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Abstract: Magnetron sputtering is a well-known technique that is commonly used for the deposition
of thin compact films. However, as was shown in the 1990s, when sputtering is performed at pressures
high enough to trigger volume nucleation/condensation of the supersaturated vapor generated by
the magnetron, various kinds of nanoparticles may also be produced. This finding gave rise to the
rapid development of magnetron-based gas aggregation sources. Such systems were successfully
used for the production of single material nanoparticles from metals, metal oxides, and plasma
polymers. In addition, the growing interest in multi-component heterogeneous nanoparticles has
led to the design of novel systems for the gas-phase synthesis of such nanomaterials, including
metal/plasma polymer nanoparticles. In this featured article, we briefly summarized the principles of
the basis of gas-phase nanoparticles production and highlighted recent progress made in the field of
the fabrication of multi-component nanoparticles. We then introduced a gas aggregation source of
plasma polymer nanoparticles that utilized radio frequency magnetron sputtering of a polymeric
target with an emphasis on the key features of this kind of source. Finally, we presented and discussed
three strategies suitable for the generation of metal/plasma polymer multi-core@shell or core-satellite
nanoparticles: the use of composite targets, a multi-magnetron approach, and in-flight coating of
plasma polymer nanoparticles by metal.
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1. Introduction

Sputtering is a deposition process based on the ejection of atoms, molecules, or molecular fragments
from a target that is bombarded by energetic particles (mostly ions) and subsequent condensation
of emitted particles on adjacent surfaces. Since its discovery in the mid-1800s (for the history of
sputtering, please refer to J.E. Green’s excellent recent review [1]), sputtering has become one of the
most widely used techniques for film deposition, with thickness reaching from several nm to several
µm. Despite the long history of sputter deposition, the introduction of external magnetic fields was
a crucial moment that led to a massive spread of sputtering technology. Specifically, a configured
magnetic field constrains the plasma to a close proximity to the cathode and enormously increases
the deposition rate. Among the different configurations that are altogether termed as “magnetrons”,
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systems with a planar configuration appear to be the most important [2]. Since their introduction, such
planar magnetrons have become irreplaceable tools for the deposition of various conductive, mostly
metallic, thin films.

In addition, the demand for the production of coatings with enhanced functional properties
and deposition of non-metallic/non-conductive thin films triggered the development of novel
concepts of magnetron sputtering. These include high-power pulsed magnetron sputtering [3–7],
dual-magnetron sputtering [8], and radio frequency (RF) magnetron sputtering of non-conductive
targets [9]. Concerning the latter, RF magnetron sputtering was found to be suitable not only for
the production of inorganic materials (e.g., glasses, metal-oxides, and nitrides) but also for the
deposition of polymer-like coatings [10–12], i.e., the so-called plasma polymers [13–16]. As opposed to
conventional polymers, such materials are characterized by considerably higher levels of cross-linking
and branching, as well as by an absence of regularly repeating monomer units. Despite their random
and inherently complex structure, plasma polymers appear to be a highly valuable class of materials
for different applications, including dielectric separation layers, permeation barriers or gas separation
membranes, laser facilities, adhesion-promoting coating, and films that enable the fine tuning of
wettability and the bio-adhesive/bio-repellent behavior of surfaces [17–38]. The great advantage of
RF magnetron sputtering over commonly used plasma-enhanced chemical vapor deposition is the
complete lack of gaseous or liquid precursors, which makes RF sputtering a “green” technology.
Although much attention has been devoted to the fabrication and characterization of fluorocarbon
plasma polymers [10–12,39–47], other polymers were also studied, including polyarylates [48],
polyimides [45,49–52], polyethylene [50,53,54], polyetherimide [55], polypropylene [56,57], and
Nylon [58].

