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Abstract: The aim of this work was to study expansively the process of the eutectoidal phase
transformation of 2507-type super-duplex stainless steel. Three sample sets were prepared. The first
sample set was made to investigate the effect of the previous cold rolling and heat treatment for the
eutectoidal phase transformation. Samples were cold rolled at seven different rolling reductions which
was followed by heat treatment at five different temperatures. The second sample set was prepared
to determine the activation energy of the eutectoidal decomposition process using the Arrhenius
equation. Samples were cold rolled at seven different rolling reductions and were heat treated at the
same temperature during eight different terms. A third sample set was made to study how another
plastic-forming technology, beside the cold rolling, can influence the eutectoidal decomposition.
Samples were elongated by single axis tensile stress and were heat treated at the same temperature.
The results of the first and the third sample sets were compared. The rest δ-ferrite contents were
calculated using the results of AC and DC magnetometer measurements. DC magnetometer was used
as a feritscope device in this work. Light microscope and electron back scattering diffraction (EBSD)
images demonstrated the process of the eutectoidal decomposition. The thermoelectric power and the
hardness of the samples were measured. The results of the thermoelectric power measurement were
compared with the results of the δ-ferrite content measurement. The accurate value of the coercive
field was determined by a Foerster-type DC coercimeter device.

Keywords: duplex stainless steel; eutectoidal decomposition; cold rolling; heat treatment; magnetic
testing; thermoelectric power; EBSD; activation energy

1. Introduction

Duplex stainless steel (DSS) has a double-phase microstructure containing, in approximate equal
proportion, ferrite and austenite. The double-phase structure causes an excellent combination of
strength and corrosion resistance, mainly in chloric medium. DSS is used mainly in chemical processing
and transport, oil and gas refining, paper manufacturing, and in the marine environment [1–3].

Table 1 shows the characteristic chemical composition of DSS, which provides the favorable
properties of this type stainless steel [3].

Table 1. Chemical composition of duplex stainless steel (DSS) (%) [3].

C Max. Cr Ni Mo W Cu N

0.03 22–25 4–7 0–4 0–2 0–1.5 0.1–0.35
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The carbon content of DSS is strictly limited because of corrosion resistance. The high chromium
alloying increases the corrosion resistance until the nickel improves the toughness. The nitrogen
increases the strength and resistance against the pitting corrosion.

In the double-phase structure, the austenite-forming elements (C, Ni, N, Cu) and ferrite-forming
elements (Cr, Mo, W) have a well-adjusted ratio, which is the base of the microstructural equilibrium.
The austenite ensures the good ductility, toughness, and weldability until the ferrite raises the corrosion
resistance mainly against the pitting, stress, and crevice corrosion.

Secondary phases can appear during the heat treatment in the critical temperature range,
about 300–1000 ◦C, due to the metastable structure. Higher alloying content (mainly the chromium
and molybdenum) can increase the chance of the forming of precipitations. The appearance of these
phases are dangerous because these can cause the dramatic decrease of the ductility and the corrosion
resistance. Figure 1 shows these typical precipitations of DSS. Among them, the tetragonal σ-phase is
the most significant, which can appear in the case of molybdenum alloying in the temperature range
600–1000 ◦C. χ-phase (Fe36Cr12Mo10) can form between 700–850 ◦C. The Cr2N precipitation has a
hexagonal crystal lattice and settles down at the border of the ferrite grains. The high chromium content
of Cr2N causes chromium impoverishment in its environment which can cause intensified corrosion
sensibility. The R-phase forms in the temperature range 550–650 ◦C and it increases the brittleness.
M23C6 and M7C3 precipitations are complex carbides with high chromium content. The above
characterized precipitations appear at high temperature and in a relatively short time, as it can be seen
in Figure 1 [1–7].
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Figure 1. Typical precipitations of duplex stainless steel.

The temperature range of the brittle π-phase (Fe7Mo13N4) is at 550–600 ◦C. ε-phase (Fe3N and
Fe2N) which is a nitride similarly to the π-phase can be noticed in copper-alloyed DSS. α’-phase has
the most notable effect at low temperature. This precipitation causes the 475 ◦C embrittlement and
ferritic zones which are rich in chromium.

The most significant phase transformation in duplex stainless steel is the eutectoidal decomposition
of δ-ferrite while δ-ferrite transforms into σ-phase and secondary austenite (δ→ σ + γ2) [1–7].

