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Abstract: Generation of particles with irregular shape and the overlap detection are crucial for
numerical simulation of granular materials. This paper presents a systematic approach to develop
a two-dimensional random particle model for numerical simulation of granular materials. Firstly,
a random angular bend (RAB) algorithm is proposed and coded in Python to simulate the geometric
model of individual particle with irregular shape. Three representative parameters are used to
quantitatively control the shape feature of generated polygons in terms of three major aspects,
respectively. Then, the generated geometrical models are implemented into particle flow code PFC2D

to construct the clump library. The clumps are created via the mid-surface method. Besides, an overlap
detection algorithm is developed to address the difficulties associated with spatial allocation of
irregularly shaped particles. Finally, two application examples are adopted to validate the feasibility
of the proposed algorithm in the numerical modeling of realistic granular materials. The study
provides a solid foundation for the generation and simulation of the granular materials based on
angular bend theory.

Keywords: particle shape; discrete element method; random angular bend; overlap detection

1. Introduction

Granular materials are conglomerations of discrete solids [1], which are widely used in various
engineering fields, such as geotechnical engineering, mining engineering, and food and pharmaceutical
industries. Due to the discontinuous nature and irregularity of particle shape, the study of properties
of granular materials remains an open issue. In the study of granular material behavior, some
experimental tests were conducted to analyze the effect of particle shape and size on the mechanical and
physical properties of granular materials [2,3]. However, it is difficult to precisely control particle shape
and size in these tests. Besides, conventional experimental tests cannot provide sufficient microscale
information of samples, such as interparticle forces, particle velocities, etc.

Overcoming the disadvantage of model test in these respects, the numerical analysis method is
commonly accepted by many researchers in the last decade. The discrete element method (DEM),
originally developed by Cundall in 1971 [4,5], provides a convenient way to obtain particle information
on multiple scales, and gradually becomes an effective tool to study the mechanical behaviors of
granular materials [6–9]. To investigate the effect of particle shape, various shapes have been created
to approximate the realistic shape of particles (such as circles and spheres [10–13], ellipses and
ellipsoids [14,15], cylinders [16], polygons, and polyhedrons [17–19]). However, a considerable number

Materials 2019, 12, 2169; doi:10.3390/ma12132169 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0003-3338-703X
http://www.mdpi.com/1996-1944/12/13/2169?type=check_update&version=1
http://dx.doi.org/10.3390/ma12132169
http://www.mdpi.com/journal/materials


Materials 2019, 12, 2169 2 of 17

of them are idealized geometric shape, which is unable to capture the behavior of actual or natural
granular materials better.

To precisely generate arbitrary-shaped particle in two-dimensional simulation, many methods
have been proposed in the literature. Typical approaches include R(θ) method [20], Voronoi grain-based
method [21,22], digital image-based method [23], image-based clump library method [24,25],
Fourier-based method [26–28], etc. However, the R(θ) method is only applicable for star-like
particles [29,30]. The Voronoi grain-based method has limited capability in precisely controlling
generated particle shape and size. During the modeling of granular materials based on digital image
technology, it is difficult to obtain digital images of the whole research area or obtain the digital images
of idealized section for specified research purpose. Image-based clump library method overcomes the
disadvantage of above method and provides a new method to create virtual specimens possessing
various shapes and particle gradations. However, tremendous efforts are required to develop the
clump library (a clump is a rigid collection of n rigid spherical pebbles, which are unit-thickness
disks in PFC2D). Among various Fourier-based approaches, the shape function R(θ) based method is
widely used in shape analysis and generation. However, this method is only applicable for star-like
particles. For nonstar-like particles, the radial line may have multiple intersections with the boundary
of particle contour [30]. Compared with the methods above, the shape function ϕ(l) (Z-R shape
function) based method which is developed by Zahn and Roskies (1972) has distinct advantages in
precisely representing the realistic particles [31]. However, there is limited research on the random
generation of irregular particles based on this theory.

