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Abstract: Mechanical properties, such as strength and stiffness, of laminated carbon fiber reinforced
plastic (CFRP) are generally affected by the lay-up method. However, no precise design rules to replace
steel products with CFRP have been established that satisfy these properties. Therefore, this study
proposes a set of rules to design automotive parts with equivalent bending stiffness through structural
analysis and genetic algorithms (GAs). First, the thickness of the CFRP product was determined
by comparing the bending deformation of steel products by structural analysis. To minimize the
orthotropic characteristics of CFRP, the quasi-isotropic lay-up method was implemented to determine
the thickness. Next, the lay-up angle was determined using GAs. The optimized lay-up angle of
the CFRP product with minimum bending deformation was determined by population generation,
cross-over, mutation, and fitness evaluation. CFRP B-pillar reinforcement was fabricated using the
determined conditions and the bending deformation of the single component was evaluated. Finally,
the B-pillar assembled with CFRP reinforcement was investigated by the drop tower test.

Keywords: carbon fiber reinforced plastic (CFRP); structural analysis; genetic algorithms (GAs);
optimization; B-pillar; reinforcement; drop tower test

1. Introduction

Carbon fiber reinforced plastic (CFRP) finds its use in various applications including aircraft,
machinery, sports equipment, and automobile. Reducing the weight of automotive parts has lately
become an important issue to solve environmental protection problems and reduce fuel consumption.
Various attempts have been made to replace steel products with CFRP products, which have equivalent
mechanical properties (strength and stiffness) [1–4].

Generally, a design rule that satisfies the equivalent mechanical properties of steel products must
be implemented to the frames of CFRP automotive parts. Most studies conducted on the design rules
of CFRP focused on predicting the strength and stiffness of simple shapes considering the weaving
method of materials, thickness, and lay-up angle [5–7]. Soremekun [8] studied a lamination method
using modified genetic algorithms (GAs). Design parameters such as the weaving method of materials,
thickness, and lay-up angle were considered to minimize the weight and maximize the bending stiffness
for the CFRP plate. However, designing complex shapes, such as automotive parts, using CFRP is

Materials 2019, 12, 2309; doi:10.3390/ma12142309 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0003-1838-9838
https://orcid.org/0000-0002-4064-739X
http://www.mdpi.com/1996-1944/12/14/2309?type=check_update&version=1
http://dx.doi.org/10.3390/ma12142309
http://www.mdpi.com/journal/materials


Materials 2019, 12, 2309 2 of 12

difficult because the bending stiffness of simple shapes was calculated by the classical lamination theory
(CLT). To implement complex shape composites in automotive parts, Kim et al. [9] studied the design of
composite bumper beam using impact analysis combined with micro-GAs. This study showed that the
optimally designed composite bumper beam reduced the weight by 33% as compared to steel products
and improved the impact performance. Similarly, Belingardi et al. [10] studied the design optimization
of automotive bumpers using composite and recyclable thermoplastic materials, wherein the thickness
of the CFRP product was determined considering the stiffness of the steel product. However, they
did not study the design of lay-up angle to reinforce the bending stiffness of laminated CFRP. Several
studies have been conducted on the design and optimization of CFRP products. However, the design
procedure of the CFRP product that satisfies the mechanical properties of steel products with complex
shape has not been established [11–14].

This study aims to propose the design rules of automotive parts for B-pillar reinforcement with
bending stiffness equivalent to steel products. The designing of rules was classified into two stages:
Determination of thickness and optimization of lay-up angle. First, the thickness of the product with
the greatest effect on the bending stiffness was determined by structural analysis. In the first stage, the
thickness was determined by adding one ply to the CFRP product until the required bending stiffness
was achieved. The second stage optimized the lay-up angle of the CFRP product by implementing GAs.
Because the thickness (number of plies) was determined in the first stage, GAs used the lay-up angle
as a design parameter. The lay-up angle with maximum bending stiffness was determined through
GAs and its bending stiffness was compared to that of steel products. Next, the validity of the design
rules was evaluated by the bending test of CFRP reinforcement manufactured by implementing the
designed thickness and lay-up angle. Finally, the drop tower test was performed using the assembled
B-pillar to evaluate whether CFRP products can replace steel products.