Figure 2 represents G. Herbstleb and P. Schwaab’s simplified precipitation diagram for DSS [3].
M23C6-type complex carbides with high chromium content form at the border of the δ-ferrite grains
(δ/δ) at the early stage of the decomposition of δ-ferrite. The appearance of the M23C6-type carbides
passes any other phase transformation due to the high mobility of the carbon, as Figure 2 illustrates.
The carbon atoms diffuse to the grain boundary because the enrichment of the carbide-forming alloys
(mainly chromium and molybdenum) are significant at the boundary. These carbides can be favorable
places for the later-forming σ-phase and secondary austenite.
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Figure 2. G. Herbstleb and P. Schwaab’s simplified precipitation diagram for duplex stainless steel.

Figure 3 illustrates the kinetics of the eutectoidal decomposition of δ-ferrite [1–7]. The distribution
of the alloying elements is not homogeneous in DSS due to its dual phase structure. The δ-ferrite
is richer in ferrite- and carbide-forming elements (chromium and the molybdenum) and poorer in
austenite-forming elements (nickel and nitrogen). The distribution of the above-mentioned alloying
elements is opposite in austenite. Due to heat treatment the chromium and molybdenum diffuse to the
grain boundary of the δ-ferrite/austenite and form σ-phase precipitations. Meanwhile the δ-ferrite
becomes poor in these alloying elements, loses its stability, and transforms into secondary austenite [8].
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Figure 3. Kinetics of the eutectoidal decomposition of δ-ferrite in DSS.

The above-presented description showed how complex metallurgical processes can take place in
DSS. The application temperature of DSS is limited at maximum 280–325 ◦C due to the appearance of
the undesirable precipitations [3,9–18].

DSS has four grades with different pitting resistance equivalent numbers (PREN) which can
characterize the corrosion resistance of the steel: lean DSS (PREN < 35), standard DSS (PREN 35–40),
super-duplex stainless steel (SDSS) (PREN 40–45), and hyper-DSS (PREN > 45) [3,9–18].

The aim of this paper is to study, complexly, how the previous cold rolling can influence the
eutectoidal decomposition of δ-ferrite in 2507 SDSS during the heat treatment.

2. Material and Sample Preparation

Tables 2 and 3 show the nominal chemical composition and the main mechanical properties of the
2507-type SDSS. The main alloying elements are the chromium (about 25%) and the nickel (about 7%).
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Table 2. Chemical composition of the 2507-type SDSS (%).

C Mn P S Si Cu Ni Cr Mo Nb Ti N

0.021 0.822 0.023 0.0004 0.313 0.178 6.592 24.792 3.705 0.008 0.005 0.264

Table 3. Mechanical properties of the 2507-type SDSS.

Yield Stress Rp0.2 (MPa) Tensile Stress Rm (MPa) Elongation at Fracture A (%)

634 829 26

Figure 4 represents the original sheet material and the directions of the manufacturing hot rolling
and the experimental cold rolling. Samples were cut from sheet material with a band saw. The thickness
(h0) was about 10 mm, the width (w0) was about 15 mm, and the length (l0) was about 100 mm of the
cut samples.
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The samples were cold rolled by a Ø300 mm diameter double-cylinder rolling machine.
The direction of the cold rolling was perpendicular to the direction of the manufacturing hot rolling.
The thickness reductions were 0.25 mm in every rolling step.

3. Test Results and Discussion

3.1. First Sample Set

The first sample set was prepared to study the process of the eutectoidal phase transformation due
to the previous cold rolling and heat treatment. The seven rolling reductions (ε) were the following:
0%, 10.3%, 22.3%, 31.3%, 41.6%, 50.6%, and 61.9%. The rolling reductions were calculated by the
Equation (1):

ε = (h0 − h)/h0 ∗ 100(%) (1)

where “h” was the thickness of the rolled sample. Five samples were rolled from every rolling reduction
and were heat treated at 20, 700, 750, 800, and 850 ◦C temperatures. The term of the heat treatment
was 30 min and the samples were normalized on static normal air. Naturally, the different rolling
reductions resulted in different sizes of the samples. At the end of the preparation process all samples
were machined at the same size 3.4 mm × 10 mm × 100 mm (h ×w × l).

3.1.1. AC Magnetometer Measurement

In the investigated DSS, the δ-ferrite is the only ferromagnetic phase which transforms to
paramagnetic σ-phase and secondary austenite. Therefore, the eutectoidal decomposition influences
the ferromagnetic phase ratio of the alloy. It is well known that the magnetic saturation polarization is
linearly proportional to the ferromagnetic phase ratio of alloys [19]. Consequently, the δ-ferrite ratio
can be precisely determined from saturation polarization.
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Firstly, the samples were measured by an AC magnetometer to determine their δ-ferrite content.
Figure 5 illustrates the set-up of the AC magnetometer [20] which was designed and built in our
laboratory. This set up is suitable only for measuring flat-stripe-shaped samples.

