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Abstract: Nanoparticles (NPs) are, frequently, being utilized in multi-dimensional enterprises. Silver
nanoparticles (AgNPs) have attracted researchers in the last decade due to their exceptional efficacy
at very low volume and stability at higher temperatures. Due to certain limitations of the chemical
method of synthesis, AgNPs can be obtained by physical methods including sun rays, microwaves and
ultraviolet (UV) radiation. In the current study, the synthesis of pullulan mediated silver nanoparticles
(P-AgNPs) was achieved through ultraviolet (UV) irradiation, with a wavelength of 365 nm, for 96 h.
P-AgNPs were formed after 24 h of UV-irradiation time and expressed spectra maxima as 415 nm,
after 96 h, in UV-vis spectroscopy. The crystallographic structure was “face centered cubic (fcc)” as
confirmed by powder X-ray diffraction (PXRD). Furthermore, high resolution transmission electron
microscopy (HRTEM) proved that P-AgNPs were covered with a thin layer of pullulan, with a mean
crystalline size of 6.02 ± 2.37. The average lattice fringe spacing of nanoparticles was confirmed as
0.235 nm with quasi-spherical characteristics, by selected area electron diffraction (SAED) analysis.
These green synthesized P-AgNPs can be utilized efficiently, as an active food and meat preservative,
when incorporated into the edible films.
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1. Introduction

Metal nanoparticles (NPs) have been frequently investigated by the researchers for their
multi-dimensional applications after their synthesis in 1959 by Richard Feynman, with a size ranging
from 1 nm to 100 nm, [1–3]. NPs exhibited a new behavior of efficiency at even very low concentration [4].
The recent trend of nanotechnology research has been diverted to antimicrobial food packaging, delivery
of nano-medicines/drugs, gene delivery vectors, nano-imaging and Biosensors for cancer diagnosis,
and polymeric nano-composite wound dressing [3,4].

Among metal NPs, the utilization of silver nanoparticles (AgNPs) in the biomedical sector,
animal and human nutrition, electronic industry and food preservation is remarkable [5]. AgNPs,
as compared to other metal NPs, exhibit very low volatility, with tolerance against high temperatures as
compared to other nanoparticles [6]. Moreover, AgNPs can restrain the growth of the microorganisms
(including Gram positive and Gram negative bacterial strains; fungi) from the initial contact and
further penetration into the cellular membrane of the microbes [7,8].
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Various chemical and physical techniques have been reported for the synthesis of AgNPs.
The chemical techniques have certain limitations including strict reaction protocols, toxic reagents,
time consumption and unstable NPs [9]. A new and relatively safer concept has been presented by
Raveendran et al. [10] as the “green synthesis” of AgNPs. The synthesis of AgNPs, with reduced
size and better shape, through direct physical techniques, is another green and promising sector [11].
These physical techniques mainly include synthesis by sun rays, microwave radiation, gamma
radiation or ultraviolet (UV) irradiations [9,12,13]. For the physical methods, the toxicity, economy and
benign biological nature of the compounds should not be ignored [14–16]. The organic biopolymers
are economical, environment friendly and exhibit no or very low toxic nature for the physical synthesis
of AgNPs [12,13,17–21]. These organic biopolymers mainly include the exo-polysaccharides (EPS)
obtained from bacteria, algae and fungi [10,22–24].

Pullulan is an extra cellular polysaccharide produced by a fungal species
Aureobasidium pullulans [25]. For the synthesis of AgNPs, few studies have been reported to
utilize pullulan as a green reducing, capping and stabilizing agent [26–29]. Pullulan mediated
silver nanoparticles (P-AgNPs) can be applicable in food and meat preservation, drug carrying and
therapeutic studies [30]. Ganduri et al. [31] reported that AgNPs synthesized from the increasing
concentrations of pullulan, improved the formation of AgNPs with better quality and quantity [11,31].

The direct and green synthesis of AgNPs mediated by pullulan (reducing and capping agent),
through UV irradiation, has not been reported yet. Thus, the present study was planned to use
UV irradiations, as a physical green technique, for the green synthesis of P-AgNPs. The impact of
increasing time of UV irradiation (from 0 h to 96 h) on the synthesis, size and distribution of AgNPs
was also studied.