Regardless of the sputtered material, magnetron-based deposition was primarily applied for the
production of thin compact films for a long time. The situation changed in the 1990s, when Haberland
and his co-workers introduced the first magnetron-based Gas Aggregation cluster Source (GAS) [59,60],
which opened a completely new and highly attractive application field for magnetron sputtering
technology. In this type of source, magnetron sputtering serves as a supply of supersaturated vapors
that spontaneously nucleate and form clusters or nanoparticles (NPs) in the volume of the aggregation
chamber at appropriate conditions (higher pressure). NPs are subsequently transferred by a carrier
gas (typically argon) through a small aperture from the aggregation chamber of the GAS to the main
deposition chamber, where they are collected on substrates. This deposition strategy offers several key
benefits as compared to other methods used for the production of NPs—high purity, possibility to tailor
kinetic energy and size distribution of produced NPs, directionality of the deposition process, which
is suitable for the production of patterned surfaces, as well as the possibility to deposit NPs on the
substrates of virtually any material that is compatible with high vacuum conditions. Furthermore, gas
aggregation cluster sources can be easily combined with other vacuum-based deposition techniques
and, hence, nanocomposite coatings with different architectures can be fabricated. For instance, our
group recently reported on the fabrication of Ag/a-C:H and Cu/a-C:H nanocomposites with metallic
NPs randomly distributed in the a-C:H matrix [61,62], metal/plasma polymer sandwich structures [63],
gradient coatings [64,65], and multi-layered metal/plasma polymer nanocomposites [66–68].

In analogy to “conventional” magnetron sputtering, magnetron-based GAS systems were initially
employed generally for the production of various metallic (e.g., Ag [69–71], Cu [72,73], Al [74],
Ti [75–77], Co [78,79], Pt [80,81], Nb [82], Pd [83], W [84], Ni [85], Ru [86]) and metal-oxide NPs [87,88].
However, our group recently showed that GAS systems may also be easily adapted for the production
of plasma polymer NPs if the polymeric target is sputtered in the RF mode [89–93].

Lately, the interest in the production and utilization of heterogeneous multi-component NPs led
to the development of three principal approaches:

(1) Use of bi-metallic composite targets. In this case, the targets composed of two metals were
sputtered, which gave rise, depending on the operational conditions, to the formation of
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heterogeneous NPs with different structures (core@shell, onion-like structure, dumbbell-like
structure) [94–96].

(2) Multi-magnetron approach. Up to three individual planar magnetrons were placed into a
single aggregation chamber. Depending on the mutual position of the magnetrons, the applied
magnetron currents and the sputtered materials, alloy, core-satellite, Janus-like, core@shell or
core@shell@shell NPs were produced [97–101].

(3) In-flight coating/modification of NPs. In this case, NPs produced by GAS were modified/coated
in-flight in an auxiliary chamber located in between the GAS and the substrate. This method
was reported to be effective for oxidation of the surface layer of metallic NPs [102], production of
core@shell NPs [103–106], and NPs decorated by other materials (so-called strawberry-like or
core-satellite structures) [107].

The above-mentioned strategies were successfully tested by different research groups. However,
the majority of the research published to date focused on the production of inorganic multi-component
NPs. The aim of this featured article is to demonstrate that all three strategies are also applicable for
the production of metal/plasma polymer NPs. To meet this general aim, all the examples involved
sputtered Nylon (C:H:N:O) particles only. Nylon was selected on the basis of previous studies of sputter
deposition of C:H:N:O plasma polymer thin films, which revealed that such materials are suitable for
various bio-medical applications as they can enhance the adhesion and attachment of biomolecules or
cells [108,109], and can be utilized for the design of systems for controlled drug-delivery [110]. The
article is organized as follows: Section 2 briefly presents the deposition setups; Section 3.1 presents the
main features for the production of C:H:N:O NPs by the GAS source with the magnetron equipped
with the Nylon 6,6 target; Section 3.2, Section 3.3, and Section 3.4 present the first results that were
obtained by the use of the composite target, the dual-magnetron system, and the deposition setup for
the in-flight deposition of silver onto C:H:N:O NPs; and finally, the results are briefly summarized in
Section 4.

2. Materials and Methods

The system schematically depicted in Figure 1a was used for the deposition of plasma polymer
C:H:N:O nanoparticles and heterogeneous metal/plasma polymer particles. It was based on a planar
water-cooled RF magnetron that was inserted into a water-cooled gas aggregation chamber (102 mm
inner diameter). The magnetron was equipped either by the Nylon 6,6 target (Goodfellow, 81 mm
in dimeter, 3 mm thick) or by the same target with a strip of a Cu plate (Figure 1b). The magnetron
was powered by an RF power supply (Dressler, Cesar 133) through an automatic matching network
(ADTEC, AMV-1000-EN). If not specified elsewhere in the text, Ar was used as the working gas. The
aggregation chamber was terminated by a conical lid with a circular orifice 2.5 mm in diameter. The
orifice separated the aggregation chamber from the rest of the deposition system. The deposition rate
was measured by a quartz crystal microbalance located in the main deposition chamber.
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size [111]. The mono-dispersity of the produced NPs (see Figure 3) suggests that all the NPs reached 
the critical size at the same time. Furthermore, the critical size of the NPs was highly sensitive to the 
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Figure 1. (a) Basic system for the deposition of plasma polymer nanoparticles (NPs). (b) Image of
Nylon 6,6 with Cu strip. (c) Dual-magnetron system. (d) Setup for in-flight modification of C:H:N:O
NPs by silver.