Inspired by the theory of Z-R shape function, this paper presents a novel method to generate
two-dimensional random particle model for the numerical simulation of granular materials. The
flowchart of this paper is shown in Figure 1. Firstly, a random angular bend (RAB) algorithm is
proposed and coded in Python [32] to simulate the geometric model of individual particle with irregular
shape. Three representative parameters are used to quantitatively control the shape feature of generated
polygons in term of three major aspects, namely, the form, roundness, and surface textures, respectively.
The geometric models are imported into PFC2D [33] to generate realistic granular media. Clumps
consisting of pebbles are created based on the mid-surface method [34] and used to construct clump
library. An overlap detection algorithm is developed to address difficulties associated with spatial
allocation of irregularly shaped particles. Finally, two application examples are further employed to
show the feasibility of proposed algorithm for the numerical modeling of realistic granular materials.
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2. Particle Generation

2.1. Z-R Shape Function

Shape function ϕ(l) was introduced by Zahn and Roskies (1972) to represent the shape of closed
polygonal curve in term of arc length l and cumulative angular bends ϕ. To describe the shape of a
polygon, which is made up of n vertices P0, P1, . . . , Pn with angular bends ∆ϕ0, ∆ϕ1, . . . , ∆ϕn and
edge lengths ∆l0, ∆l1, . . . , ∆ln (as shown in Figure 2), the first thing that need to be done is to trace
clockwise around the outline of the polygon from some initial starting point to collect Cartesian (x, y)
coordinates [35]. Once the coordinates of all the vertices are determined, they can be used to calculate
edge lengths ∆li and angular bend ∆ϕi. The clockwise arc lengths l along the curve from starting point
P0 up to the ith vertex Pi is given as Equation (1)

l =
i∑

k=1

∆lk (1)

Next step is to determine the angle bend ∆ϕi between adjacent polygon segments. Taking the
adjacent polygon segments as a vector, the magnitude and orientation of the angle can be determined
based on vector operation. For three adjacent point, Pi-1(xi-1,yi-1), Pi (xi, yi) and Pi+1(xi+1,yi+1), the

magnitude of ∆ϕi can be calculated using the dot products of vector
→

Pi−1Pi and
→

PiPi+1.

∣∣∣∆ϕi
∣∣∣ = arccos


→

Pi−1Pi•
→

PiPi+1∣∣∣∣∣ →

Pi−1Pi

∣∣∣∣∣ ∣∣∣∣∣ →

PiPi+1

∣∣∣∣∣
 (2)

where
∣∣∣∆ϕi

∣∣∣ is the absolute value of ∆ϕi. The polarity of ∆ϕi depends upon the sign of the cross
products of the two vectors, which is given as the determinant of a matrix Si [36].

Si =

∣∣∣∣∣∣∣∣∣
xi−1 yi−1 1
xi yi 1

xi+1 yi+1 1

∣∣∣∣∣∣∣∣∣ (3)

If Si > 0, then
→

PiPi+1 is clockwise with respect to
→

Pi−1Pi, if Si < 0, it is counterclockwise. Once the sign
of this cross product is determined, the value of ∆ϕi can be obtained by applying the following rules.

if Si , 0, ∆ϕi =
∣∣∣∆ϕi

∣∣∣× Si
|Si|

(4)

if Si = 0, ∆ϕi = 0 (5)

where |Si| is the absolute value of Si. It should be noted that a cross product of 0 means that vector
→

Pi−1Pi and
→

PiPi+1. are collinear.
The cumulative angular function ϕ(l), also known as Z-R shape function, is the summation of all

the angular bends from vertex P0 up to the vertex Pi (corresponding to arc length l). This function is
given by ϕ(l) =

∑i
k=1 ∆ϕk. If the outline is traced clockwise and is not spiral, the value of ϕ(Lall) equal

to -2π, where Lall is the total length of the polygon. Throughout the above procedures described in
Equations (1)–(5), the coordinates of points on the polygon are converted from their Cartesian (x,y)
form to the ϕ(l) form of Z-R shape function [37]. Shape analysis can be conducted based on the result
of Z-R shape function [31] (Figure 2).
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2.2. Generation of Irregularly Shaped Polygon

Inspired by the theory of Z-R shape function, the RAB algorithm is proposed in this section and
coded in Python. This method is the inverse operation and modification of the theory of Z-R shape
function. As shown in Figure 3, the algorithm can be described as follows.

1. Define a random point O as the center and a point P1 (x1, y1) as initial starting point of the polygon
to be generated.