2. Materials and Methods

2.1. Materials

The materials for the synthesis of P-AgNPs were pullulan (97.0% pure, food grade, obtained from
Aureobasidium pullulans; Sigma-Aldrich, St. Louis, MO, USA), Silver nitrate (AgNO3) (R & M, London,
UK) and deionized water (Sigma-Aldrich). All the reagents used in the study were of analytical grade
and no purification was conducted before their use. Pullulan was dried at 100 ◦C for 24 h before use.

2.2. Green Synthesis of Pullulan Mediated Silver Nanoparticles

Three concentrations of pullulan were prepared as per the procedure reported by Shameli et al. [13]
with modifications. The 1.0, 2.0 and 4.0 g of pullulan powder, equal to 5, 10 and 20% (w/v),were stirred
with 200 mL of deionized water for 1.0 h at 500 rpm at 24–25 ◦C.

A clear solution was obtained after 60 min of stirring. Three concentrations of AgNO3 aqueous
solution (0.02, 0.50, and 1.0 M) were produced by dissolving the calculated masses of AgNO3 in
deionized water. To synthesize P-AgNPs, 250 mL of each pullulan solution (5, 10, and 20 wt.%) was
mixed with an equal volume of the aqueous solutions of AgNO3. The assorted solutions were stirred
thoroughly for 1.0 h at 65 ◦C for 500 rpm to complete the chemical reaction.

After stirring, the obtained suspensions were clear but viscous. These suspensions were put under
ultraviolet radiation with a wavelength of 365 nm and the magnetic stirring speed of 195 rpm. UV
irradiation was done by an ultraviolet reactor (ChECA, UTM, Kuala Lumpure, Malaysia) with a power
of 450 W. The feature of the UV-reactor bulb was UV-C Radiation (200 to 280 nm) (Philips, TUV 8W,
G8 T5, Kuala Lumpure, Malaysia). The irradiation process was done for 1, 3, 6, 8, 12, 24, 48, 64, and
96 h (A1–A9). After UV irradiation, the suspensions were centrifuged 25 ◦C for 30 min to obtain the
pellets of P-AgNPs.
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2.3. Characterization of Pullulan Mediated Silver Nanoparticles

Pullulan mediated silver nanoparticles (P-AgNPs) were characterized [9,12,13]
through ultraviolet-visible spectroscopy (UV-vis) by a U-5100, UV-vis spectrophotometer
(Hitachi, High Technologies Co., Tokyo, Japan) with a wavelength range of 220 nm to 800 nm.
The analysis of the structure was conducted through powder X-ray diffraction (PXRD) (PANanalytical
EMPYREAN, Eindhoven, The Netherlands), Xpert High score Plus (V.14.0; PANanalytical EMPYREAN)
at a lower angle of 30◦–80◦ and scan with a speed of 2◦/min. The topographic analysis was performed
by field emission scanning electron microscopy (FESEM) using a JSM 7600 F FESEM (JEOL Ltd.,
Tokyo, Japan). High-resolution transmission electron microscopy (HRTEM) was conducted through
a JEM 2100F filed emission electron microscope (JEOL Ltd.) with a high resolution of 200 kV
using a LaB6 electron gun. Zeta potential of P-AgNPs was confirmed by a Litesizer 500, particle
analyzer (Anton paar USA Inc., Ashland, VA, USA) while Fourier transform infrared spectroscopy
(FT-IR) was conducted, with the spectral range of 500 cm−1 to 4000 cm−1, by using an IRTracer 100
Fourier transform infrared spectrophotometer (SHIMADZU Corp., Kyoto, Japan). The colloidal
solution was centrifuged through a refrigerated micro-centrifuge 5810 R (Sigma-Aldrich) to obtained
P-AgNPs pellets.

Most of the characterization was performed with the colloidal solution dissolved in distilled
water, while P-AgNPs powder was used for PXRD and FESEM analyses. Statistical analysis of the
data was done by using SPSS software to measure the mean crystalline size (V.20.0, IBM Corp.,
Armonk, NY, USA).

