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Abstract: A theoretical model for the electrical conductivity size effect of square nanowires is
proposed in this manuscript, which features combining the three main carrier scattering mechanisms
in polycrystalline nanowires together, namely, background scattering, external surface scattering,
as well as grain boundary scattering. Comparisons to traditional models and experiment data show
that this model achieves a higher correlation with the experiment data.
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1. Introduction

Today, the features of integrated circuits (ICs) have been reduced down to a size of 10 nm or below,
thus the conductivity size effect (CSE), which can cause additional power dissipation and other side
effects, has become a big concern. The CSE shows that the metallic conductivity decreases with the
geometric size, which is non-trivial when the size is comparable to the mean free path of the material
(39 nm for copper). However, a comprehensive theoretical model for such metal interconnects is still
under study for metal interconnects in ICs, which can be defined as polycrystalline metal nanowires
with a square cross-section.

The CSE was first analyzed and applied to thin films, where the film thickness is comparable to the
mean free path, yet for nanowires, the size effect is two-dimensional (wire height and width for square
cross-section). Fuchs and Sondheimer (the FS model) first studied the CSE in the 1930s and pointed
out that in thin films, in addition to the background scattering (BS) of the carriers in bulk materials,
the external surface scattering (ESS) is a main factor causing the additional conductivity decrease due
to the size limit [1,2]. Based on the ideas of the FS model for thin films, Dingle proposed a model
for circular cross-section wires [3], MacDonald and Sarginson proposed a model for a rectangular
cross-section [4], and Chamber proposed a model for an arbitrary cross-section [5].

But those theories failed to include the grain boundary scattering (GBS) for polycrystalline metal
wires. As Mayadas and Shatzkes (MS)’s model pointed out in the 1970s [6], the GBS plays a dominant
role in polycrystalline thin films, which has been verified experimentally [7-11]. The MS model was
the first to combine the three major carrier scattering mechanisms in polycrystalline thin films, i.e., BS,
ESS, and GBS, and achieved great success. Even in recent years, people are still relying on it to evaluate
the nanowire size effect [8-11]. However, it is applicable for thin films only, and requires modification
for use with nanowires.
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Unfortunately, few works have been reported for CSE modeling of nanowires. Recently, Moraga
and colleagues reported a quantum mechanical model for GBS in thin films and wires [12-14], yet it
assumed perfect external surfaces scattering. As analyzed by the FS model, inelastic scattering plays an
important role in the conductivity model and requires a special parameter p for detailed discussions.
Another related work found was by Dimmich and Warkusz [15], which lacks derivation details, and the
results differ from ours. Marom et al. [16] studied copper wires of variable widths and heights down
to 100 nm. They found that when both the width and height of the wire are larger than one third of the
mean free path, its resistivity exhibits a filmlike behavior with a separate contribution to the resistivity
of each small dimension, and Matthiessen’s rule can then be applied to calculate the resistivity of
the wire from the known expressions for the resistivity of thin films. Moors and colleagues reported
their work on the resistivity scaling and electron relaxation times in metallic nanowires in 2015 [17]
and further proposed a model in 2018 [18] that does not rely on phenomenological fitting parameters.
Their work deepens the understanding of the physics underneath the resistivity size effect, yet it
requires knowledge of “the detailed statistical properties of grains, roughness and barrier material as
well as the metallic band structure and quantum mechanical aspects of scattering and confinement”.

Similar to the MS model for thin films, it is meaningful to combine all of the three main scattering
mechanisms, i.e., BS, ESS, and GBS, to model the CSE for polycrystalline nanowires. A model for
circular cross-section nanowires has been reported recently by our group and shows greater consistency
with experimental data [19]. In many cases, especially the metal interconnects in ICs, the nanowires
are fabricated by photolithography and as a result, have a square or rectangular cross-section shape.
Therefore, a special model for square cross-sections is needed, which is proposed in this manuscript.
We can see that the difference in the cross-section shape leads to different boundary conditions, thus
requiring a different calculation processing technique. These results also differ greatly when compared
to the circular case and are not apparent unless a new analysis is employed. Table 1 shows the main
differences between the available models of the CSE for comparison.

Table 1. Comparison of available models with corresponding scattering mechanism.

