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Abstract: A novel composite of FeCO3 nanoparticles, which are wrapped with reduced graphene
oxide (RGO), is fabricated using a facile one-spot solvothermal method. The composite consists of a
substrate of RGO and FeCO3 nanoparticles that are embedded in the RGO layers. The experimental
results for the FeCO3/RGO composite reveal a minimum refection loss (−44.5 dB) at 11.9 GHz when
the thickness reaches 2.4 mm. The effective bandwidth is 7.9 GHz between 10.1 and 18 GHz when
the refection loss was below −10 dB. Compared to GO and RGO, this type of composite shows
better microwave absorption thanks to improved impedance matching. Overall, this thin and
lightweight FeCO3/RGO composite is a promising candidate for absorbers that require both strong
and broad absorption.

Keywords: FeCO3/RGO; solvothermal method; formation mechanism; microwave
absorption properties

1. Introduction

Because of the ubiquity of electronic devices, electromagnetic radiation, and, in particular,
signal interference have become a global problem [1–3]. As a result, big efforts have been made to
reduce electromagnetic pollution and other related problems. One promising approach is the use of
high-performance microwave absorbing materials (MAMs). Graphene, a relatively new carbon-based
material, has excellent properties such as high electron mobility, high permittivity and a high specific
surface area, which can dampen electromagnetic waves effectively using polarization relaxation [4–7].
However, pure graphene can reflect most of the electromagnetic waves, resulting in being unsuitable
for MAM due to their poor impedance matching.

Fortunately, it is possible through to combine graphene with magnetic materials to overcome
this problem [8,9]. Most of the related studies are focused on soft magnetic materials, which have
high magnetic loss due to natural resonance, and they can produce better results as compounded with
graphene. For example, Cui et al. [10] prepared a hollow Fe3O4@RGO composite by a facile route.
The minimum reflection loss is −41.89 dB at 6.7 GHz. In the range of 1–4 mm, the reflection loss of
nanocomposite thickness is less than −10 dB at 3.4 GHz to 13.6 GHz. Wang et al. [11] loaded MnFe2O4

nanoparticles on RGO sheets by one-step hydrothermal method. The minimum reflection loss of
MnFe2O4/RGO is −32.8 dB at 8.2 GHz with the thickness of 3.5 mm, and the absorption bandwidth
with the reflection loss below-10 dB is up to 4.8 GHz (from 7.2 to 12 GHz). Feng et al. [12] synthesized
ZnFe2O4@SiO2@RGO core-shell microspheres by “coating-coating” method. The minimum reflection
loss of the sample with a thickness of 2.8 mm can reach −43.9 dB at 13.9 GHz. In recent years,
the composite of paramagnetic FeCO3 and RGO has shown great brilliance in the field of batteries
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due to its excellent electrochemical properties [13–15]. However, as far as we know, the microwave
absorption properties of FeCO3/RGO, especially its magnetic loss characteristic spectrum, have not
been investigated.

Therefore, FeCO3/RGO composites were synthesized using a one-pot solvothermal method.
To reveal the microwave absorption mechanism of the FeCO3/RGO composite, the frequency
dependence of both complex permittivity and the reflection-loss formation were studied and compared
with GO and RGO. The outcome of this study can aid the development of light-weight and broadband
electromagnetic-wave absorbers.

2. Experimental

10.8 g FeCl3·6H2O, 7.2 g urea, 5 g PVP and 1.2 g nano-iron powder were added into a 400 mL
graphene-oxide slurry (purchased from Qitaihe Baotailong New Materials Co., Ltd. (Qitaihe, China)
Containing GO 3.3 mg/mL). The mixture was dispersed, aided by ultrasonic treatment for 30 min,
to form a homogeneous solution, and subsequently put into a 500 mL Teflon-lined stainless-steel
autoclave, where it was kept at 200 ◦C for 12 h. After cooling to room temperature, the reaction
products were washed with deionized water and alcohol, three times. Finally, the reaction products
were dried in a vacuum furnace at 60 ◦C for 24 h.

The morphology, structure, surface elements, and the electromagnetic parameters were analyzed
using SEM, TEM, XRD, XPS, and VNA, field emission scanning electron microscopy (FE-SEM,
Nava Nano FE-SEM450/650, Eindhoven, Netherlands), transmission electron microscopy (TEM,
LI-BRA200, Oberkochen, German), X-ray diffraction (XRD, D/MAX-2500PC, Rigaku, Tokyo, Japan),
X-ray photoelectron spectroscopy (XPS, PHI5300, Ulvac-Phi, Tokyo, Japan), and Vector network
analyzer (VNA, PNA-N5244A, AGILENT, Santa Clara, CA, USA),respectively. The electromagnetic
parameters of the measured samples were prepared by mixing the products (60%) with molten paraffin
wax (40%) and placing them into a toroidal mold (Φin = 3 mm, Φout = 7 mm) with a thickness of
2.0–3.0 mm. The test software (AGILENT, Santa Clara, CA, USA) is 85071 and the calibration part is
85050D. Before the test, the permittivity of air was measured as an evaluation of the calibration effect.

