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Abstract: As an important industrial material, bentonite has been widely applied in water-based
drilling fluids to create mud cakes to protect boreholes. However, the common mud cake is
porous, and it is difficult to reduce the filtration of a drilling fluid at high temperature. Therefore,
this paper endowed bentonite with a thermo response via the insertion of N-isopropylacrylamide
(NIPAM) monomers. The interaction between NIPAM monomers and bentonite was investigated
via Fourier infrared spectroscopy (FTIR), isothermal adsorption, and X-ray diffraction (XRD) at
various temperatures. The results demonstrate that chemical adsorption is involved in the adsorption
process of NIPAM monomers on bentonite, and the adsorption of NIPAM monomers accords with
the D–R model. With increasing temperature, more adsorption water was squeezed out of the
composite when the temperature of the composite exceeded 70 ◦C. Based on the composite of
NIPAM and bentonite, a mud cake was prepared using low-viscosity polyanionic cellulose (Lv-PAC)
and initiator potassium peroxydisulfate (KPS). The change in the plugging of the mud cake was
investigated via environmental scanning electron microscopy (ESEM), contact angle testing, filtration
experiments, and linear expansion of the shale at various temperatures. In the plugging of the mud
cake, a self-recovery behavior was observed with increasing temperature, and resistance was observed
at 110 ◦C. The rheology of the drilling fluid was stable in the alterative temperature zone (70–110 ◦C).
Based on the high resistance of the basic drilling fluid, a high-density drilling fluid (ρ = 2.0 g/cm3)
was prepared with weighting materials with the objective of drilling high-temperature formations.
By using a high-density drilling fluid, the hydration expansion of shale was reduced by half at 110 ◦C
in comparison with common bentonite drilling fluid. In addition, the rheology of the high-density
drilling fluid tended to be stable, and a self-recovery behavior was observed.

Keywords: bentonite; N-isopropylacrylamide; drilling fluid; self-recovery

1. Introduction

As an important industrial material, bentonite has been widely applied in agricultural, medical,
and energy fields for decolorization, suspension, and stabilization [1–3]. During drilling for oil or gas,
bentonite can effectively reduce the loss of the filtration of the water-based drilling fluid and improve
the ability of the water-based drilling fluid to shear and carry cuttings [4,5]. Under deep stratum
pressure, the water-based drilling fluid can quickly lose a substantial amount of water and form a thin
film (mud cake), which consists mainly of bentonite, on the borehole [6]. The film can prevent the
residual water of the drilling fluid from hydrating the borehole and collapsing the stratum. However,
the simple film cannot effectively prevent the drilling fluid from invading the stratum with the increase
of the temperature and of the drilling depth, which typically causes a series of serious problems, such as
fracture expansion, borehole collapse, and oil leakage [7,8]. Therefore, it is necessary to further reduce
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the loss of water from the drilling fluid. Drilling engineers typically utilize a series of high-molecular
polymers, such as polyanionic cellulose (PAC), xanthan gum (XG), and carboxymethylcellulose (CMC)
to bind water molecules in drilling fluids [9–11]. However, this can significantly increase the difficulty
and cost of drilling with the increase of the viscosity of the fluid and can even cause drill bit sticking
and borehole collapse. In contrast, in this paper, we attempt to reduce the water loss by modifying
bentonite and tuning the response of the mud cake to temperature. Via this approach, we can design
the responsive temperature range of the mud cake to realize the plugging of water.

