-W(6)-O(21)	100.3(6)
$\frac{O(6)-W(6)-O(24)}{O(6)-W(6)-O(27)}$	98.9(7)	$\frac{0(6)-W(6)-O(25)}{O(6)-W(6)-O(20)}$	99.0(7)
O(0)-W(0)-O(27)	88 6(6)	O(21)-W(6)-O(25)	90.5(7)
O(21) W(0) O(21)	84.6(6)	$O(21) \cdot W(6) \cdot O(23)$	165.0(6)
O(24)-W(6)-O(25)	162.0(6)	O(24)-W(6)-O(27)	87.7(5)
O(24)-W(6)-O(30)	84.1(6)	O(25)-W(6)-O(27)	74.3(6)
O(25)-W(6)-O(30)	92.4(6)	O(27)-W(6)-O(30)	82.0(5)
O(7)-W(7)-O(28)	101.8(7)	O(7)-W(7)-O(28) ¹	101.8(7)
O(7)-W(7)-O(31)	173.9(9)	O(7)-W(7)-O(32)	104.9(6)
$\frac{O(7)-W(7)-O(32)^{1}}{O(22)}$	104.9(6)	$\frac{O(28)-W(7)-O(28)^{1}}{O(22)}$	83.6(5)
$\frac{O(28)-W(7)-O(31)}{O(28)-W(7)-O(22)}$	82./(4)	$\frac{O(28)-W(7)-O(32)}{O(28)!W(7)-O(21)}$	80.3(5)
$\frac{O(28)^{1}W(7)O(32)^{1}}{O(28)^{1}W(7)O(32)}$	131.1(4) 151.1(4)	$\frac{O(28)^{1} - W(7) - O(31)}{O(28)^{1} - W(7) - O(32)^{1}}$	80.3(5)
$\frac{0(28) - W(7) - 0(32)}{0(31) - W(7) - 0(32)}$	71 6(4)	$O(31)-W(7)-O(32)^1$	71 6(4)
$O(32)-W(7)-O(32)^1$	103.1(5)	O(8)-W(8)-O(29)	103.4(8)
O(8)-W(8)-O(30)	104.1(7)	O(8)-W(8)-O(31)	168.8(7)
O(8)-W(8)-O(32)	103.3(7)	O(8)-W(8)-O(33)	109.8(8)
O(29)-W(8)-O(30)	88.9(6)	O(29)-W(8)-O(31)	83.1(6)
O(29)-W(8)-O(32)	77.2(5)	O(29)-W(8)-O(33)	146.8(6)
O(30)-W(8)-O(31)	85.0(5)	O(30)-W(8)-O(32)	151.5(5)
O(30)-W(8)-O(33)	84.4(7)	O(31)-W(8)-O(32)	68.8(4)
O(31)-W(8)-O(33)	64.0(5)	O(32)-W(8)-O(33)	93.8(5)
$\frac{O(12)-P(1)-O(17)}{O(12)-P(1)-O(18)}$	114.6(5)	$\frac{O(12)-P(1)-O(17)^{1}}{O(17)}$	114.6(5)
$\frac{O(12)-P(1)-O(18)}{O(17) P(1) O(18)}$	107.7(8)	$O(17)^{1}P(1)O(17)^{2}$	105.8(6)
$O(26)-P(2)-O(26)^1$	100.8(3)	O(26)-P(2)-O(27)	111 5(5)
O(26)-P(2)-O(20)	109.9(5)	$O(26)^{-1}(2)^{-}O(27)$	111.5(5)
$O(26)^{1}-P(2)-O(31)$	108.9(5)	O(27)-P(2)-O(31)	106.3(9)
O(11)-Al(1)-O(11) ²	89.5(5)	O(11)-Al(1)-O(11) ³	180.0(7)
O(11)-Al(1)-O(11) ¹	90.5(5)	O(11)-Al(1)-O(12)	90.7(5)
O(11)-Al(1)-O(12) ²	89.3(5)	$O(11)^2$ -Al(1)-O(11)^3	90.5(5)
O(11) ² -Al(1)-O(11) ¹	180.0(7)	O(11) ² -Al(1)-O(12)	89.3(5)
$\frac{O(11)^2 - Al(1) - O(12)^2}{O(11)^3 - Al(1) - O(12)^2}$	90.7(5)	$\frac{O(11)^{3}-Al(1)-O(11)^{1}}{O(11)^{3}-Al(1)-O(12)^{2}}$	89.5(5)
$\frac{O(11)^{3}-AI(1)-O(12)}{O(11)^{1}-AI(1)-O(12)}$	89.3(5)	$\frac{O(11)^3 - AI(1) - O(12)^2}{O(11)^1 - AI(1) - O(12)^2}$	90.7(5)
$\frac{O(11)^{-}-AI(1)-O(12)}{O(12)^{2}}$	180.0(7)	$W(3)_O(11)_A1(1)$	<u> </u>
P(1)-O(12)-Al(1)	133.3(10)	$W(1)-O(13)-W(1)^1$	162,2(12)
W(1)-O(14)-W(2)	125.4(10)	W(2)-O(15)-W(3)	158.0(7)
W(3)-O(16)-W(3) ¹	115.4(9)	W(1)-O(17)-W(2)	90.0(4)
W(1)-O(17)-P(1)	130.9(7)	W(2)-O(17)-P(1)	129.3(6)
W(3)-O(18)-W(3) ¹	90.0(5)	W(3)-O(18)-P(1)	125.0(4)
$W(3)^{1}-O(18)-P(1)$	125.0(4)	W(1)-O(19)-W(4)	168.3(7)