2. Methodology

2.1. Material

A commercial twill weave prepreg (fabricated by SK Chemicals, Seongnam-si, Korea) was used in
this study. A polyester resin based on thermoplastic polyurethane with a glass transition temperature
(Tg) of 110 ◦C was used. The thickness of the prepreg was 0.3 mm. The carbon fiber volume fraction
and density of the prepreg were evaluated to be 45% and 1.52 g/cm2, respectively.

To obtain the mechanical properties of cured CFRP, tensile tests were performed in accordance
with ASTM D3039 [15]. The universal test machine (MTS, 10 ton, Eden Prairie, MN, USA) was used to
conduct the test at a constant rate of 2 mm/min. The flat plates laid-up by [0◦]5 were cut at 0◦, 45◦, and
90◦ with dimensions 250 × 25 × 1.5 mm3 to fabricate the tensile specimens. The results of the tensile
tests with CFRP showed that E11 and E22 were 40.35 GPa, G12 was 9.51 GPa, (strain range 0.1–0.3%) and
ν12 was 0.13. The mechanical properties of G13 and G23 in the other direction calculated by Hooke’s
law are listed in Table 1.

Table 1. Mechanical properties of carbon fiber reinforced plastic (CFRP) laminate.

Mechanical Properties Values

Elastic modulus in fiber direction (E11) 40.35 GPa
Elastic modulus in transverse direction (E22) 40.35 GPa

Shear modulus in 1–2 plane (G12) 9.51 GPa
Shear modulus in 2–3 plane (G23) 0.30 GPa
Shear modulus in 1–3 plane (G13) 0.30 GPa

Poisson’s ratio (ν12) 0.13
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2.2. Quasi-Isotropic Lamination Method

The thickness of the laminate was determined during designing the CFRP product. Owing to
the excessive computation time, it is recommended that the thickness and lay-up angle should not be
considered simultaneously. Therefore, the thickness is calculated considering the lay-up angle with the
same mechanical properties according to the directions.

Generally, the elastic modulus of CFRP at 0◦, 45◦, and 90◦ was obtained by the tensile test, while
Equation (1) was used to calculate its value at other angles [16].

Eαβ[θ] =
1− ναβνβα

ναβQβα[θ]
(1)

where E denotes the elastic modulus, Q is the stiffness matrix, θ is the lay-up angle of the layer, and ν is
the Poisson’s ratio. The elastic modulus obtained with this equation can be used to represent the polar
diagram. The elastic modulus at ±45◦ was much lesser than that at 0◦ and 90◦ where the laminate was
laid-up to be [0]n, as shown in Figure 1a. If the load acts at ±45◦, the thickness of the CFRP product may
significantly increase. However, the lay-up angle calculated by the quasi-isotropic laminate method of
[0/45]n exhibits elastic modulus that is similar to the isotropic material, as shown in Figure 1b. In this
study, the initial thickness of the CFRP product depended on the direction of the applied load because
the lay-up angle was not considered in the first stage. Therefore, the quasi-isotropic lamination method
was used to minimize the effect of orthotropic properties while determining the initial thickness [17–20].
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Figure 1. Polar diagram of elastic modulus for CFRP. (a) [0]n; (b) [0/45]n.