Materials 2018, 11, x FOR PEER REVIEW  5 of 19 

 

Firstly, the samples were measured by an AC magnetometer to determine their δ-ferrite content. 
Figure 5 illustrates the set-up of the AC magnetometer [20] which was designed and built in our 
laboratory. This set up is suitable only for measuring flat-stripe-shaped samples. 

 
Figure 5. Set-up of the AC magnetometer. 

The instrument measures the normal magnetization curve and the hysteresis loop of the 
samples. The maximal polarization, coercive field, remnant induction, and initial permeability can be 
determined from the magnetization curves. 

The yoke stands from two symmetrical U-shaped laminated Fe-Si iron cores which closes the 
magnetic circle. The driving and the pick-up coils close round the sample. The power amplifier and 
the function generator supply sinusoidal excitation current which frequency is 5 Hz. The 16-bit input–
output data acquisition card accomplished the measurements. In case of each sample, 200 minor 
hysteresis loops were recorded. The maximum excitation field strength was about 128 A/cm which 
cannot saturate the samples magnetically. Because of this physical limitation, the AC magnetometer 
is not able to determine the value of saturation polarization. Therefore, the δ-ferrite content was 
calculated from the measured maximal value of polarization. The δ-ferrite content of the undeformed 
and non-heat-treated (initial) sample was 46.9% according to the manufacturer data sheet. Its 
measured maximal polarization (𝜇଴𝑀௠௔௫) was 0.31 T. The δ-ferrite content of the tested samples (x in 
%) was determined using a simple proportion with the following Equation (2): 𝑥 = 46.90.31 (𝜇଴𝑀௠௔௫)௠௘௔௦௨௥௘ௗ ௦௔௠௣௟௘  (2) 

The process of the eutectoidal decomposition can be noticed particularly well in Figure 6, which 
represents the calculated δ-ferrite contents in the function of the heat treatment temperature [21].  

 

Figure 5. Set-up of the AC magnetometer.

The instrument measures the normal magnetization curve and the hysteresis loop of the samples.
The maximal polarization, coercive field, remnant induction, and initial permeability can be determined
from the magnetization curves.

The yoke stands from two symmetrical U-shaped laminated Fe-Si iron cores which closes the
magnetic circle. The driving and the pick-up coils close round the sample. The power amplifier
and the function generator supply sinusoidal excitation current which frequency is 5 Hz. The 16-bit
input–output data acquisition card accomplished the measurements. In case of each sample, 200 minor
hysteresis loops were recorded. The maximum excitation field strength was about 128 A/cm which
cannot saturate the samples magnetically. Because of this physical limitation, the AC magnetometer
is not able to determine the value of saturation polarization. Therefore, the δ-ferrite content was
calculated from the measured maximal value of polarization. The δ-ferrite content of the undeformed
and non-heat-treated (initial) sample was 46.9% according to the manufacturer data sheet. Its measured
maximal polarization (µ0Mmax) was 0.31 T. The δ-ferrite content of the tested samples (x in %) was
determined using a simple proportion with the following Equation (2):

x =
46.9
0.31

(µ0Mmax)measured sample (2)

The process of the eutectoidal decomposition can be noticed particularly well in Figure 6, which
represents the calculated δ-ferrite contents in the function of the heat treatment temperature [21].
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As it can be seen, the δ-ferrite content of the deformed and non-heat-treated samples is about
equal, the cold rolling itself cannot influence the δ-ferrite content. On the other hand, it can be noticed
the δ-ferrite content decreases due to the heat treatment by each deformation rate because of the
intensifying δ-ferrite transformation. The eutectoidal decomposition starts at about 750 ◦C and is
more intensive in deformed samples. The stronger the extent of the previous cold rolling reduction,
the more the amount of the decomposed δ-ferrite. In other words, the previous cold rolling promotes
the δ-ferrite decomposition. It is supposed that the deformation stored energy improves the number of
the σ-phase nuclei during the heat treatment. Due to the growing amount of the σ-phase, more δ-ferrite
grains transform into secondary austenite.

3.1.2. DC Magnetometer Measurement

Secondly, the δ-ferrite content of the samples was measured by a Stablein-Steinitz type DC
magnetometer (designed and made in our department) and were compared with the results of the AC
magnetometer. Figure 7 illustrates the set-up of the applied DC magnetometer [22,23]. The advantage
of the DC magnetometer against the AC magnetometer is it can excite the samples into saturation.
The highest excitation level was about 2700 A/cm, which was enough to reach the complete saturation
of DSS samples. The DC magnetometer can measure the real saturation polarization until the AC
magnetometer can determine just a maximal polarization value. Unfortunately, the DC magnetometer
has disadvantages as well. It requires bulk samples and it can only be used in a laboratory because of
its heavy size. The DC magnetometer was designed and built in our laboratory [22–24].
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Figure 7. Set-up of the DC magnetometer.