2. Determine the position of the sequential points to be generated. To determine the position of
sequential points, a series of angular turns need to be conducted. The common approach to solve
this problem is to treat the polygon segments as vectors. The counterclockwise angle that vector
→

PiPi+1 makes with the positive x-axis is βi. For i=1, βi is a random number varying uniformly
between 0 and 2π. For i >1, the value of this angel can be calculated by Equation (6)

βi = βi−1 + ∆ϕi (i >1) (6)

where ∆ϕi is the angle bend at point Pi, which is treated as a uniformly distributed random
variable. In the procedures of generating randomly shaped polygon, the orientation of the angle
should be taken into account and are randomly assigned. For i >1, the coordinates of Pi in a
Cartesian coordinate system can be represented by Equation (7){

xi = xi−1 + lstep × cos(βi)

yi = yi−1 + lstep × sin(βi)
(i > 1) (7)

where lstep is constant step length.
3. To ensure the points on the polygon are generated counterclockwise, the point Pi should be at the

left side of line OPi-1 or on the line (for example, point P5 in Figure 3). This can be validated using

the cross product of vector
→

OPi and
→

OPi−1. The calculation of the cross product is conducted
through Equation (3). If this condition is satisfied, proceed with step 4; otherwise, repeat from
step 2.

4. Calculate DOPi —the distance between O and the generated point Pi(xi, yi). There are two
parameters required to be inputted in advance in this part. They are the minimum distance
Dmin and the maximum distance Dmax between the center O and the generated points. If the
distance is within the specified range (Dmin ≤ DOPi ≤ Dmax) then the point is stored as a new
vertex. Otherwise repeat from step 2.

5. If a point cannot be generated within specified times of trials, then remove the vertex stored in
the previous step and repeat from step 2.
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6. The summation of all the angular bends from the initial starting point and the point generated in
the previous step is ϕ (ϕ=

∑
∆ϕi). In case of the generation of spiral polygon (a spiral polygon is a

simple polygon whose boundary chain contains exactly one concave subchain [38]), ϕ should
equal to 2π [39]. Consequently, repeat steps 2, 3, and 4 until the value of ϕ is larger than or equal
to 2π.

If the value of ϕ satisfies the convergence criteria in step 6, then delete the last point and connect
the stored vertexes counterclockwise. Thus, individual polygon with irregular shape is successfully
generated. If necessary, the above steps are repeated until the specified amount of polygon are obtained.
It should be noted that the distance between point Pn and P1 may not equal to lstep. However, this
situation does not have a significant influence on the polygon contour.
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3. Analysis of the Generated Particle Shape

3.1. Shape Descriptors

Many attempts have been made to quantitatively analyze the geometrical characteristics of
particles in the literature. Based on the dimensional scales, the morphological characteristics of these
particles are expressed in terms of three major aspects: form (overall shape), roundness (angularity),
and surface texture (roughness) [26,40,41].

Form, the property of the first level, represents spatial irregularities of particle shape in the large
dimension. The common shape include circle, ellipse, rectangle, etc. Shape descriptors, such as
elongation index (EI), aspect ratio (AR), and flatness index (FI) are used to quantify the basic shape
characteristic of particle. The EI can be determined as follows Equation (8) [22]

EI = S / L (8)

where S and L equal to the width and length of the smallest rectangular box containing the particle,
respectively (Figure 4a). The elongation index varies from 0 to 1, where the higher value of EI indicates
a lower degree of elongation. For a circle, the EI equals to 1. Particles with different elongation index
are shown in Figure 5.
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Figure 5. Particles with different elongation index.

Roundness—the property of the second level—describes the variations of particle shape in the
medium dimension, which reflects the average sharpness at corners. It is independent of the overall
shape. Available shape descriptors including angularity index, roundness index (RI) and others are of
this expression. The degree of roundness is defined and calculated via the following Equation (9) [42].