Huang synthesized a series of P(NIPAM-co-AA)/clay nanocomposite hydrogels via radical
copolymerization, using clay as the cross-linker. In the research, the composite hydrogels have
excellent mechanical strength for a wide range of clay concentrations. However, the thermoresponse
of the composite hydrogel was not reported [12]. In addition, a novel octadecyl amine–(ODA–Mt)
copolymer nanocomposite was synthesized for bioengineering by modifying the montmorillonite with
N-isopropylacrylamide (NIPAM) polymers [13]. In this research, the heating method is demonstrated
to be a facile and highly effective technique for clay polymer nanocomposites (CPNs) that provides
a higher rate of copolymerization and conversion of micro- and nanoparticles [14]. A clay particle is in
the core and thermoresponsive NIPAM polymers are on the shell, as illustrated in Figure 1. The linear
NIPAM polymers can cross-link with each other as the temperature increases; and return to their linear
conformations as the temperature decreases. Similarly, poly(N-isopropylacrylamide) (PNIPAM)/clay
lithium magnesium silicate hydrate (LMSH) nanocomposite hydrogels with various clay percentages
of LMSH/NIPAM (which are referred to as NPX hydrogels) were prepared to remove anionic dye
Amaranth from the aqueous solution [15]. Although nanocomposites of NIPAM polymers and clay
have been applied in a wide range of fields, reports on the application of water-based drilling fluid
are rare.

Therefore, in this paper, we attempt to modify bentonite with mono-NIPAM to decrease the
water loss of drilling fluids at high temperature while maintaining the rheology of the fluids. Firstly,
we designed NIPAM/bentonite composite by mixing NIPAM monomers and bentonite at different
temperatures. The interaction between NIPAM monomers and bentonite was investigated via
Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) at designed temperatures.
The composite showed a certain hydrophobicity at 70 ◦C and a resistance to high temperature (90 ◦C).
Furthermore, we conducted the isothermal adsorption to explore the nature of adsorption. We found
the chemisorption was involved, which may be due to the hydrogen bond and the protonation of amine
groups of NIPAM monomers. Furthermore, we applied the composite in a potassium peroxydisulfate
(KPS) aqueous solution for drilling oil and gas at high temperature. With this excitation, the switching
behavior of the composite was extremely stable in water when the serving temperature was above
low critical phase transition temperature (LCST). Therefore, the smart water-based drilling fluid can
be prepared with NIPAM/bentonite instead of conventional bentonite for drilling oil and gas in deep
stratum. The self-recovery behavior was found in the filtration, plugging, and rheology of modified
drilling fluid, which showed great potential for exploring shale oil/gas at high temperature.
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2. Experiment

2.1. Material

Na+ bentonite was purchased from the Nanocor Company (Xie et al., 2017). The chemical
composition of the bentonite was 13.22% Al2O3, 71.30% SiO2, 7.10% MgO, 4.79% Na2O, and 3.59%
Fe2O3 [16]. The cation exchange capacity (CEC) of the bentonite was 145 meq/100 g [17]. The samples
were dried at 150 ◦C and sifted through 200-mesh sieves. The smart N-Isopropylacrylamide (NIPAM)
monomer (Sigma-Aldrich, Berlin, Germany) was purified prior to use via recrystallization from
diethyl ether. The ratio of amide groups to sec-propyl groups is 1:1, which provided the potential for
thermoresponse. Low-viscosity polyanionic cellulose (Lv-PAC) (Aladdin, Shanghai, China) served
as a common cross-linker for the drilling fluid [18]. Carboxymethylcellulose (CMC), potassium
peroxydisulfate (KPS), barite (BaSO4) (with a particle size of 1 µm), and calcium carbonate (CaCO3)
(with a particle size of 7.5 µm) were also obtained from Aladdin and used to prepare the drilling fluid.
The shale was drilled from the Longmaxi formation in Sichuan province of China and used to evaluate
the effect of the prepared drilling fluid on the hydration of shale.

2.2. Preparation of the NIPAM/Bentonite Composite

The main clay mineral of the bentonite was Na+ montmorillonite, the edges of which contain
polar hydroxyl groups [19]. Based on this, the composite of NIPAM and bentonite can be simply
prepared by mixing them with each other. First, the bentonite was dried at 150 ◦C for 24 h. Then, 4.0 g
bentonite was added into 100 mL NIPAM aqueous solution (the mass percent of NIPAM was 3%) and
stirred at 30 ◦C for 24 h. After that, the mixture was dehydrated at 6000 rpm for 5 min and the residual
wet bentonite was collected and washed three times with distilled water. Finally, the dehydrated clay
was dried at 80 ◦C for 24 h and grinded to micrometer scale (200-mesh) with a powder extractor.