The original version of Stablein-Steinitz type DC magnetometer was designed to record the
hysteresis curve of bulk materials in the 1930s. It has symmetrical yoke which contains two
U-shaped parts and a small cross-section middle bridge. The excitation is accomplished by four coils.
The set-up consists of two uniform-sized air-gaps namely, the reference, and the measuring air-gaps.
The arrangement is magnetically symmetrical; therefore, there is no flux in the middle bridge if the
sample air-gap is empty. The symmetry of the magnetic circuit is broken by a sample taken into the
sample air-gap. Therefore, some part of the flux closes through the middle bride. Our set up contained
two Hall sensors and a PC-driven data acquisition unit. The sensor in the sample air-gap measures
the magnetic field (H) within the sample, the signal of the sensor in the middle bridge is directly
proportional to the magnetization (M) of the sample.

The signals of the Hall sensors are connected to the 16-bit data acquisition card through a
double-channel amplifier. The excitation is supplied by a computer-controlled power amplifier.
The LabView program allows for cyclical demagnetization and it can record, among others, the normal
magnetization curve and the hysteresis loops of the sample [22–24].
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The δ-ferrite content was calculated from the saturation polarization values similarly to the
method mentioned before. The measured saturation polarization (µ0Msaturation) of the initial sample
was 0.563 T. The δ-ferrite content of the tested samples (x in %) was determined with the following
Equation (3):

x =
46.9

0.563
(µ0Msaturation)measured sample (3)

Figure 8 represents the δ-ferrite content values in function of the heat treatment temperature by
the DC magnetometer measurement.
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Figure 8. δ-ferrite contents vs. the heat treatment temperature measured by the DC magnetometer.

The δ-ferrite content reduces continuously in function of the heat treatment temperature by every
rolling reduction. It can be noticed that the δ-ferrite content reduction below 750 ◦C is less intensive than
it is by the AC magnetometer measurement. The DC magnetometer determines higher δ-ferrite contents
than the AC magnetometer due to their different excitation levels. Naturally, the calculation which
derives the δ-ferrite contents from the real saturation polarization values give more accurate results.

In the following part of this work the DC magnetometer was used as a feritscope to determine the
δ-ferrite content of samples.

3.1.3. Light Microscope

All samples were examined by an Olympus PMG-3 type metallographic microscope (Olympus,
Hamburg, Germany) which has a digital camera and the maximal magnification is 1000×. During the
preparation, the samples were fixed in resin and were grinded on different grain size Al2O3 grinding
papers. After the grinding, the samples were polished on a fine cloth using Al2O3 suspension. Buehler
EcoMet 30-type manual metallographic machine (Buehler, Lake Bluff, IL, USA) was used for the
grinding and polishing. The type of etching liquid was Beraha [25].

Images were taken about all samples in the magnification of 25×, 50×, 100×, 500×, and 1000×.
Figure 9 shows the microscope images of 2507-type SDSS in the magnification of 1000×.



Materials 2019, 12, 2205 8 of 19

Materials 2018, 11, x FOR PEER REVIEW  8 of 19 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Microscope images of 2507-type SDSS in the magnification of 1000×: (a) Base microstructure 
of the 2507-type SDSS; (b) heat-treated sample at 850 °C without deformation; (c) ε = 61.9% deformed 
sample without heat treatment; (d) ε = 61.9% deformed sample and heat treated at 850 °C. 

Figure 9a shows the original microstructure of the 2507-type SDSS without deformation and heat 
treatment. The ratio of the δ-ferrite and the austenite is almost equal. The microstructure of the heat 
treated sample at 850 °C without cold rolling is shown in Figure 9b. It can be noticed that the 
transformation of the δ-ferrite has already begun, a slight amount of σ-phase appeared at the grain 
boundary of the δ-ferrite and the austenite. Figure 9c represents the ε = 61.9% deformed samples 
without heat treatment. It can be seen that the decomposition of the δ-ferrite cannot begin without 
heat treatment. Sample which was deformed in ε = 61.9% and heat treated at 850 °C is shown in Figure 
9d. When the eutectoidal decomposition is finished, the δ-ferrite transformed completely into σ-phase 
and secondary austenite. 
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Figure 9. Microscope images of 2507-type SDSS in the magnification of 1000×: (a) Base microstructure
of the 2507-type SDSS; (b) heat-treated sample at 850 ◦C without deformation; (c) ε = 61.9% deformed
sample without heat treatment; (d) ε = 61.9% deformed sample and heat treated at 850 ◦C.