2.3. Design Procedure of CFRP Product

In this study, the designing of rules was classified into two stages: Determination of initial
thickness and optimization of lay-up angle to simplify the design of the CFRP product. Figure 2 shows
the flowchart of the design procedure. In the first stage, the bending deformation (DS) of steel products
was determined through structural analysis. The measurement of the bending stiffness of complex
shaped products was difficult. Therefore, the amount of bending deformation applied at the load was
compared [21–23]. Next, the CFRP product with thickness same as that of steel product was modeled
and evaluated through structural analysis of linear finite element simulation. To reduce the difference
in mechanical properties due to orthotropic characteristics of the CFRP product, the quasi-isotropic
lamination method of [0/45]n was implemented. The bending deformation of the CFRP product (DC)
was then compared with that of steel products in the same position. The target value in the first stage
was determined by adding 10% margin to the DS because the second stage could strengthen DC. If the
DC did not satisfy the target value, a ply was added. This process was repeated until the target value
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was achieved. It is also one method to perform local reinforcement [24]. In this study, the simple
method was applied to add a ply to the CFRP product considering manufacturing process.
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Figure 2. Flowchart of the design procedure for CFRP products.

In the second stage, the lay-up angle was optimized though structural analysis and GAs. First,
the lay-up angle was determined considering the symmetry of the orthotropic material. The initial
population was then generated by random selection. Second, the quality was evaluated through
structural analysis. In addition, the tournament selection with the amount of minimum DC for the
CFRP product was applied to determine the next generation. Next, the crossover and mutation
processes were conducted using the selected results. Finally, the quality and convergence of results
were determined. When the convergence was more than 90%, GAs were terminated and the CFRP
product with determined lay-up method by GAs was compared with the DS. If the target value was
achieved, one ply was removed from the CFRP product and the second stage was re-executed to assess
whether its thickness can be reduced. However, if the target value was not achieved, the second stage
was performed by adding one more ply.

3. Application of Design Rules to B-Pillar Reinforcement

3.1. Determination of Thickness

To determine the thickness of the B-pillar reinforcement, structural analysis was conducted by the
commercial program ABAQUS 2019, where linear static analysis was used to reduce the computation
time because several cases were analyzed in the GAs. A total of 3546 shell elements were used in the
structural analysis of the B-pillar reinforcement model. As shown in Figure 3, constraint conditions
were given to four areas fixed in x, y, and z-axes and rotation of x and z. A load of 1 kN was applied at
the top of the product surface.
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Figure 3. Structural analysis model of B-pillar reinforcement.

Through structural analysis, the amount of DS was calculated to be 2.26 mm. Therefore, the target
value was 2.49 mm to consider the 10% margin of DS. Based on this result, structural analysis of
the CFRP product was first performed at 1.2 mm thickness. Figure 4 shows the results of structural
analysis for varying thickness by adding a ply to the CFRP B-pillar reinforcement until the target value
was achieved. The amount of DC with 1.2 mm thickness to stack 4 plies was 8.40 mm higher than the
target value. The structural analysis of other thickness was conducted by adding one ply under same
conditions. Consequently, the target value was achieved at thickness 2.4 mm to stack 8 plies. Therefore,
the thickness of the CFRP B-pillar reinforcement was determined to be 2.4 mm.
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3.2. Determination of Lay-Up Method Using GAs

In the second stage, GAs were used to obtain the optimized lay-up angle for the CFRP product.
Table 2 shows the parameters of GAs to conduct the optimization of the lay-up angle for. Using the
thickness 2.4 mm determined in Section 3.2, the lay-up angles of the laminate were determined to be
0◦, 15◦, 30◦, 45◦, 60◦, and 75◦, considering the symmetry of the orthotropic material. In addition, the
minimum amount of DC was considered the objective function of the quality evaluation.
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Table 2. Parameters of genetic algorithms (GAs).