Theory Scattering Cross-Section
BS ESS GBS
. FS v v *
Film MS N v J )
Dingle YV v .
. Xue&Gu v V V Circle
Nanowires
MacDonald v v Savare
Present Vv v N q

FS: Fuchs and Sondheimer; MS: Mayadas and Shatzkes; BS: background scattering; ESS: external surface scattering;
GBS: grain boundary scattering.

2. Modeling and Derivation

Figure 1 illustrates the model of square cross-section nanowires. Our proposed methodology is
the same as our previous work for circle cross-sections, though different boundary conditions lead to
different mathematical calculations and different results. Major assumptions and simplifications of the
model are listed below:

1.  Asquare instead of a rectangular cross-section is assumed for the nanowires for simplicity, and the
surface smoothness of the nanowire is not considered in this work.

2. The influence of the magnetic field is ignored here, which is reasonable for non-ferromagnetic
materials. What is more, the impact of temperature variation on the resistivity is not included in
the model since its relationship with cross-section shape is weak.

3. Theimpact of ESSis included in the model by introducing the two-dimension boundary conditions
into the Boltzmann equation, as MacDonald proposed before.
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4. The impact of GBS is included in the model by inserting a series of parallel planar potential
barriers perpendicular to the electric current direction. The average separation d equals the mean
grain diameter D, as assumed by the MS theory. These potential barriers scatter the electrons
following the classic quantum mechanical scattering equations, with the potential of the barriers
noted as 8(z — zp).

Grain-boundary scattering

S I I

— |

Average distance:d Barrier: 8 (z-z ) y/ A
: y /
7 il i1 T—7 i
—t—v -0

Background scattering:
point defeat,phonon,impurities
relaxation time T approximation

External surface Scattering
scattering coefficient :p

Figure 1. Ilustration of the three scattering mechanisms in square cross-section
polycrystalline nanowires.

In our model, the main difference with the MS model is that a 2d boundary condition of square
cross-sections should be applied instead of 14 for thin films, so we can follow almost the same derivation
procedure as the MS model but with a different boundary condition to those applied in the ESS method.

It is interesting that by further studying the MS and FS models, we can see that the CSE for a
polycrystalline metal nanowire can be described in a general and simple way, as shown below in
Equation (1):

ow =09 — Aog — Aos = 0 — Ao, (€))]

where 0, is the conductivity of the nanowire, o refers to the material bulk conductivity accounting for
BS only, o, refers to the conductivity considering both BS and GBS, Aoy is the conductivity decrease
due to GBS, and Ags is the conductivity decrease due to ESS.

Following the same derivation as the MS model, the following equation can be obtained:

R AR

where a = %‘J %, R is the reflection probability at the grain boundary as defined by the MS theory,

and Ay is the electron mean free path of bulk materials. As indicated by the MS theory, the GBS plays an
important role in the resistivity size effect of polycrystalline materials, which has been verified by many
experiments. For example, in 2000, Durkan and Wellan report an observation of the apparent GBS
effect when the diameter of Au nanowires approaches the grain size (40~50 nm) [7]. When calculating
the conductivity due to BS, the relaxation time 7 is used to approximate collisions resulted from
phonons, defects, as well as impurities. Now that GBS is considered, the original relaxation time
requires modification.
Referring to the detailed induction in the MS theory, the total relaxation time 7" is

% _ 1(1 L@ ): LH(o), 3)

T cos 0
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with 6 measured from the z axis, so k; = kr cos 8, where kr is the Fermi wave vector and k; is its z
component. Substituting T with 7%, the Boltzmann equation can be written as
If Ifi N Ifo

vx§+vyW+F :eEvzg. 4)

Because Equation (4) is a nonlinear binary partial differential equation, one can obtain its general
solutions by solving the eigen values.

Let f' = f1 - EEZ)ZT*%. Expression Equation (4) can be rewritten as

of It f
ng-f—vya—yﬁ—g =0. (5)
dx _ _4f
Equation (5) has two sub-equations: { o dy 4 »andthesolutionis
o = o
/= — X Vorf = . *_¥_
f' = Crexp( T*vx) or " = Cyexp( T*vy) and o oy C, (6)

where C; and C; are arbitrary constants. So the solution of Equation (4) is

., O]
f] =eEt Uzz »
or equally,
Py
f1 =eET'v, fo
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where ® and ¥ can be any functions. To determine the form of ® and ¥, let us temporarily assume
complete inelastic scattering at the nanowire surface so that f; = 0. Substitute this condition into
Equations (7) and (8), and @ and ¥ can be solved. As shown in Figure 2, the line y = v, *x/v, divides the
square cross-section into two parts.