Figure 9a shows the original microstructure of the 2507-type SDSS without deformation and
heat treatment. The ratio of the δ-ferrite and the austenite is almost equal. The microstructure of the
heat treated sample at 850 ◦C without cold rolling is shown in Figure 9b. It can be noticed that the
transformation of the δ-ferrite has already begun, a slight amount of σ-phase appeared at the grain
boundary of the δ-ferrite and the austenite. Figure 9c represents the ε = 61.9% deformed samples
without heat treatment. It can be seen that the decomposition of the δ-ferrite cannot begin without heat
treatment. Sample which was deformed in ε = 61.9% and heat treated at 850 ◦C is shown in Figure 9d.
When the eutectoidal decomposition is finished, the δ-ferrite transformed completely into σ-phase and
secondary austenite.

3.1.4. EBSD

The samples were examined by a Philips XL30 ESEM FEG-type scanning electron microscope
(SEM, Amsterdam, The Netherlands). The SEM has a point-source cathode of tungsten, which has a
surface layer of zirconia (ZrO2). The high tension is continuously variable from 0.2 till 30 kV and the
size of the specimen stage is 50 mm × 50 mm × 50 mm.

The type and the distribution of the phases were detected by electron back scattering diffraction
(EBSD). Figure 10 shows the phase maps of the 2507-type SDSS where the different phases were signed
by color codes. The green color means the austenite, the red area shows the δ-ferrite, and the yellow
color represents the tetragonal σ-phase [26,27].
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treated sample at 850 °C without deformation. The ratio of the δ-ferrite decreased from 41% to 35.3% 
and 3% σ-phase appeared. The amount of the austenite increased from 59% to 61.6%. The 
decomposition of the δ-ferrite becomes more intense in Figure 10c, in which the sample is deformed 
in ε = 22.3% and heat treated at 850 °C; 13% σ-phase can be detected beside the δ-ferrite and the 
austenite. The sample in Figure 10d was prepared with the maximal deformation extent and heat 
treatment temperature. The phase transformation of the δ-ferrite has almost finished: The amount of 
the σ-phase increased significantly until the δ-ferrite content is just about 1%. 

3.1.5. Thermoelectric Power Measurement 

Thermoelectric power (TEP) was measured by a TechLab Trivolt PK120-type TEP measuring 
instrument (TechLab, La Tannerie, France) in order to examine if there is correlation between the 
eutectoidal decomposition of δ-ferrite and the TEP. The TEP instrument is operated by 220 V and its 
measuring accuracy is about 2 nV/K. 

The basis of the TEP measurment is the Seebeck-effect. If temperature difference forms between 
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substances. The value of the TEP is sensitive to the different material properties, especially to the 
chemical composition [28–30]. Figure 11 shows the sematic illustration of the TEP instrument [29].  

Figure 10. Phase maps made by EBSD: (a) The original phase ration of the 2507-type SDSS;
(b) heat-treated sample at 850 ◦C without deformation; (c) ε = 22.3% deformed sample and heat
treated at 850 ◦C; (d) ε = 61.9% deformed sample and heat treated at 850 ◦C. (Color marking: red
area—δ-ferrite; green area—austenite; yellow area—σ-phase).

The EBSD images can similarly illustrate the eutectoidal decomposition of δ-ferrite to what
was presented by the optical microscope examination. Figure 10a shows the original phase ratio:
41% δ-ferrite and 59% austenite. This result is slightly different form the value which is given on
the data sheet of the 2507-type SDSS, it represents 46.9% δ-ferrite. Figure 10b shows the phase map
of the heat-treated sample at 850 ◦C without deformation. The ratio of the δ-ferrite decreased from
41% to 35.3% and 3% σ-phase appeared. The amount of the austenite increased from 59% to 61.6%.
The decomposition of the δ-ferrite becomes more intense in Figure 10c, in which the sample is deformed
in ε = 22.3% and heat treated at 850 ◦C; 13% σ-phase can be detected beside the δ-ferrite and the
austenite. The sample in Figure 10d was prepared with the maximal deformation extent and heat
treatment temperature. The phase transformation of the δ-ferrite has almost finished: The amount of
the σ-phase increased significantly until the δ-ferrite content is just about 1%.

3.1.5. Thermoelectric Power Measurement

Thermoelectric power (TEP) was measured by a TechLab Trivolt PK120-type TEP measuring
instrument (TechLab, La Tannerie, France) in order to examine if there is correlation between the
eutectoidal decomposition of δ-ferrite and the TEP. The TEP instrument is operated by 220 V and its
measuring accuracy is about 2 nV/K.

The basis of the TEP measurment is the Seebeck-effect. If temperature difference forms between
two diverse electrical conductors or semi-conductors, voltage difference appears between the two
substances. The value of the TEP is sensitive to the different material properties, especially to the
chemical composition [28–30]. Figure 11 shows the sematic illustration of the TEP instrument [29].
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Figure 11. Sematic illustration of the TEP instrument.