3. Results and Discussion

In the present study, AgNPs were synthesized by UV irradiation successfully and pullulan was
used as “stabilizer”. Further, the impact of irradiation time on the formation of NPs along with the size
of NPs was also considered. Pullulan 10% (w/v) solution along with 0.50 M AgNO3 aqueous solution
showed the formation of P-AgNPs. The formation of P-AgNPs was confirmed by the dark color of the
colloidal suspension, after 96 h of UV irradiation [13] (Figure 1).

Materials 2019, 12, x FOR PEER REVIEW 3 of 12 

 

Technologies Co., Tokyo, Japan) with a wavelength range of 220 nm to 800 nm. The analysis of the 
structure was conducted through powder X-ray diffraction (PXRD) (PANanalytical EMPYREAN, 
Eindhoven, The Netherlands), Xpert High score Plus (V.14.0; PANanalytical EMPYREAN) at a lower 
angle of 30°–80° and scan with a speed of 2°/min. The topographic analysis was performed by field 
emission scanning electron microscopy (FESEM) using a JSM 7600 F FESEM (JEOL Ltd., Tokyo, 
Japan). High-resolution transmission electron microscopy (HRTEM) was conducted through a JEM 
2100F filed emission electron microscope (JEOL Ltd.) with a high resolution of 200 kV using a LaB6 
electron gun. Zeta potential of P-AgNPs was confirmed by a Litesizer 500, particle analyzer (Anton 
paar USA Inc., Ashland, VA, USA) while Fourier transform infrared spectroscopy (FT-IR) was 
conducted, with the spectral range of 500 cm−1 to 4000 cm−1, by using an IRTracer 100 Fourier 
transform infrared spectrophotometer (SHIMADZU Corp., Kyoto, Japan). The colloidal solution was 
centrifuged through a refrigerated micro-centrifuge 5810 R (Sigma-Aldrich) to obtained P-AgNPs 
pellets. 

Most of the characterization was performed with the colloidal solution dissolved in distilled 
water, while P-AgNPs powder was used for PXRD and FESEM analyses. Statistical analysis of the 
data was done by using SPSS software to measure the mean crystalline size (V.20.0, IBM Corp., 
Armonk, NY, USA). 

3. Results and Discussion 

In the present study, AgNPs were synthesized by UV irradiation successfully and pullulan was 
used as “stabilizer”. Further, the impact of irradiation time on the formation of NPs along with the 
size of NPs was also considered. Pullulan 10% (w/v) solution along with 0.50 M AgNO3 aqueous 
solution showed the formation of P-AgNPs. The formation of P-AgNPs was confirmed by the dark 
color of the colloidal suspension, after 96 h of UV irradiation [13] (Figure 1). 

 

Figure 1.Characteristic changes in the color of pullulan solutions before and after irradiation: 

Pullulan/Ag ion, after 0, 12, 24, 48, 64, 96 h (a–f, respectively). 

The formation of NPs was due to the reduction of AgNO3, changing the color of clear colloidal 
solution into light gray, then gray, and finally darker gray [13,32]. Our results are in agreement with 
the results as reported by Kanmani and Lim [32], Shameli et al. [13], and Saravanan et al. [24] for the 
formation of AgNPs by the reduction of AgNO3. The chemical structure of pullulan consists of 
repeating units of malto-triose connected with ά-(1-6) linkages, providing solubility and flexibility to 
pullulan [33]. During the reduction process, the produced AgNPs were attracted by the amino 
radicals (NH2) and hydroxyl (OH) ends of malto-triose units of pullulan [13]. As a result, pullulan 

Figure 1. Characteristic changes in the color of pullulan solutions before and after irradiation:
Pullulan/Ag ion, after 0, 12, 24, 48, 64, 96 h (a–f, respectively).