Y v
A y=—yx(vy >vx)
VX
a
/Vix(vy <v)
vx
O a X

Figure 2. The line y = Uv’—“:c divides the square cross-section into two parts, where the expression will be
different when the slope is >1 or <1.
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Considering the x = 0 boundary, when f; = 0, we have

.. 9fo
fi=¢€Et Uzg[l—e Tvx] y> )

Ux

Similarly, when y = 0, we have

0 _ Y
= eET*vza—]E)[l —e % ],y <y (10)

Ox
So the complete expression is as below.

x, 9fo — Ty Yy o - v
fi =eEt Uz 3¢ 1—e =% ,y<v—x(x—a) flngT*vza_f 1-e Tvy],y<%x

_ + 9f £ vy . .. Ofo[ X vy
fi=eETv; 5 (1—ev |y > a(X—ﬂ) fi=¢eEt 023—5{1—3 Tvx],y> 2. X
J ax v | X v
fi = eET'v 35 fo l—ev |a—y>(a-x) fi=eETv:3; fo 1—e™o a—y>—3lx
a e 4 d [ - v
fi = eET'vz 3 fOl—e”’V ﬂ—y<v—z(a—X) f1 = eET'v, 5 fol—e“’y ,a—y<—%x

Because the distribution function in each quadrant will make the same contribution to the electric
current density, we can use the expression of the first quadrant as a model to calculate the electric
current density:

_ Ze(%)Sjjj 0. fidvedv,do.. (11)
We have
2a% — 2at* vy(l—l—e Tvv)
( ) ffj vZ 2eET" —0 —2at* vx<1 —e T vx) doxdvydo,. (12)
O<vx<vy +4( )2vay(1 —e r*z;x)

Letv, = vcos 0,0y = vsin 0 cos ¢, v, = vsin Osin ¢. Then we get conductivity o;, in consideration
of BS, ESS, and GBS:

[ sin6sin ¢ 1 - Silidgsf)i @
KH(0) +e +
i 26 in 646 n/2 kH(0)
o 3 cos“ 0 sin in0 — )
. :ﬂa)_%fod(P %(1_6 e I (13)
/4 ZSinZkZGI_inzrzg)COup(l _e—sirl:g(cgi(p)
where f(a) = 3[— - —a—i—a 2_ g3 ln(l + )] k=a/Ao, H=1+4a/+(1-1/t?). Making a further

-1
substitution, t = 1/sin 6, then d6 = —(t Vi2 — 1) dt, and we get

_kHE
w2 sin (p(l +e cose )+

o 6 R 1 _1 _ kHt
07:)’ __ka— - t5 1) Zdtfd(p COS(p(l—e C‘W)— : (14)
1 /4 2sin ¢ cos @ —C’g;“
" T(l_e ’

As Equation (1) shows, the total conductivity oy, is the difference of bulk conductivity o¢ subtracting
Aog and Ags, resulting from GBS and ESS, respectively. It matches the form

ow = 00 —Aog — Acs. (15)
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For comparison with Equation (14), the final expression of the conductivity reduction given by
Gu and Xue for circular cross-section polycrystalline nanowires is

8

= fla)- (1~ P

s

N (— g )15 V2 - 14t

P—‘%

z (16)
x [ dipfexp[-(v + 1)Hktsiny] — exp(—vHktsiny)}siny,
0

and the final expression of the MS theory is

o cos? rj) 1
% wio(F ~#)
v = fla) - f ‘Pf " t(ﬁxp ktH(ttqo)] dt. (17)

1 pexp[ ktH(t,¢)]

We can see that Equation (14) has a very similar form to Equations (16) and (17), and the main
difference lies in the ratio of elastic scattering, p. It is because complete inelastic scattering at the
nanowire external surface was assumed in the above calculations, which means p = 0. Considering the
part of elastic scattering, similar to Equations (16) and (17), the final expression of the conductivity in
square cross-section polycrystalline nanowires can be written as

/2
1 1 kHt

2 -3 1_e_c05(p
—|= —1) “dt | d —— |- . 18
fH £ t5 ) f | cose 1_pe——c’§f;1f,; (18)

n/4 . _ kHt )
2sing@cos@| 1_p COSP

Ow

00

kHt _ kHt
1—}76 cos @

Equation (18) is the final expression of the CSE for square cross-section polycrystalline nanowires.
When p = 0, it is easy to verify that Equation (18) will degenerate to Equation(14); while if p = 1, then
it degenerates to f(«). In addition, if we let R = 0, or not considering the GBS, Equation (18) will be
identical to MacDonald’s equation, which is reasonable.