The set-up contains two copper blocks, one of them is heated electrically, while the other is cooled
by circulated water. The measuring temperatures can be controlled quickly and exactly due to the
thermocouples which are built in the cold and the hot blocks. The thickness of the samples was 3.4 mm.
The contact surface of the samples were grinded with fine grinding paper (P1200) and then were
cleaned with alcohol. Samples were put on the cold and hot blocks and were fixed with two isolated
screws. Temperature of the cold block was about 15 ◦C until the hot block was about 25 ◦C. The result
was read after about 90 s, when the value of the TEP stabilized. The results of the TEP measurments
are presented in Figures 12 and 13.
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Figure 12. Values of the TEP in function of the heat treatment temperature.

Figure 12 shows the values of the TEP in function of the heat treatment temperature. It can be
seen the values of the TEP are nearly independent of the deformation rate below 750 ◦C. However,
the previous cold rolling has an intensive effect on the TEP above 750 ◦C. The stronger the plastic
deformation rate, the lower the values of the TEP. The changing of the TEP above 750 ◦C is quite similar
to the changing of the δ-ferrite content, which were represented in Figures 6 and 8.
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Figure 13. Values of the TEP in function of the rolling reduction.

Figure 13 shows the values of the TEP in function of the rolling reduction. It is known that the
TEP is sensitive to the precipitations. The progressive decrease of the TEP at 800 and 850 ◦C can occur
due to the precipitation of the significant amount of σ-phase, which forms during the eutectoidal
decomposition. It can be seen that the values of the TEP are nearly independent of the deformation
rate at 700 and 750 ◦C, but higher than the values of the non-heat-treated samples. It is considered that
the increase of the TEP is caused by those precipitations which appear previously to the σ-phase (e.g.,
Cr2N, M23C6, or χ-phase) [3]. Based on the above, there is a good correlation between the process of
the eutectoidal decomposition and the results of the TEP measurement.

3.1.6. Foerster-Type DC Coercimeter Measurement

The accurate value of the coercive field was measured by a Foerster DC coercimeter (Institut Dr.
Förster, Reutlingen 1.094 and 1.106, Reutlingen, Germany) which is an open magnetization circuit
equipment. Figure 14 shows the set-up of the DC coercimeter. The equipment contains a solenoid coil
and two high-sensitivity magnetic field sensors, which are exactly in the middle outside of the coil.Materials 2018, 11, x FOR PEER REVIEW  12 of 19 
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Figure 14. Set-up of the Foerster-type DC coercimeter: (a) First step of the measuring; (b) second step
of the measuring.

As a first step (Figure 14a), the sample is put inside in the middle of the solenoid coil and
magnetized into saturation. The polarization of the sample is measured by two sensors, which can
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measure the component of the magnetic field vector which is perpendicular to the coil. The sample
creates a magnetic field outside the coil which is proportional with the magnetization of the sample.
This magnetic field vector has just a horizontal component at the position of the sensors. As a second
step (Figure 14b), the sample is moved horizontally in the solenoid coil until the sensors detect the
maximal perpendicular component of the magnetic field vector. A reverse magnetic field is built
up with the coil and it is increased until the measured perpendicular field component becomes zero.
The reverse magnetic field is equal with the coercive field of the sample. The maximum of the
magnetization field was 1000 A/cm.

Figure 15 represents the values of the coercive field in function of the heat treatment temperature.
It can be noticed that the coercive field increases progressively in function of the heat treatment
temperature by every rolling reduction. The increase is caused by two reasons: the plastic deformation
and the appearance of the σ-phase. The coercive field of the non-heat-treated samples rises due to
the cold rolling. σ-phase precipitations cause the increment of the coercive field by the undeformed
samples. The increase of the coercive field is much higher by the strongly cold rolled samples than it
is by the lower-extent deformed samples. The coercive field measurement showed the effect of the
plastic deformation and the appearance of the σ-phase is not simply added by the cold rolled and heat
treated samples, but the deformation stored energy increases the number of the σ-phase nuclei. It is
considered that the reason for the coercive field increment is that the σ-phase precipitations prohibit
the movement of the domain walls. The highly deformed samples (ε = 41.6%, 50.6%, and 61.9%) after
heat treatment at 850 ◦C became nearly paramagnetic. Their coercive field cannot be determined.
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3.1.7. Hardness Measurement

The Vickers hardness (HV 10) of the samples were measured by a KB 250 BVRZ-type universal
hardness testing machine, which was produced by KB Prüftechnik GmbH (Hochdorf-Assenheim,
Germany). The measuring limit of the machine is 250 kg and the test room height is 320 mm.