The formation of NPs was due to the reduction of AgNO3, changing the color of clear colloidal
solution into light gray, then gray, and finally darker gray [13,32]. Our results are in agreement with
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the results as reported by Kanmani and Lim [32], Shameli et al. [13], and Saravanan et al. [24] for
the formation of AgNPs by the reduction of AgNO3. The chemical structure of pullulan consists of
repeating units of malto-triose connected with
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-(1-6) linkages, providing solubility and flexibility to
pullulan [33]. During the reduction process, the produced AgNPs were attracted by the amino radicals
(NH2) and hydroxyl (OH) ends of malto-triose units of pullulan [13]. As a result, pullulan acts as a
strong protective layer and a highly functional coating for AgNPs, with better stability in the solution
over the time [30].

The impact of pullulan, as reducing and capping agent, on the formation of P-AgNPs was proven
by ultraviolet visible (UV-vis) spectroscopy after various irradiation times (Figure 2). The UV-vis
spectroscopic peaks were recorded from wavelengths 300–800 nm, where NPs formed a broad surface
plasma resonance ultraviolet absorption band in the wavelength range of 380–480 nm [24].
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It was also observed that P-AgNPs, formed in the colloidal solution after 96 h of irradiation,
expressed a wavelength peak at 415 nm. It was due to the fact that the AgNPs absorb UV radiation
in the visible range of electromagnetic spectrum of 380 nm to 450 nm, because of surface plasmon
resonance (SPR) transition of AgNPs [17,34].

Therefore, based on the achieved results, pullulan with 10% concentration showed the formation
of P-AgNPs, confirmed by the UV-vis spectra, indicating the impacts of pullulan concentrations, as
well as UV irradiation time, on AgNPs formation (Figure 2). Pullulan mediated silver nanoparticles
(P-AgNPs) formed after 24 h from UV-irradiation time, and the peak intensities were observed after
48, 64 and 96 h (Figure 2). This long-term study was related to evaluate the effect of radiation on
the size and distribution of AgNPs. During that period we witnessed two phenomena at different
times: contained aggregation at the beginning, and disaggregation at the end of radiation time. It was
confirmed that the size of NPs was also reduced as the irradiation time increased from 0 h to 96 h.
The power consumption (power × time), during irradiation, was recorded as 10.80 (at 24 h) to 43.20 (at
96 h) kWh/500 mL of colloidal solution for P-AgNPs synthesis (Table 1, Figure 2C).
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Table 1. Power consumption data for UV irradiation during the synthesis of P-AgNPs.

Samples UV Irradiation Time (h) Kilo Watt Hour (kWh)/500 mL

A1 1 0.45
A2 3 1.35
A3 6 2.70
A4 8 3.60
A5 12 5.40
A6 24 10.80
A7 48 21.60
A8 64 28.80
A9 96 43.20

The UV irradiation induced reduction process has been provided below:

AgNO3
UV-irradiation
−−−−−−−−−−−→ (Ag+) + NO3

− (1)(
Ag+

)
+ e− (eq) reduction

−−−−−−−→ (Ag)◦ (2)

(Ag)◦ +
(
Ag+

)
→

(
Ag+

)2
(3)

n
(
Ag+

)
+
(
Ag+

)2
→

(
Ag+

)n
(4)(

Ag+
)n

+ e− (eq)n
→ (Ag)n (5)(

Ag+
)

is the nano-cluster of the silver obtained from silver precursor (AgNO3) and e− (eq) are the
electrons in the aqueous solution. After UV irradiation of pullulan/AgNO3 colloidal solution, Ag+ was,
first, reduced to (Ag)◦, then

(
Ag+

)n
, leading towards the formation of (Ag)n by the large number of

aqueous electrons produced during the process [13]. Ultraviolet light covers a wave length spectrum
from 100 to 380 nm and is sub-divided into three regions by wavelength including UV-A (320–400 nm),
UV-B (280–320 nm), and UV-C (200–280 nm). UV-C is considered as the most energetic ultraviolet
radiation [11]. Therefore, in this study, UV-C was used for the reduction of Ag+ to (Ag)n.