3. Discussion

Unfortunately, Equation (18) cannot be solved analytically. A MATLAB program was coded to
obtain its numerical solutions. Experiment data of different nanowires was collected for comparison
with the current model (noted as “current”) as well as the traditional models (MS and McDonald).The
same parameters (p, R, C) are used for the simulation of all three models, i.e., current, MS, and McDonald,
as labeled in Figures 3-5.
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Figure 3. Comparison between numerical simulations and experiment data for Bi nanowires, with
parametersp = 0.5,R = 0.5,C = 1.
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Figure 4. Comparison between numerical simulations and experiment data for Ag with parameters

p=05R=03C=1
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Figure 5. Comparison between numerical simulations and experiment data for ErSi, with parameters
p=06,R=08C=1.

"1

In Figure 3, the Bismuth experiment data points are denoted by “*”, as adopted from Figure 5
in [20], and curves for three theoretical models are also plotted for comparison. The horizontal axis
k is the normalized side length of the square cross-section, which is equal to the ratio of the actual
side length, 4, to the mean free path, Ay. The vertical axis is the ratio of the nanowire resistivity py
to the bulk resistivity py. The parameter values are adopted from the experiment source article as:
p = 0.5,R = 0.5,C = 1. The parameters (p, R, C) are the same as in MS and McDonald. As we can
see, the current model gives higher resistivity values than the MS and McDonald models, which is
reasonable since it takes into account all of the three scattering mechanisms. In addition, the standard
deviation of the curve fitting was calculated to describe the degree of match of the different models to
the experiment data. It is defined as the mean squared error (MSE) between the experiment data and
theoretical values, and is described as follows:

R=\"—, (19)

where R is the standard deviation; T(i) is the theoretical value; and A(i) is the related experiment data.
The smaller the standard deviation is, the better the simulation curve fits with the experiment data.
As Figure 3 shows, the current model has a standard deviation of 0.7510, which is smaller than the
MS (0.7769) and McDonald (1.2279) models. The McDonald model has the largest standard deviation,
implying that GBS contributes more than ESS to the CSE in polycrystalline nanowires.

Ag and ErSi, experiment data was also collected for comparison. Figure 4 illustrates the Ag
experiment data coming from Figure 5 in [21] by Josell et al. Specific parameters are set according
to the experiment data source document as p = 0.5,R = 0.3,C = 1. The current model again gives
higher resistivity than the MS and McDonald models. Moreover, it fits better with the experiment
data, with the smallest standard deviation of 0.6150 vs. 0.7275 for the MS curve and 0.8621 for the
McDonald curve.
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Figure 5 shows the data for ErSi; nanowires with the parameters p = 0.6,R = 0.8,C = 1.
The experimental data was adopted from Figure 4 in [22]. Again, the current model shows higher
resistivity than the MS and McDonald models and is closer to the experiment data (the standard
deviation is 5.6488 vs. 10.0884 for MS and 14.6542 for McDonald) [22]. Due to limited original
experiment data points (only 5), the MSE of ErSi2 is one order of magnitude larger than that of Bi and
Ag nanowires for all models.

From the above model derivation process, we can see that in principle, this model is not limited
to metal nanowires but could be extended to semiconductor nanowires. Further study is needed for
semiconductor nanowires.

4. Conclusions

In conclusion, a complete model for polycrystalline metal nanowires with square cross-sections
is proposed, which includes three distinct scattering mechanisms—background scattering, external
surface scattering, and grain boundary scattering. Though the model is still a semi-classic one, it can be
a precise model for the nanowire CSE and is especially useful for interconnects in ICs. Comparison with
previous models, i.e., the MacDonald model and MS model, shows that our proposed model matches
better with the experimental data.
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