3. Results and Discussion

Figure 1a shows the XRD patterns of GO, RGO, and the FeCO3/RGO composite. There is a broad
peak at 13.4◦ in GO (pattern a), which corresponds to the (001) reflection of GO [16]. The broad
peak at 25.2◦ and the disappearance of the peak at 13.4◦ (pattern b) indicate that GO was reduced to
RGO. The XRD patterns of the FeCO3/RGO composite (pattern c) show that all the diffraction peaks
match JCPS No.29-0696, which confirms that the FeCO3/RGO composite was indeed obtained. The
disappearance of the RGO peaks in FeCO3/RGO [17] due to the uniform distribution of FeCO3 particles
between graphene layers (Figure 2), which prevents the interlayer aggregation of RGO sheets, causes
the diffraction intensity, i.e., the RGO peak, to be much smaller than for FeCO3.

The XPS survey spectrum of FeCO3/RGO (Figure 1b) shows that the composite consists of Fe, O,
C, and N. Four peaks were detected (284.4 eV, 285.8 eV, 287.7 eV, 289.2 eV) in C1s spectrum (Figure 1c),
which correspond to C=C/C–C, C–O, C=O, and FeCO3 [13], respectively. As shown in Figure 1d (Fe2p),
two peaks appear at 710.1 eV and 723.4 eV, which correspond to Fe2p3/2 and Fe2p1/2. Furthermore, a
satellite peak of Fe2p3/2 appears at 714.1 eV [18]. These characteristic peaks confirm the presence of
FeCO3/RGO. The formation of FeCO3 can be derived from the following chemical equations:

CO(NH2)2 + 3H2O→ 2NH4
+ + CO2 + 2OH− (1)

CO2 + 2OH− → CO3
2− + H2O (2)

2Fe3+ + Fe→ 3Fe2+ (3)

Fe2+ + CO3
2−
→ FeCO3 (4)
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Figure 1. (a) XRD patterns for graphene oxide, (GO), reduced graphene (RGO), and FeCO3/RGO; XPS 
spectra of FeCO3/RGO; (b) wide scan; (c) C1s spectrum; (d) Fe2p spectrum. 

Figure 2 shows the SEM, TEM, and HRTEM images of FeCO3/RGO. Polyhedron-like FeCO3 
nanoparticles with a diameter of 20~40 nm were evenly embedded in layers of lamellar RGO. The 
formation of FeCO3 can be also proved by Figure 2c, and the space between two lattice fringes is 
0.279 nm, corresponding to (104) plane of FeCO3. During the reduction process, the uniform 
distributions of nanoparticles in the RGO layers can prevent GO from agglomerating and the 
formation of a FeCO3-RGO conductive network, which might help facilitate dielectric loss. 

 

Figure 2. (a) SEM; (b) TEM; (c) HRTEM images of FeCO3/ reduced graphene oxide (RGO). 

Figure 3 shows the frequency-dependent electromagnetic properties of GO, RGO, and 
FeCO3/RGO between 2 and 18 GHz. Figure 3a and 3b illustrate the associated real (ε′) and imaginary 
(ε″) complex permittivity. The values of ε′ show the same trend, ε′ decreases with increasing 
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Figure 1. (a) XRD patterns for graphene oxide, (GO), reduced graphene (RGO), and FeCO3/RGO; XPS
spectra of FeCO3/RGO; (b) wide scan; (c) C1s spectrum; (d) Fe2p spectrum.

Figure 2 shows the SEM, TEM, and HRTEM images of FeCO3/RGO. Polyhedron-like FeCO3

nanoparticles with a diameter of 20~40 nm were evenly embedded in layers of lamellar RGO. The
formation of FeCO3 can be also proved by Figure 2c, and the space between two lattice fringes is 0.279
nm, corresponding to (104) plane of FeCO3. During the reduction process, the uniform distributions
of nanoparticles in the RGO layers can prevent GO from agglomerating and the formation of a
FeCO3-RGO conductive network, which might help facilitate dielectric loss.
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Figure 2. (a) SEM; (b) TEM; (c) HRTEM images of FeCO3/reduced graphene oxide (RGO).