W(2	2)-O(20)-W(5)	164.2(7)	W(3)-O	(21)-W(6)	169.4(8)
W(4)	$-O(22)-W(4)^{1}$	146.3(12)	W(4)-O	(23)-W(5)	122.5(8)
W(5	i)-O(24)-W(6)	148.6(7)	W(6)-O($(25)-W(6)^1$	121.1(10)
W(4	-)-O(26)-W(5)	88.9(4)	W(4)-C	D(26)-P(2)	128.8(6)
W(5	5)-O(26)-P(2)	126.9(7)	W(6)-O((27)-W(6) ¹	90.2(5)
W(6	6)-O(27)-P(2)	128.4(5)	W(6) ¹ -C	D(27)-P(2)	128.4(5)
W(4	-)-O(28)-W(7)	151.4(7)	W(5)-O	(29)-W(8)	145.6(8)
W(6)-O(30)-W(8)	150.6(7)	W(7)-O	(31)-W(8)	89.7(3)
W(7)	$-O(31)-W(8)^{1}$	89.7(3)	W(7)-C	D(31)-P(2)	125.6(10)
W(8)	$-O(31)-W(8)^{1}$	89.0(5)	W(8)-C	D(31)-P(2)	125.7(4)
W(8	$S^{1}-O(31)-P(2)$	125.7(4)	W(7)-O	(32)-W(8)	126.8(6)
W(8)	$-O(33)-W(8)^{1}$	141.9(7)			
	Symmetry Operator	rs: (1) –X+1,Y,Z	(2) X,-Y,-Z+1	(3) -X+1,-Y,-Z+1.	

-	-	_				

BVSs					
W(1)	6.31	O(12)	2.1		
W(2)	5.89	O(13)	2.25		
W(3)	5.65	O(14)	2.17		
W(4)	5.72	O(15)	2.24		
W(5)	6.21	O(16)	1.72		
W(6)	5.95	O(17)	1.75		
W(7)	6.45	O(18)	1.89		
W(8)	6.33	O(19)	2.16		
P(1)	5.22	O(20)	2.08		
P(2)	5.49	O(21)	2.07		
Al(1)	2.88	O(22)	2.07		
O(1)	1.85	O(23)	1.99		
O(2)	1.76	O(24)	2.06		
O(3)	1.52	O(25)	1.86		
O(4)	1.53	O(26)	2.04		
O(5)	1.75	O(27)	1.79		
O(6)	1.67	O(28)	1.98		
O(7)	1.9	O(29)	1.95		
O(8)	1.7	O(30)	2.05		
O(9)	0.54	O(31)	2.04		
O(10)	0.63	O(32)	2.16		
O(11)	1.53	O(33)	2.80		

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).