RI =
4πA

P2 (9)

where A is the projected area and P is the perimeter of the particle contour (see Figure 4b). Figure 6
displays six particles generated using the proposed algorithm. It is obvious that as RI increase from
0.58 to 0.92, high rounded particles can be obtained (Figure 6).
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Surface texture, the property of the third level, refers to the surface features which are small-scale
relative to the size of the object [41]. Roughness index and regularity index are generally used to
describe the surface texture features. The regularity index (RE) is defined as Equation (10) [22]

RE = log
( P

P− Pconv

)
(10)

where P is the perimeter and Pconv is the convex perimeter of the particle (see Figure 4b). The value
of regularity greater than 3 or 4 indicated the particle surface is very smooth. The example particles
shown in Figure 7 illustrate this point.
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From Figures 5–7, it is obvious that three shape descriptors mentioned above—elongation
index, roundness index and regularity index—have a good performance in obtaining the multiaspect



Materials 2019, 12, 2169 8 of 17

characteristics of particle shape (form, roundness, and surface texture of a particle outline). So these
three shape descriptors are chosen for the quantitative shape analysis in the following section.

3.2. Relationship between Input Parameters and Shape Descriptors

There are several parameters required to be inputted manually in RAB algorithm. They are the
minimum distance Dmin and the maximum distance Dmax between the center O and the generated
points, the range of angle bend ∆ϕi and the step length lstep (see Figure 3). In this paper, the minimum
value of ∆ϕi is set to 0 and the step length is treated as a constant. To better control the shape of
generated particle, based on the geometric relationship between these parameters, these parameters
are summarized and classed into three representative parameters, which are Rdist—the ratio between
Dmin and Dmax, Rl/d—the ratio between lstep and Dmax and the maximum value of angle bend ∆ϕmax

(see Equations (11)–(13)).
Rdist = Dmin / Dmax (11)

Rl/d = lstep / Dmax (12)

∆ϕmax =Max(|∆ϕ1| , |∆ϕ2| , . . . , |∆ϕn|) (13)

To explore the influence of these three parameters on shape descriptors (EI, RI and RE), each of
them is considered as a random variable, within a specified range. Based on the range of Rdist, Rl/d,
∆ϕmax, which are provided in Table 1, 1000 irregularly shaped polygons are generated for each group.
The values of shape descriptors are obtained using Equations (8)–(10), respectively. Figure 8 presents
the effect of the three representative parameters on particle shape. The influence can be determined
through the dispersion degree of the data points, which is obtained by range analysis. The greater
dispersion degree indicates the input parameter has marginal control effect on corresponding shape
descriptors. By comparison of the graphs in the same column, combined with the dispersion degree of
data point, the effect of three representative parameters on shape descriptors are investigated through
qualitative analysis. Besides, some fitting curves are almost horizontal in Figure 8, indicating that
the control effect of corresponding parameters on a certain shape descriptors is rather limited or can
be neglected.

Table 1. Ranges of input parameters.

Group Number of Particles ∆ϕmax (rad) Rdist Rl/d

Group 1 1000 [π/6, π/2] 1/3 1/10
Group 2 1000 π/3 [0,3/5] 1/10
Group 3 1000 π/3 1/3 [0.01, 0.2]

Figure 8a illustrates the influence of parameters ∆ϕmax on the generated particle shapes. It is
obvious that ∆ϕmax is well correlated with the particle roundness and regularity. Nevertheless,
an increase of ∆ϕmax has limited effect on the particle elongation. However, with the increase of Rdist,
the variation of shape descriptors is different with the above situation (see Figure 8b). Based on the
results of shape analysis, the EI of generated shape is almost always greater than that of corresponding
Rdist. Thus, in the process of generating random particles, Rdist can be used to control the minimum
value of elongation, while Rdist has limited influence on RI and RE. Finally, the discrete degree of the
data points shown in Figure 8c reflects the influence of Rl/d. It can be observed that this parameter have
negligible influences on elongation and roundness. Nevertheless, increase of Rl/d leads to a significant
increase of particle regularity.
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Figure 8. Influence of input parameters on shape descriptor: (a) Influence of ∆ϕmax on particle shape;
(b) Influence of Rdist on particle shape; (c) Influence of Rl/d on particle shape.

Based on the analysis above, the three shape descriptors are controlled by single or multiple input
parameters with an obvious effect. The relationship between input parameter and shape descriptor
is obtained by using the curve fitting method (Figure 9). The correlation coefficient R2 is adapted to
evaluate fitting precision [43,44]. Among these shape descriptors, the minimum and mean value of
elongation (EImin and EImean ) are determined by Rdist (Figure 9a), which can be expressed as

EImin = Rdist (14)

EImean = 0.329Rdist + 0.702 (15)

Besides, as shown in Figure 9b, the ∆ϕmax has a statistically significant relationship with the mean
value of roundness (RImean). The value is calculated based on the following fitting formula.