It was possible to control the synthesis, size, and the shape of AgNPs surrounded by pullulan, by
irradiation time as expressed by UV-vis spectra [12]. UV irradiation induced the reduction of the AgNPs
precursor in the presence of pullulan solution [12,13]. Photo-chemical induced reduction of AgNO3

into AgNPs, in the presence of a polysaccharide capping agent, can not only control the sizes of NPs,
but also their shapes [35].The prolonged exposure of AgNO3 colloidal solution containing silver cation
ions causes the heating of AgNPs, resulting in their breakdown into smaller sized NPs [35]. As the
irradiation time increased, the size of the synthesized AgNPs was reduced. This can be considered as
the irradiation time dependent factor to control the synthesis, size, and shape of nanoparticles [36,37].

Our results are in agreement with Pandey et al. [34], Esumi et al. [35], Kuthirummal et al. [36],
and Huang et al. [37] with respect to irradiation time controlling the size and shape of NPs.

The crystalline nature along with the topography of P-AgNPs, synthesized after 96 h of irradiation,
was further confirmed by powder X-ray diffraction (PXRD). It can be observed that the crystalline
nature of P-AgNPs was confirmed as crystalline silver (Figure 3). The nanoparticles exhibited four
silver peaks in PXRD analysis at 2 theta/degree, i.e., 111 (38.17◦), 200 (44.33◦), 220 (64.49◦), and 311
(77.44◦). These peaks are consistent with Ag◦ Peak Ref. No. 00-004-0783 (99.9% pure silver; fcc)
confirming their topographic nature as “face centered cubic (fcc)” [30]. From PXRD results, it is possible
to estimate the average crystalline size of P-AgNPs by using the Debye-Scherrer’s equation which is
given as shown below;

n = Kλ/βcos θ (6)
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where n is the mean crystalline size, K is Sherrer’s constant (shape factor) with value 0.94 for spherical
crystallites with cubical symmetry, λ is X-ray wavelength (1.54 Å; for powder samples only), θ is
the Bragg angle and β is the line broadening at half of the XRD peak [38]. The confirmation of
actual crystalline size was conducted by high resolution transmission electron microscopy (HRTEM).
Nevertheless, PXRD patterns are the main characteristic of P-AgNPs, also in concordance with the
findings of Coseri et al. [30]; Bankura et al. [17]; Kanmani and Lim, [32] and Roopan [20].
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Figure 3. Powder X-ray diffraction (PXRD) spectra for P-AgNPs obtained after 96 h of UV irradiation.

Similar findings have been reported for the typical PXRD spectra of AgNPs with four diffraction
peaks (111, 200, 220, 311) by Coseri et al. [30]. A four diffraction peak pattern of AgNPs confirms
the “fcc” topographic nature of NPs [17,30,32]. Bankura et al. [17] and Roopan [20] had previously
reported that the four peak pattern at 2-theta/degree could be due to the crystallization of reducing
and capping agent used for the synthesis of Ag NPs.

The topographic structure and shape of P-AgNPs was confirmed as “spherical” by field emission
scanning electron microscopy (FESEM) (Figure 4A,B). The FESEM micrographs of P-AgNPs revealed
the presence of spherical shaped P-AgNPs at 10,000×. Our study was in agreement with the findings
of Saravanan et al. [24], for the distribution of spherical shaped “bacterial exo-polysaccharide AgNPs.
The mean crystalline size of NPs was observed as 42.27 ± 12.2 nm after 48 h of UV irradiation
(Figure 4C) and 6.02 ± 2.37 nm after 96 h of UV irradiation (Figure 4D), as confirmed by high resolution
transmission electron microscopy (HRTEM). The decrease in crystalline size of P-AgNPs from 48 h to
96 h of UV irradiation, was proven by HRTEM analysis, along with “quasi-spherical” characteristics,
as per reports by Quester et al. [39]. The typical “quasi-spherical” nature is one of the prominent shape
characteristics of AgNPs for their application in various fields [40]. By HRTEM observation at 5 nm, it
was found that P-AgNPs were delimited by a thin layer of an organic material (Figure 4E) which is
supposed to be the reducing and the capping agent pullulan [40]. The top to top distance, between the
surface lattice of AgNPs, was 0.235 nm (Figure 4E) in selected area electron diffraction (SAED) analysis
(Figure 4F) [41].
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Figure 4. (A) FESEM micrograph of P-AgNPs after 48 h of UV irradiation. (B) FESEM micrograph of
P-AgNPs after 96 h of UV irradiation. (C) HRTEM image showing the topography and mean crystalline
size of P-AgNPs after 48 h of UV irradiation. (D) HRTEM image of P-AgNPs after 96 h of UV irradiation,
showing the topography and mean crystalline size. (E) Lattice surface analysis of P-AgNPs after 96 h
of UV irradiation. (F) Selected area electron diffraction (SAED) of P-AgNPs after 96 h of UV irradiation.
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The possible involvement of the functional groups of pullulan for the synthesis of P-AgNPs
was studied by FT-IR spectra. Pullulan aqueous solution (10% w/v, without UV irradiation) was
compared with pullulan + AgNO3 colloidal solution (with 96 h of UV irradiation, A9). It can be
observed that P-AgNPs expressed their characteristic peaks from wave numbers 3925 cm−1 to 1325 cm−1