In addition to the basic configuration, two modifications were tested as well. In the first case,
a second magnetron equipped with an Ag target (Safina, 3 inch in diameter, with a thickness of
3 mm) was installed into the aggregation chamber perpendicularly to the one equipped with the
Nylon 6,6 target (Figure 1c). This additional magnetron was operated in a direct current (DC) mode
(Advanced energy, MDX 500). The second configuration was used for the in-flight coating of C:H:N:O
nanoparticles by silver. In this case, an additional chamber was introduced between the GAS and the
main deposition chamber (Figure 1d). This part of the deposition system consisted of 3 inch planar
magnetron installed perpendicularly to the direction of the beam of the C:H:N:O nanoparticles and
was ended by an orifice (3 mm in diameter).

The morphology of the produced particles was evaluated by means of a scanning electron
microscopy (SEM, MIRA 3 Tescan, Brno, Czech Republic) or a transmission electron microscopy (TEM,
JEOL2200FS, Akishima, Japan). The optical properties of the fabricated nanoparticles were determined
by UV-Vis spectrophotometry (Hitachi U-2910, Tokyo, Japan) in the spectral range 325 nm–800 nm.

3. Results

3.1. Gas-Phase Fabrication of C:H:N:O Nanoparticles

The first step in this study was to investigate the properties of C:H:N:O NPs produced by the GAS
system equipped with the Nylon 6,6 target. It was found that the key parameter for the production of
C:H:N:O NPs was the pressure in the aggregation chamber. For low pressures, the molecular fragments
emitted from the Nylon target predominantly condensed on the walls of the aggregation chamber,
where they formed a thin compact film, and no NPs were detected in the main deposition chamber.
The formation of thin film in the aggregation chamber was confirmed by ellipsometric measurements
of the coatings deposited on Si wafers that were introduced into the aggregation chamber of the GAS
at a distance of approximately 50 mm from the magnetron target. As the pressure in the aggregation
chamber increased, the deposition rate of the C:H:N:O film gradually decreased and at about 100 Pa,
the deposition rate of the C:H:N:O film inside the aggregation chamber approached zero (Figure 2a).
At this moment, the C:H:N:O NPs became detectable by the quartz crystal microbalance (QCM) that
was inserted into the main deposition chamber. This suggests that starting at a pressure of 100 Pa,
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the inter-molecular collisions prevented the out-diffusion of the sputtered fragments away from the
plasma and forced them to recombine in the volume of the discharge that gave rise to the formation of
the plasma polymer NPs [93]. Such formed NPs were afterwards transported by the flow of the carrier
gas to the main deposition chamber and detected by the QCM. A further increase of the pressure
subsequently led to an increased deposition rate of the C:H:N:O NPs. However, as can be seen in
Figure 2b, the deposition rate was found to not be temporally stable—instead of a linear rise of the
frequency shift of the QCM (the shift in the resonant frequency is directly proportional to the mass
deposited) with the deposition time, the NPs arrived to the crystal in periodically repeated pulses. The
frequency of these deposition bursts was approximately 1 per minute. Such behavior is well-known
in the field of dusty-plasma and is connected to the charging of growing NPs, the confinement of
negatively charged NPs in a plasma potential, and their subsequent release from the plasma bulk
as soon as they reach a critical size [111]. The mono-dispersity of the produced NPs (see Figure 3)
suggests that all the NPs reached the critical size at the same time. Furthermore, the critical size of the
NPs was highly sensitive to the operational parameters (plasma density, energy of charged species, gas
flow, gas temperature, working gas, etc.) and therefore the size distribution of the NPs can be finely
tuned in a relatively wide range by adjusting these parameters [89,93]. An example of this behavior is
presented in Figure 3, where the NPs produced using either argon or nitrogen are compared.
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Infrared Spectroscopy (FT-IR) spectra are compared as measured on the NPs deposited with either 
argon or nitrogen and in Table 1, where elemental composition of C:H:N:O NPs is presented. 
Evidently, the substitution of argon by nitrogen caused a substantial decrease of the fraction of C-
C/C-H chemical bonds that was accompanied by the significant increase of the number of nitrogen-
containing moieties. This is a very important and valuable feature as it allows for the production of 
NPs not only with different sizes but with altered chemical compositions and related functionalities.  