RImean = 0.353∆ϕmax
−0.524 + 0.285 (16)

Different from EI and RI, the mean value of regularity (REmean) is controlled by both ∆ϕmax and
Rl/d (Figure 9c). The predictive formula could be obtained by the curve fitting method with R2 =0.989
and expressed as follows

REmean = 3.43 + 23.99Rl/d − 3.578∆ϕmax − 6.985 R2
l/d − 11.57 Rl/d · ∆ϕmax + 1.504∆ϕ2

max (17)
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Thus, in the procedure of generating random particles, the shape of particles can be quantitatively
controlled based on Equations (14)–(17).
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4. Overlap Detection Algorithm

After a series of arbitrarily shaped polygons are introduced, the generated geometric models are
import into the Particle Flow Code PFC2D (Version 5.0., Itasca Consulting Group Inc.: Minneapolis,
MN, USA) [33] to construct clump library. PFC2D is a two-dimensional DEM software. The particles
are treated as disks or clumps, and can both translate and rotate. The movement of particle obeys
Newton’s laws of motion. Based on the mid-surface method, the clumps are created to represent
realistic particle shapes [34] and appropriately packed in the model domain. To facilitate random
and quick allocation of irregularly shaped clumps, an overlap detection algorithm is proposed in this
section. This algorithm can be summarized as follows.

1. Construct a clump library based on the randomly generated polygons.
2. Select a clump from the library and specify the position randomly in the model domain. It is

obvious that the shape of a clump is determined by the position and radii of the comprising
pebbles. Based on the pebble information, the minimum distance between the clump and the
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boundary of model can be determined by calculating the distance (Di) between each pebble and
the model boundary (see Figure 10).

3. Detect overlap between the clump and model boundary. If the minimum distance between them
is greater than or equal to zero, it suggest that the clump does not intersect with the boundaries
of model. If this condition is satisfied, store the clump information; otherwise, repeat from step 2.

4. Put next clump in the model domain and calculate the minimum distance between this clump
and the packed clumps (or the model boundary) based on the position and radii of all the pebbles.
If this clump do not overlap with the packed clumps or exceed the model boundary, store the
clump and pebble information; otherwise, repeat this step.

5. Repeat step 4 until a given condition is satisfied (e.g., the number of all the clumps, the area of all
the clumps).

The most important part of the algorithm is the calculation of the minimum distance between clumps
or the distance between clump and the model boundary. This is an iterative procedure in which the
minimum distance is determined by calculating the distance between pebbles in new selected clump
and pebbles in the packed clumps (and the distance between pebbles in new selected clump and model
boundary). As shown in Figure 10, the distance between clumps C1 and C2 is defined by Equation (18):

Dist(C1,C2) = Minimum(Dist_11, Dist_12, Dist_13 . . . , Dist_ij) (18)

where Dist_ij is the distance between pebble peb_i in clump C1 and pebble peb_j in C2. In a similar
way, the distance between clump and model boundary can be calculated. Thus, in the procedures of
clump packing, the distance between each clumps in the model domain can be precisely controlled.

Materials 2019, 12, x FOR PEER REVIEW 10 of 17 

 

4. Overlap Detection Algorithm 

After a series of arbitrarily shaped polygons are introduced, the generated geometric models are 
import into the Particle Flow Code PFC2D (Version 5.0., Itasca Consulting Group Inc.: Minneapolis, 
MN, USA) [33] to construct clump library. PFC2D is a two-dimensional DEM software. The particles 
are treated as disks or clumps, and can both translate and rotate. The movement of particle obeys 
Newton’s laws of motion. Based on the mid-surface method, the clumps are created to represent 
realistic particle shapes [34] and appropriately packed in the model domain. To facilitate random and 
quick allocation of irregularly shaped clumps, an overlap detection algorithm is proposed in this 
section. This algorithm can be summarized as follows. 
1. Construct a clump library based on the randomly generated polygons. 
2. Select a clump from the library and specify the position randomly in the model domain. It is 

obvious that the shape of a clump is determined by the position and radii of the comprising 
pebbles. Based on the pebble information, the minimum distance between the clump and the 
boundary of model can be determined by calculating the distance (Di) between each pebble and 
the model boundary (see Figure 10). 