Figure 3 shows the frequency-dependent electromagnetic properties of GO, RGO, and FeCO3/RGO
between 2 and 18 GHz. Figure 3a,b illustrate the associated real (ε′) and imaginary (ε”) complex
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permittivity. The values of ε′ show the same trend, ε′ decreases with increasing frequency. Furthermore,
the ε′ of FeCO3/RGO is higher than for both GO and RGO due to the enhanced polarization
characteristics. Also, the ε” of FeCO3/RGO is larger than for both GO and RGO due to higher
conductivity [19]. Figure 3c,d depict the real (µ′) and imaginary (µ”) complex permeability of the
composites. The complex permeability of GO and RGO varies similarly with frequency, indicating that
there is little effect of the reduction reaction on the magnetic properties of GO. However, the observed
trend for FeCO3/RGO is different from GO and RGO. The complex permeability of FeCO3/RGO
varies greatly between 10 GHz and 16 GHz because the magnetic FeCO3 nanoparticles can produce
natural resonance loss and exchange resonance loss (due to size effect, surface effect, and spin wave
excitation) [20–23].
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Figure 3. (a) ε′; (b) ε”; (c) µ′; (d) µ” for graphene oxide (GO), reduced graphene oxide (RGO), and
FeCO3/RGO.

As well known, reflection loss (RL) can assess and characterize microwave absorption performance.
According to the transmission line model, RL of a metal-backed microwave absorption layer can be
calculated by the following formulas [24]:

RL = 20lg
∣∣∣∣∣ Zin −Z0

Zin + Z0

∣∣∣∣∣ (5)

Zin =

√
µr

εr
tanh[ j

2πd f
c
√
µrεr] (6)

Here, Zin is the input impedance of the absorber, Z0 is the impedance of free space (Z0 is generally
1), εr and µr are the complex permittivity and permeability, c is the speed of light in vacuum, d is the
thickness of the absorber, and f is the microwave frequency. 3D theoretical RL plots of the composites
are shown in Figure 4a–c. It can be observed that with the reduction of GO and the introduction of
FeCO3, the microwave absorption properties improves significantly. FeCO3/RGO nanocomposites
show excellent microwave absorption properties as the thickness between 2 mm and 3 mm. RL curves
of composites versus frequency is shown in Figure 4d. RL(min) appears in X and Ku band as thickness
in the range of 2–3 mm and shifts to lower frequency with increasing thickness. When the thickness is
2.4 mm, FeCO3/RGO shows optimal microwave absorption and reaches a RL(min) of −44.5 dB, while
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the corresponding bandwidth is less than −10 dB is 7.9 GHz (10.1~18 GHz). It is noteworthy that the
effective bandwidth of FeCO3/RGO can reach up to 6 GHz and keep steadily when the thickness is
2~3 mm. Table 1 lists some reported microwave absorption composites of soft magnetic based material,
graphene-based material, and FeCO3/RGO composite prepared in this work. Notably, FeCO3/RGO
composite not only displays a promising negative RL value, but also has a wide effective absorption
bandwidth due to the good impedance matching.
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Figure 4. 3D RL plots of (a) graphene oxide (GO); (b) reduced graphene oxide (RGO) and (c) FeCO3/RGO;
(d) RL curves of FeCO3/RGO with 2~3 mm.

Table 1. Microwave absorption performances of the soft magnetic material-based, graphene
material-based composite compared with FeCO3/reduced graphene oxide (RGO).

Sample RL (dB)

Effective
Bandwidth

(GHz) (RL <
−10 dB)

Thickness
(mm) Wt. (%) Reference

Fe3O4/RGO −41.89 4.2 2.5 50 [10]
Fe3O4@SnO2/RGO −45.5 3 4.5 50 [25]
MnFe2O4/RGO −29 4.88 3 10 [1]
NiFe2O4/RGO −58 4.08 2.7 27 [26]

RGO/MWCNTs/ZnFe2O4−23.8 2.6 1.5 50 [27]
RGO/MWCNTs/CoFe2O4−46.8 3.4 1.6 50 [28]
RGO/Cu2O/Cu −51.8 4.1 1.3 50 [29]

CoS2/RGO −56.9 4.1 2.2 50 [30]
FeCO3/RGO −44.5 7.9 2.4 60 This work

4. Conclusions

The FeCO3/RGO composite produced and investigated in this study is a novel material with
excellent microwave absorption. The composite can not only effectively facilitate electromagnetic loss
but also improve impedance matching. Specifically, the refection loss at 11.9 GHz, when the composite
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thickness is 2.4 mm, reaching a minimum of −44.5 dB, and the effective bandwidth is 7.9 GHz (from 10.1
to 18 GHz). In addition, we observed very stable broad characteristics for a thickness range of 2–3 mm.
Because of the good properties mentioned above, this composite is can be regarded as an excellent
microwave absorber with the potential for many commercial applications.
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