Figure 2. (a) Pressure dependences of the deposition rate of C:H:N:O film inside the aggregation
chamber and effective deposition rate of C:H:N:O NPs in the main deposition chamber. (b) Pressure
dependences of frequency shift on quartz crystal microbalance (QCM) installed into the main deposition
chamber. The change in the frequency of quartz crystal is directly proportional to the deposited mass.
RF power 40 W.

Naturally, the variation of the working gas led not only to the variation of the mean size of the
produced NPs but also to the alteration of their chemical composition, in analogy to the deposition of
thin films by the RF magnetron sputtering of Nylon [108]. For instance, the substitution of argon by
nitrogen resulted in the formation of nitrogen-rich NPs. This is demonstrated in Figure 4, where the
high-resolution C 1s X-Ray Photoelectron Spectroscopy (XPS) spectra and Fourier Transform Infrared
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Spectroscopy (FT-IR) spectra are compared as measured on the NPs deposited with either argon or
nitrogen and in Table 1, where elemental composition of C:H:N:O NPs is presented. Evidently, the
substitution of argon by nitrogen caused a substantial decrease of the fraction of C-C/C-H chemical
bonds that was accompanied by the significant increase of the number of nitrogen-containing moieties.
This is a very important and valuable feature as it allows for the production of NPs not only with
different sizes but with altered chemical compositions and related functionalities.Materials 2019, 12, x FOR PEER REVIEW 6 of 16 
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Figure 4. (a) High-resolution X-Ray Photoelectron Spectroscopy (XPS) spectra of C 1s peak of NPs 
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source (1486,6 eV, 200W, Specs). (b) Fourier Transform Infrared Spectroscopy (FT-IR) spectra of NPs 
deposited in pure Ar (top) and N2 (bottom) recorded by FT-IR (Bruker Equinox 55) in a reflectance-
absorbance mode using gold-plated silicon wafers as substrates. 
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Figure 4. (a) High-resolution X-Ray Photoelectron Spectroscopy (XPS) spectra of C 1s peak of NPs
deposited in Ar (top) and N2 (bottom) measured by XPS (Phoibos 100, Specs) with an Al Kα X-ray source
(1486.6 eV, 200W, Specs). (b) Fourier Transform Infrared Spectroscopy (FT-IR) spectra of NPs deposited
in pure Ar (top) and N2 (bottom) recorded by FT-IR (Bruker Equinox 55) in a reflectance-absorbance
mode using gold-plated silicon wafers as substrates.
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Table 1. Elemental composition of C:H:N:O NPs deposited using Ar or nitrogen and relative
contributions of different bond types, resulting from spectral de-convolution of C 1s peak.

Working
Gas

O
[at.%]

C
[at. %]

N
[at. %]

C-C/C-H
[%]

C-O/C-N
[%]

C=O/N-C=O
[%]

O-C=O
[%]

Ar 12 76 12 55 37 6 2
N2 6 64 30 23 62 12 2

3.2. Composite Nylon/Cu Target

The first strategy tested with the aim to produce heterogeneous metal/C:H:N:O NPs was based
on the utilization of a Cu/Nylon composite target. It was found out that the introduction of the Cu
strip onto the Nylon 6,6 target resulted in the formation of composite NPs at a relatively high pressure,
which assured the stable production of bare C:H:N:O NPs. However, the supplied RF power had to be
increased up to 80 W to provide a sufficient supply of copper. As shown in Figure 5a, NPs produced in
this way had a rather complicated structure—the NPs were composed of Cu particles with different
sizes (from several nm up to almost 50 nm) that were all embedded into a plasma polymer matrix. Such
a structure with multiple Cu cores enveloped by a shell of the plasma polymer resembles the structure
of NPs formed when the metallic target was sputtered in the Ar/hexamethyldisiloxane mixture [112].
It is assumed that the multi-core@shell NPs originated from the competing growth of metallic and
plasma polymeric NPs, plasma polymerization, phase segregation of the metal and plasma polymer,
and subsequent coalescence of the produced heterogeneous NPs.
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The presence of metallic NPs was also evidenced by UltraViolet-Visible (UV-Vis) spectroscopy
that showed a localized surface plasmon resonance (LSPR) peak at about 600 nm, which is typical for
Cu NPs embedded in plasma-sputtered nylon [66] (Figure 5b).