Parameter Value

Population size 100
Fiber array 0◦, 15◦, 30◦, 45◦, 60◦, 75◦

Probability of crossover 70%
Probability of mutation 5%

Crossover method One-point crossover
Fitness evaluation Tournament selection

The procedure to optimize the lay-up angle of the laminate is as follows. First, the initial population
was generated by the random selection method. The parameters of the lay-up angles 0◦, 15◦, 30◦, 45◦,
60◦, and 75◦ were applied to each layer of the laminate consisting of eight plies. Second, the quality
was evaluated by comparing the amount of DC depending on the lay-up angle through structural
analysis. The tournament selection method was employed to generate the next 20% of the population.
For tournament selection, two chromosomes were randomly selected and the better quality was
transferred to the next generation. Third, the crossover operator was used to interchange and combine
the genes between individuals. The one-point crossover method was employed to generate 70% of the
offspring from random parents. Next, mutation was used to convert random genes to genetic diversity
with 5% probability. Finally, steps 2–5 were repeated until the member of the population satisfied the
stopping condition. In this study, the progress was stopped at the convergence of more than 90% of
the population. The newly generated population with minimum DC in the 5th generation showed
more than 95% convergence at the 10th generation, as shown in Figure 5. Thus, the lay-up angle of
converged population was evaluated to be [45◦2/0◦3/45◦2/0◦].

To verify the optimal lay-up angle of CFRP reinforcement, the amount of DC was compared with
that of steel products. The amount of DC for the optimized CFRP product was 2.25 mm, which was
satisfied by the bending deformation of 2.26 mm of steel products. Finally, one ply was removed
from the CFRP product and the second stage was executed again to ensure the reduction in weight of
the CFRP product. The amount of bending deformation of the CFRP reinforcement with seven plies
(2.1 mm) was 2.81 mm, which did not satisfy the amount of DS. Therefore, the optimization of lay-up
angle was determined to be [45◦2/0◦3/45◦2/0◦].
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4. Verification of CFRP B-Pillar Reinforcement

4.1. Manufacturing of CFRP B-Pillar Reinforcement

CFRP B-pillar reinforcements with the quasi-isotropic and optimal laminate methods were
manufactured by the prepreg compression molding (PCM) process [25]. Figure 6a shows the
experimental equipment consisting of the press, molds, heating and cooling system, and heating
chamber to fabricate the CFRP B-pillar reinforcement. First, the pre-consolidated laminate that consisted
of eight layers was cut into a dimension of 430 × 350 mm2 using a water-jet. To prevent the laminate
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from sticking to the mold surface, a liquid release agent for high temperature was spread on the mold
surface. Second, the laminate was preheated to a temperature of 200 ◦C to prevent the convective heat
loss below Tg when the laminate was transferred from the heating chamber to the mold. The heated
laminate was transferred and placed on the forming mold heated to 150 ◦C. The laminate immediately
deformed and the molds were then cooled down to 80 ◦C by the cooling water to demold the CFRP
product. The manufactured B-pillar reinforcement is shown in Figure 6b. The final products were cut
by the ultrasonic cutting machine to the same size as steel products.
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4.2. Evaluation of CFRP B-Pillar Reinforcement

To determine weight reduction, the weights of the steel products and CFRP product were measured
to be 540 and 200 g, respectively. Thus, a 62.96% reduction in the weight of B-pillar reinforcement was
achieved by applying the CFRP material.

Bending tests were performed to verify that the CFRP product satisfied the amount of DS. CFRP
B-pillar reinforcements were fabricated by two lay-up angles [0◦/45◦2/0◦] and [45◦2/0◦3/45◦2/0◦] and
installed, as shown in Figure 7. The universal testing machine (MTS, 10 ton) was used to measure the
stroke per load. The radius and load of the punch was 5 mm and 1 kN, respectively. The fixture frame
used to install the CFRP B-pillar reinforcement was prepared to perform bending tests under the same
conditions as those used in structural analysis.
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Figure 8 shows the experimental results of the bending deformation of B-pillar reinforcement
made by steel, quasi-isotropic, and optimized lay-ups. The effectiveness of the design rules could be
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verified because the bending deformation of 2.19 mm of the optimized product was the smallest in
comparison with steel products with bending deformation and quasi-isotropic product being 2.26
and 2.23 mm, respectively. However, the test results of bending deformation of both products were
obviously reduced compared to the structural analysis. To assess this reason, forming analysis was
performed in the same way as the manufacturing process using the mechanical properties of a previous
study [26].
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Figure 8. Experimental results of bending deformations for each product.