3. Detect overlap between the clump and model boundary. If the minimum distance between them 
is greater than or equal to zero, it suggest that the clump does not intersect with the boundaries 
of model. If this condition is satisfied, store the clump information; otherwise, repeat from step 
2. 

4. Put next clump in the model domain and calculate the minimum distance between this clump 
and the packed clumps (or the model boundary) based on the position and radii of all the 
pebbles. If this clump do not overlap with the packed clumps or exceed the model boundary, 
store the clump and pebble information; otherwise, repeat this step. 

5. Repeat step 4 until a given condition is satisfied (e.g., the number of all the clumps, the area of 
all the clumps). 
The most important part of the algorithm is the calculation of the minimum distance between 

clumps or the distance between clump and the model boundary. This is an iterative procedure in 
which the minimum distance is determined by calculating the distance between pebbles in new 
selected clump and pebbles in the packed clumps (and the distance between pebbles in new selected 
clump and model boundary). As shown in Figure 10, the distance between clumps C1 and C2 is 
defined by Equation (18): 

Dist(C1,C2) = Minimum(Dist_11, Dist_12, Dist_13…, Dist_ij) (18) 
where Dist_ij is the distance between pebble peb_i in clump C1 and pebble peb_j in C2. In a similar 
way, the distance between clump and model boundary can be calculated. Thus, in the procedures of 
clump packing, the distance between each clumps in the model domain can be precisely controlled. 

 

Figure 10. Schematic diagram of distance calculation method. 

  

Figure 10. Schematic diagram of distance calculation method.

5. Application of Proposed Algorithm

To validate the feasibility of the proposed RAB and overlap detection algorithms in modeling of
granular materials, two group of granular mixture samples for application examples are generated in
the following sections.

5.1. Modeling of Granular Mixture Materials

Granular mixtures are inhomogeneous multiphase materials, which are consisted of coarse
particles and fine particles [45]. In this numerical model, the coarse particles are simulated using
clumps of overlap pebbles and fine particles by single disk. The procedures of modeling granular
mixture are as follows (Figure 11).

1. Code the RAB algorithm in Python and input parameters Rdist, Rl/d, and ∆ϕmax to simulate the
geometric model of individual coarse particle with irregular shape.
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2. Import the generated geometric model into PFC2D to construct clump library. The clumps are
created based on mid-surface method. These clumps are used to represent realistic coarse particle.

3. Put coarse particles into the model domain based on the overlap detection algorithm which is
proposed above (Figure 11a).

4. Generate sample that is composed of single disk to simulate fine particles in the same model
domain (Figure 11b). The size of particle and the porosity of fine particles specimen should be in
a given range.

5. Remove fine particles that overlap with coarse particles (Figure 11c,d). The generated granular
mixture sample is shown in Figure 11e.
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5.2. Granular Mixture with Predetermined Coarse Particle Shape Features

The relationship between input parameters (Rdist, Rl/d, and ∆ϕmax) and shape descriptors are
discussed in Section 3.2, as well as the input parameters used to control particle shape features (such as
the mean value of some shape descriptors). This section illustrates the capabilities of the proposed
method in generating sample with predetermined shape feature. In this example, the mean and
minimum elongation are equal to 0.81 and 1/3, respectively. The value of mean roundness (RImean) and
mean regularity (REmean) are set to 0.7 and 3.0, respectively. Based on Equations (14)–(17), the three
representative parameters (Rdist, Rl/d, and ∆ϕmax) are back-calculated. The values are 1/3, 0.094,
and 0.735, respectively. Besides, the equivalent diameters of the coarse particles varied uniformly from
0.01 to 1.0 cm and the coarse particles content is specified as 40%. It should be noted that because
the clumps are used to represent realistic coarse particles shapes. Therefore, the area of all the coarse
particles is obtained by calculating the area of clumps not that of randomly generated polygons.
A granular mixture sample with predetermined shape feature and the derived distributions of the three
shape descriptors (elongation, roundness, and regularity) are shown in Figure 12. It can be observed
that the shape descriptors have a good match with the target value, which validates the feasibility
of the RAB algorithm and three representative parameters in precisely controlling the generation of
granular materials.
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Figure 12. Granular mixture with predetermined coarse particle shape features: (a) Sample of generated
granular mixture, (b) elongation distributions of coarse particles, (c) roundness distributions of coarse
particles, and (d) regularity distributions of coarse particles.