(Figure 5a). The first strong and broader peak was at 3359 cm−1 (Figure 5a) indicating the stretching
and involvement of hydroxyl (O–H) group of pullulan [31].
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Figure 5. (a) FT-IR spectra of pullulan (10%) and P-AgNPs (b) Zeta potential of P-AgNPs.

The O–H group of pullulan is considered as an efficient coordinator with silver ions of P-AgNPs
during the reduction process [34]. The prominent peaks were at wave numbers 2418, 2167, 1950, 1637,
and 1535 cm−1 (Figure 5a), proving the stretching frequencies of carbonyl (C=O) and C=C groups of



Materials 2019, 12, 2382 9 of 12

pullulan [31,32,42]. For the involvement and the stretching frequencies of C=O and C=C functional
groups, the standard wave numbers range from 1000 cm−1 to 1900 cm−1 [31]. The FT-IR spectral results
were in agreement with the reports of Ganduri et al. [31], Kanmani and Lim [32] and Kumar et al. [41]
for the involvement of O–H, C=O and C=C groups of pullulan during the synthesis of P-AgNPs.

The zeta potential of P-AgNPs was confirmed as 3.27+ (Figure 5b), proving “stability” of the
NPs in the colloidal solution at 25 ◦C and pH 6.34 [34]. Pullulan has an “uncharged nature” in the
colloidal solution when used as the reducing and capping agent [30]. Due to the positive charge
at the core, P-AgNPs exhibited positive zeta potential in the solution, with better stability [30,34].
Pullulan concentration, in the formation of P-AgNPs, can also govern zeta potential (ZP) with positive
or negative charges at room temperature [30].

4. Conclusions

An environment friendly, economical, safer and green physical technique has been introduced for
the synthesis of P-AgNPs. Pullulan was used as a “green” capping, stabilizing and reducing agent
without any addition of toxic or harmful chemicals. The effect of UV irradiation time was also recorded
as the main factor for controlling the synthesis, size, shape and distribution of the nanoparticles.
Green synthesized P-AgNPs contained “quasi-spherical characteristics” showing 415 nm as spectra
maxima with mean crystalline size of 6.02 ± 2.37 nm after 96 h of UV irradiation. The crystallographic
nature of P-AgNPs was recorded as “face centered cubic” surrounded by a thin layer of pullulan.
The involvement of O–H, C=O, and C=C functional groups of pullulan, during the green synthesis,
was confirmed by FT-IR spectra. Zeta potential of 3.27+ confirmed the stability of P-AgNPs in the
colloidal solution after 96 h of UV-irradiations. It is hypothesized that the green synthesized P-AgNPs
can be utilized individually or incorporated in the active packaging with an antimicrobial potential
due to their purity, smaller size and spherical shape.

Abbreviations List

NPs Nanoparticles
UV Ultraviolet
P-AgNPs Pullulan mediated silver nanoparticles
FESEM Field emission scanning electron microscopy
HRTEM High resolution transmission electron microscopy
SAED Selected area electron diffraction
PXRD Powder X-ray diffraction
FT-IR Fourier transform infrared spectroscopy
fcc Face centered cubic
Rpm Revolution per minute
w/v Weight/volume
M solution Molar solution
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