Figure 16 shows the hardness of the samples in function of the heat treatment temperature.
The load was nominally 98.07 N during 12 s.
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Figure 16. Hardness of the samples in function of the heat treatment temperature.

The hardness increase of the undeformed samples is 54 HV until this rise of the strongly rolled
samples is three times higher (ε = 50.6% and 61.9%). The increase of the hardness is caused by
the dislocation hardening and the σ-phase precipitation, as it was specified in the before chapter.
The previous cold rolling before the heat treatment increases the chance of nucleation of the σ-phase
along the slip lines. More σ-phases can cause a higher increase in hardness.

3.2. Second Sample Set

The second sample set was prepared to determine the activation energy of the eutectoidal
decomposition process. The samples were cold rolled and heat treated at 850 ◦C during different terms.
The extents of the rolling reduction were similar to the first sample set: ε = 0%, 10.2%, 21.9%, 29.9%,
40.9%, 50.1%, and 61.1%. The rolled samples were cut into eight smaller pieces and each piece was heat
treated separately until the following terms: t = 0, 20, 25, 30, 35, 40, 45, and 50 min. The heat treated
samples were normalized using static normal air.

Activation energy was calculated using the Avrami and Arrhenius equations. The activation
energy can be considered as the minimal energy which is necessary for the beginning of a reaction or a
phase transformation. This energy can describe a phase transformation numerically.

Kinetics equations are used to determine the time of a phase transformation in alloys, of which
the most current is the Avrami equation. This equation gives a relationship between the transformed
fraction and the time. Equation (4) shows the general form of the Avrami equation:

y = 1− e−rtn
(4)

where “y” is the transformed fraction, “t” is the time, and “n” and “r” are the variables. The exponential
connection between the rate of the chemical reaction and the temperature is given by the Arrhenius
equation which is showed with Equation (5):

k = Ae−
Ea
RT (5)

where “k” is the rate of transformation, “A” is the pre-exponential factor, “Ea” is the activation energy,
“R” is the universal gas constant, and “T” is the absolute temperature. The Arrhenius equation is
applied for the description of the temperature dependence of thermally-activated processes [31–33].
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Figure 17 shows the Avrami curves which were determined from the decomposed δ-ferrite content.
The curves were fitted by two parameters regression using the Avrami Equation (4) and the OriginPro
8 software (OriginLab, Northampton, MA, USA).
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The rate of the transformation can be determined with the Avrami curves using Equation (6):

k =
1

t0.5
, (6)

where t0.5 is the time which belongs to the y = 0.5 transformed fraction. Taking the logarithm of
Equation (5), the activation energy can be calculated as Equation (7):

E = RT(lnA− lnk) (7)

Value of the lnA was determined by the so-called Arrhenius plot using the data of the 61.9%
deformed samples of the first sample set. It was supposed that its value is independent of deformation
extent. The rate of transformation (k) can be calculated from the amount of decomposed δ-ferrite as
Equation (8) shows:

k = (F0%− F%), (8)

where “F0%” is the original δ-ferrite content (46.9%) and “F%” is the calculated δ-ferrite content after
the decomposition. Equation (9) shows the replacement of the “k” in the natural logarithm of the
Arrhenius equation:

ln(F0%− F%) = lnA−
Ea

R
1
T

(9)

If “ln(F0%− F%)” is plotted in function of the “1/T,” the intercept of the line is equal with the value of
the lnA. Figure 18 shows the Arrhenius plot of the ε = 61.9% deformed first sample set. The obtained
value of lnA was 28.82, which was substituted into Equation (7) for calculating the activation energy
(E) values of the second sample set.
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Figure 19 represents the obtained activation energy values of the second sample set in function of
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Figure 19. Activation energy in function of the rolling reduction.

It can be seen that the activation energy decreases from 302 to 296 kJ/mol in function of the
rolling reduction.

It is supposed that the rate limiting process of the δ-ferrite decomposition is the diffusion of Cr and
Mo in δ-ferrite according to the kinetics described before. Slightly different activation energy values of
Cr and Mo diffusion in ferrite are published in scientific papers. The typical values are 267.4 kJ/mol (Cr
in ferrite) and 282.6 kJ/mol (Mo in ferrite) [34–36], which are in good agreement with the obtained data.

It should be noticed that the determination of the activation energy with the Arrhenius fitting
and Avrami equation is a very sensitive calculation method. If the δ-ferrite content changed 3%
by the Arrhenius fitting the calculated activation energy increased almost 30%. The more accurate
determination of the activation energy would require numerous samples.
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3.3. Third Sample Set

The third sample set was prepared to study how the eutectoidal phase transformation is influenced
by plastic deformation technology that is different from cold rolling. Samples were elongated by
single-axis tensile stress and were heat treated at 850 ◦C. The samples were in the furnace for 30 min
and were normalized using static normal air. The effect of the cold rolling and the elongation for the
eutectoidal phase transformation were compared.