5.3. Granular Mixture with Different Coarse Particle Distances

The proposed overlap detection algorithm has an advantage in calculation of the minimum
distance between coarse particles or the distance between coarse particle and the model boundary.
To illustrate the capability of this algorithm, four granular mixture samples with different minimum
coarse particle distances are generated (Figure 13). For these four samples, the minimum distance
(dmin) between coarse particles are 0, 0.05, 0.10, and 0.20 cm, respectively. The values of ∆ϕmax, Rdist,
and Rl/d are set to π/4, 1/3, and 0.1, respectively. The value range of equivalent diameters are 0.3 to
1.5 cm. The content of the coarse particles is equal to 30%. The distributions of minimum distance
between clumps are shown in Figure 14. All these results show that distance meet the requirements of
the target value.
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Figure 13. Granular mixture samples with different minimum coarse particle distances (cm): (a) dmin =

0.0 cm; (b) dmin = 0.05 cm; (c) dmin = 0.10 cm; (d) dmin = 0.20 cm.
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Figure 14. Frequency histograms of minimum distance between coarse particles: (a) dmin = 0.0 cm; (b)
dmin = 0.05 cm; (c) dmin = 0.10 cm; (d) dmin = 0.20 cm.

6. Conclusions

This paper presents a systematic method to generate arbitrary two-dimensional particle for the
numerical simulation of granular materials. A random angular bend (RAB) algorithm is proposed
and coded in Python to simulate the geometric model of individual particle with irregular shape.
Three representative parameters (Rdist, Rl/d, and ∆ϕmax) are used to quantitatively control the shape
feature of generated polygons in terms of three major aspects (form, roundness, and surface texture).
Besides, a novel overlap detection algorithm is developed to address difficulties associated with spatial
allocation of irregularly shaped particles. Finally, two examples are further employed to validate the
feasibility of the proposed algorithm for the numerical modeling of realistic granular materials. The
main conclusions are summarized as follows.
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1. The proposed RAB algorithm shows a good performance in the generation of randomly shaped
polygons (especially for nonstar-like particle reconstruction based on image information).

2. Three representative parameters (Rdist, Rl/d, and ∆ϕmax) in RAB algorithm could quantitatively
control the shape feature of generated polygons by control three shape descriptors (elongation
index, roundness index, and regularity). Besides, these three parameters have definitude physical
meaning, which makes the RAB algorithm easier to understand.

3. The proposed overlap detection algorithm is able to allocate particle to the model domain easily
by calculating the minimum distance between coarse particles or the distance between coarse
particle and the model boundary.

It should be noted that the RAB algorithm is only suitable for the generation of two-dimensional
particle. For real 3D particle modeling, this algorithm needs to be extended to a general 3D case in
future works. The study provide a foundation for the construction of granular materials based on
angular bend theory.
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List of symbols

l Arc length from point P0 up to the vertex Pi
ϕ Cumulative angular bends
Pi The ith vertex on the polygon
∆li Edge length
∆ϕi Angular bend at vertex Pi
Lall The total length of the polygon.

βi
The counterclockwise angle that vector

→

PiPi+1 makes with the positive
x-axis

lstep Constant step length
EI Elongation index
S The width of the smallest rectangular box containing the particle
L The length of the smallest rectangular box containing the particle
RI Roundness index
A The projected area of the particle
P The perimeter of the particle
RE Regularity index
Pconv The convex perimeter of the particle
DOPi The distance between O and the generated point Pi
Dmin The minimum distance between the center O and the generated points
Dmax The maximum distance between the center O and the generated points
Rdist The ratio between Dmin and Dmax

Rl/d The ratio between lsteplength and Dmax

∆ϕmax The maximum value of angle bend
EImin The minimum value of elongation
EImean The mean value of elongation
RImean The mean value of roundness
REmean The mean value of regularity
Di The distance between pebble and the model boundary
Dist_ij The distance between pebble peb_i in clump C1 and pebble peb_j in C2
dmin The minimum distance between coarse particles
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