As shown in Figure 9, a shear angle occurred in the z-axis, where the bending load acted. Because
the bending stiffness of the CFRP product was strengthened in the direction in which the fibers were
arranged, bending deformation was smaller than structural analysis [27–29]. Therefore, structural
analysis considering the shear angle that occurred in the product is required for precise product design.
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Figure 9. Result of forming analysis for CFRP reinforcement.

The drop tower test was performed using the B-pillar assembled with CFRP reinforcement to
evaluate whether the designed product could achieve the same performance after assembly. The B-pillar
and CFRP reinforcement were joined using adhesive bonding (TEROKAL 5055) made by HENKEL,
Düsseldorf, Germany. Figure 10 shows the equipment of drop tower test to evaluate the energy
absorption of B-pillar. The drop weight and height from the B-pillar were 400 kg and 500 mm,
respectively. The B-pillar was welded using jigs fixed at the top and bottom in the direction of rotation
considering the welding position of the automotive frame.
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Figure 10. Equipment of drop tower test.

Figure 11 shows the graph of the reaction force per stroke for the drop tower tests with the B-pillar
(DP780) by applying DP590 and CFRP reinforcement. The experimental result shows that the reaction
force of the B-pillar with CFRP reinforcement was higher in all strokes. In addition, this configuration
had less strokes than the steel products. The energies absorbed by B-pillar with DP590 and CFRP were
2.252 kJ and 2.303 kJ, respectively. Both energy absorption and bending deformation were accurately
evaluated for the B-pillar with CFRP reinforcement. The CFRP reinforcement was accurately attached
to the B-pillar after the drop tower test and it was assumed that this adhesion performance prevented
excessive bending deformation of the B-pillar, as shown in Figure 12. The conventional B-pillar was
welded by the spot welding. The stiffness of conventional B-pillar was insufficient as comparted with
the B-pillar applied CFRP in which the entire contact area was tied. Therefore, the design rules in this
study are effective to replace the steel products with CFRP products.
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5. Conclusions

In this study, the design rules of automotive parts with complex shape were proposed to replace the
steel products with CFRP products that satisfies the mechanical properties such as strength and stiffness.
The designing of rules was divided into two stages: Determination of thickness through structural
analysis and determination of the lay-up angle through GAs with structural analysis. The design rules
were validated by the bending test using the CFRP reinforcement, manufactured with the designed
thickness and lay-up angle. Finally, the drop tower test was conducted using assembled B-pillar to
determine whether CFRP products can replace steel products.

1. The thickness of CFRP product was determined by the quasi-isotropic laminate method to
compare the bending deformation of steel products by structural analysis. Next, the lay-up angle
was determined through structural analysis. The result of the lamination angle [45◦2/0◦3/45◦2/0◦]
at 2.4 mm was obtained that satisfied the DS;

2. CFRP B-pillar reinforcement was fabricated as the determined conditions by PCM process.
In order to evaluate weight reduction of B-pillar reinforcement, the weight was measured and
compared to steel product with CFRP product. As a result, 62.96% weight reduction of B-pillar
reinforcement was achieved in this study;

3. Bending test of single component was performed to compare the bending deformation of steel
products with CFRP products. The effectiveness of the design rule was verified because the
bending deformation (2.19 mm) of the optimized product was lower than that of steel products
(2.25 mm);

4. Drop tower test was performed using the assembled B-pillar with CFRP reinforcement to
evaluate whether the designed product could achieve the same performance after assembly.
The experimental result shows that the reaction force of B-pillar with CFRP reinforcement
was higher in all strokes. In addition, it is evident that B-pillar with CFRP has lesser bending
deformation. The energies absorbed by B-pillar with DP590 and CFRP were 2.252 and 2.303 kJ,
respectively. Therefore, the design rules proposed in this study were proven to be effective to
replace steel products with CFRP products.
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