However, the deposition process was found to be very unstable. After switching on the plasma,
the deposition rate initially fluctuated, with a frequency close to the one observed for the case in which
only the Nylon 6,6 target was used. This changed after several minutes of the plasma operation when
the production of heterogeneous Cu/C:H:N:O NPs dramatically decreased and eventually completely
stopped (Figure 6a). The aforementioned temporal evolution of the deposition rate followed the
same trend as the intensities of Ar (750 nm) and CN (B2Σ+

−X2Σ+ at 388 nm) spectral emission lines
and bands. The most noteworthy was the substantial decrease of the intensities of these spectral
systems after approximately 3 min of the plasma operation, i.e., at the time at which the production
of the NPs started to decrease rapidly. In contrast, the intensity of Cu spectral lines was found to
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significantly increase 3 min after the plasma ignition, which suggests enhanced sputtering of copper
at the later stages of the plasma operation. The enhanced sputtering of Cu was accompanied by a
partial re-deposition of Cu back onto the target that limited sputtering of its polymeric part. Indeed,
the substantial re-deposition of copper was confirmed by a visual inspection of the target after the
magnetron operation, which showed that almost all the target’s surface had been covered by copper
(see Figure 6b). Because of this, the target had to be dismounted and cleaned in order to restart the
production of Cu/C:H:N:O NPs, which limits the applicability of this deposition strategy. Furthermore,
the high power necessary for the efficient sputtering of copper resulted in the substantial heating of the
system at longer plasma durations (The temperature of the target approached 150 ◦C after 5 min of the
plasma operation as measured by IR-thermocamera). The elevated temperature subsequently hindered
the nucleation of NPs and thus no NPs were formed or detected after the prolonged plasma operation.
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3.3. System with Two Independent Magnetron

In order to avoid the issues connected with the gradual covering of the Nylon part of the target
by the metal re-deposit, two independent magnetrons were installed in the aggregation chamber
(Figure 1c). In this situation, both the high pressure and the direction of the gas flow limited the
contamination of the Nylon target by the metallic layer (silver in this case). As a result, the production of
the NPs became temporally stable. Nevertheless, the synthetized NPs also exhibited a multi-core@shell
structure (Figure 7) similar to the one observed when the composite target was used (Figure 5). Such a
finding was expected, as both the plasma polymerization and the growth of the NPs were also running
simultaneously in this case.
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In contrast to the setup with the composite Cu/Nylon target, the use of two individual magnetrons
offered—besides a better stability of NPs production—higher flexibility in terms of the produced
materials, as it allowed for the independent control of the sputtering rates of polymer and metal.
In other words, decoupling the sputtering of Nylon and metal made it possible to regulate the
metal/plasma polymer ratio in the produced NPs. This effect is demonstrated in Figure 7b, where
UV-Vis spectra are presented for the samples that were prepared at a constant RF power of Nylon
sputtering, but at different DC magnetron currents for the sputtering of silver. For the low DC, the
UV-Vis spectra had a shape similar to the spectra of the C:H:N:O NPs, with only a weak LSPR peak
of silver located approximately at 450 nm. With the increasing DC magnetron current, i.e., with the
increasing amount of sputtered silver, the intensity of the LSPR peak also increased, which reflects the
higher number of Ag NPs embedded into the C:H:N:O matrix. In addition, the width of the silver
LSPR peak dramatically broadened due to the wide size distribution of the silver inclusions in the
“nanocomposite” NPs. Finally, for the magnetron current of 500 mA, the UV-Vis spectrum resembled
the one obtained when only Ag NPs were produced with the RF magnetron switched off. In other
words, the production of Ag NPs started to dominate over the production of the plasma polymer
matrix and the NPs were mostly metallic. The absence of the plasma polymer matrix/envelope also
caused a hypsochromic shift of the silver LSPR peak to 370 nm.