The elongation was made by a Heckert EU-40-type hydraulic tensile test machine (Mönchengladbac,
Germany), which measuring limit is 400 kN. The machine has a digital data acquisition card and its
stroke length is about 600 mm. The δ-ferrite contents of the cold rolled samples and the elongated
samples were compared based on the equivalent deformation. Measuring lengths were used to divide
the elongated sample to equal volumes before the elongation. This division was necessary for the
calculation of the equivalent deformation. Figure 20 illustrates the used volume division.
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The equivalent deformation of one part can be calculated using Equations (10)–(13) [37,38]:

ϕ =

√
2

3

√(
ϕx −ϕy

)2
+ (ϕx −ϕz)

2 +
(
ϕy −ϕz

)2
(10)

ϕx = ln
a
a0

(11)

ϕy = ln
b
b0

(12)

ϕz = ln
c
c0

(13)

where “a0,” “b0”, and “c0” are the original sizes of one part; “a”, “b”, and “c” are the deformed sizes of
one part measured after the elongation. The equivalent deformation of the cold rolled samples can
be calculated similarly by Equation (10). After the heat treatment, the δ-ferrite content of the cold
rolled samples and the elongated samples were measured. Figure 21 represent the δ-ferrite contents in
function of the equivalent deformation by the two different plastic deformation technologies.
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It can be seen that the δ-ferrite content reduction of the elongated samples is very similar to
the results of the cold rolled samples. The stronger the previous deformation extent, the higher the
amount of the decomposed δ-ferrite. The single-axis tensile stress can influence the eutectoidal phase
transformation process similarly to that of the stress state that forms during the cold rolling.

4. Summary and Conclusions

The eutectoidal phase transformation of 2507-type SDSS was examined in this complex study.
The effect of the previous cold working and heat treatment was studied. Samples were differently cold
worked and heat treated in three sets.

The first sample set was cold rolled at seven different rolling reductions up to 61.9%, which was
followed by heat treatment at five different temperatures up to 850 ◦C.

The second sample set was prepared to determine the activation energy of the eutectoidal
decomposition. These samples were cold rolled at seven different rolling reductions and were heat
treated at 850 ◦C during eight different terms.

The third sample set was elongated by single-axis tensile stress and were heat treated at 850 ◦C.
The δ-ferrite contents were calculated using the results of AC and DC magnetometer measurements.

Because the coercivity of the studied SDSS samples was relatively high, the AC magnetometer was
not able to saturate them magnetically. Therefore, the DC magnetometer was used in the following
part of this work for determining the δ-ferrite content. The accurate value of the coercive field was
determined by a DC coercimeter device. Light microscope and EBSD images clearly demonstrated the
process of the eutectoidal decomposition. The thermoelectric power and the hardness of the samples
were also measured.

The results of all these measurements demonstrated the decomposition of the δ-ferrite into σ-phase
and secondary austenite with the same tendency. It was clearly demonstrated that previous cold rolling
before heat treatment significantly increases the rate of eutectoidal decomposition and decreases its
starting temperature.

It was demonstrated that the thermoelectric power measurement (TEP) is sensitive to the
decomposition of δ-ferrite phase. The TEP measurement is definitely a useful method for detecting the
δ-ferrite decomposition process.

The results of the magnetic measurements were compared with the results of TEP tests. It was
concluded that up to 750 ◦C there is no significant δ-ferrite decomposition. Under 750 ◦C the previous
cold working has no effect on the eutectoidal phase transformation. δ-ferrite decomposition was
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detected at 800 and 850 ◦C, whereby the previous plastic deformation strongly increased the rate of
phase transformation.

The activation energy of the δ-ferrite decomposition process was determined from the data of the
second sample set. The obtained activation energy for the undeformed sample was 302 kJ/mol, and its
value decreased due to previous cold rolling to 296 kJ/mol. These values are close to the activation
energy values of the diffusion process of chromium and molybdenum in ferrite. Therefore, it can be
concluded that the rate-limiting step of the whole diffusion-controlled phase transformation of δ-ferrite
is the diffusion of the two mentioned alloying elements.

The equivalent deformation rates of the cold rolled and single-axis elongated sample sets were
compared. It was demonstrated that elongation had a stronger effect on the δ-ferrite decomposition
process in the 0%–70% equivalent deformation range than the cold rolling. Above 70% deformation,
the two ways of plastic deformation had the same effect on the δ-ferrite decomposition process.
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