3.4. In-Flight Coating of C:H:N:O Nanoparticles

In the two previous cases, i.e., for the situations when either the composite target or the
dual-magnetron system was used, multi-core@shell NPs were produced due to the fact that both
the plasma polymerization and the production of NPs took place at the same time. In order to fully
decouple these processes, a system for the in-flight coating of NPs was recently developed [113].
In this case, the gas-phase production of C:H:N:O NPs was separated from the deposition of metal
(silver) that was performed in the auxiliary “inoculation” chamber. As a result, the final structure of
the NPs differed significantly; instead of multi-core@shell NPs, C:H:N:O NPs decorated by small Ag
nanoparticles were formed, as depicted in Figure 8. Such strawberry-like structures arose as a result
of the condensation of supersaturated silver vapor on the C:H:N:O NPs that acted as efficient sites
for the nucleation of silver NPs. Silver atoms were adsorbed onto the surface of the C:H:N:O NPs
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and subsequently formed small Ag NPs in a similar way to the “conventional” sputter deposition of
metals onto solid substrates at lower pressures. However, the drawback of this configuration is that
the volume growth of Ag NPs was not fully inhibited, thus purely silver NPs were formed alongside
the metal/plasma polymer strawberry-like NPs. Such metallic NPs, which are considerably bigger than
those detected on the surface of the C:H:N:O nanoparticles, are clearly visible in Figure 8, especially
for the higher DC magnetron currents used for silver sputtering.
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These preliminary results, which show that the strawberry-like metal/plasma polymer NPs can
be prepared in a fully physical way, are very promising, as this method may substitute recently used
techniques that employ wet-chemical synthesis. Further research is, however, still needed in order
to enable the production of nanoparticles with tailor-made properties (e.g., amounts of metallic NPs
attached to a single plasma polymer NPs).

4. Conclusions and Outlook

This featured article summarizes the principles and different strategies that utilize magnetron-based
gas aggregation cluster sources for the fabrication of heterogeneous metal/plasma polymer nanoparticles.
In comparison with recent results reported for metal-metal NPs, this article shows that three
different strategies may be followed: (i) the use of a metal/polymer composite sputtering target,
(ii) a multi-magnetron strategy, and (iii) in-flight deposition of metal onto plasma polymer NPs. It was
shown that depending on the followed strategy, NPs with different structures can be produced. For
the cases in which the plasma polymerization and formation of both metal and plasma polymer NPs
took place at the same time, multi-core@shell nanoparticles were produced. From this point of view,
the procedure that utilizes two independent magnetrons for sputtering of metal and polymer targets
allows for the tailoring of the properties of the formed nanoparticles, which is not possible when a
single composite target is used. Furthermore, the results reveal that the complete decoupling of plasma
polymer NPs production and the sputtering of metal opens the way to synthetizing core-satellite
NPs, i.e., nanoparticles, with a large plasma polymer core decorated by numerous small metallic NPs.
Although emphasis was placed solely on metal/C:H:N:O NPs in this study, it is worth stressing that
similar procedures may be employed for other combinations of materials. Furthermore, the physical
method of NPs production reported here offers several key benefits as compared to methods based on
the chemical synthesis of heterogeneous NPs and thus presents a vivid alternative to them. Nevertheless,
it is also important to note that many challenges still have to be faced before the wider spread of such
nanomaterials in various fields (e.g., bio-sensing, tissue engineering, drug delivery). These challenges
are related to a better control of the physico-chemical and/or bio-related properties of produced NPs,
which requires not only more targeted experiments using different materials/configurations/operational
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conditions but a better understanding of the processes that occur during the formation and growth of
NPs. Thus, to conclude, the presented results should be considered as a promising starting point that
opens new opportunities for the sputter deposition of functional nanomaterials.
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32. Drábik, M.; Polonskyi, O.; Kylián, O.; Čechvala, J.; Artemenko, A.; Gordeev, I.; Choukourov, A.; Slavínská, D.;
Matolínová, I.; Biederman, H. Super-Hydrophobic Coatings Prepared by RF Magnetron Sputtering of PTFE.
Plasma Process. Polym. 2010, 7, 544–551. [CrossRef]

33. Kuzminova, A.; Shelemin, A.; Kylián, O.; Petr, M.; Kratochvíl, J.; Solař, P.; Biederman, H. From
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