2.3. Isothermal Adsorption of NIPAM on Bentonite

A total of 0.1 g bentonite (at 150 ◦C for 24 h) was added into 10 mL NIPAM solution for adsorption
at three temperatures (30 ◦C, 70 ◦C, and 90 ◦C). After 24 h, the equilibrium concentration of the residual
solution can be obtained from the reading absorbance [20] of a UV-Vis spectrophotometer from the
Shanghai Onlab Instruments company (Shanghai, China). In detail, 3.5 mL residual solution was
extracted into a preheated cuvette and the absorbance was recorded by the UV-Vis spectrophotometer
with scanning wavelength between 320~400 nm [14].

The equilibrium adsorption capacity of bentonite was calculated from the N element content,
which was obtained via elemental analysis (EA) using the Var10EL-III analyzer (Elementar, Levokusen,
Germany). The initial concentration of the NIPAM solution was controlled from 5 to 45 mg/L.

2.4. Structural Characterization

The changes in the basal spacing of the clay interlayer with the function of the NIPAM monomers
were recorded via X-ray diffraction (XRD). The XRD patterns were recorded by an X’Pert PRO MPD
diffractometer from PANalytical B.V. (Amsterdam, Holland, the Netherlands), which was equipped
with a Cu Kα radiation source. The microstructures of hydrated NIPAM/bentonite composites were
observed via Quanta 450 environmental scanning electron microscopy (ESEM, FEI, Hillsboro, OR,
USA). The interaction between NIPAM monomers and bentonite was identified via Fourier transform
infrared spectroscopy (Thermo Scientific, Boston, MA, USA).

2.5. Thermal Sensitivity Analysis

The NIPAM/bentonite solution was firstly prepared by stirring NIPAM/bentonite with KPS
aqueous solution (the mass percent of KPS was 0.025%) at different temperatures for 30 min.
After that, 2 mL active NIPAM/bentonite solution was put into a dried cuvette for investigating
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the changing of transmittance via UV-1750 Ultraviolet visible spectrophotometer (Shimadzu, Tokyo,
Japan). Besides, 30 mL active NIPAM/bentonite solution was poured into the stirred vessel of particle
size analyzer (BT-9300LD, Betttersize, Shanghai, China) for investigating the changing of particle size
of NIPAM/bentonite.

2.6. Preparation of Fresh Mud Cakes from the NIPAM/BENTONITE Composite

Fourteen grams of NIPAM/bentonite composite was prepared and stirred with 350 mL Lv-PAC
solution for 16 h. The influence of the temperature on the composite was investigated with a high
temperature and high pressure (HTHP) filtration tester (Tongchun, Qingdao, China). First, a filter paper
(with a maximum diameter of less than 20 µm) was inserted into the bottom of the tank of the tester.
Then, 350 mL prepared slurry was poured into the tank and filtrated at 3.5 MPa at eight temperatures
(30, 50, 70, 90, 110, 130, 150, and 180 ◦C) for 30 min. Next, the residual slurry was poured and the fresh
mud cake in the bottom was collected for ESEM analysis and hydrophilic–hydrophobic analysis.

2.7. Conversion of Mud Cakes with the Hydrophilic–Hydrophobic Property

The conversion of mud cakes with the hydrophilic-hydrophobic property was investigated by
measuring changes in the contact angle. Fresh mud cakes had been previously prepared at various
temperatures and 0.2 mL distilled water was injected on the surface of each mud cake. The contact
angle was recorded by a PDE 1700LL/DSA100 HTHP interfacial tension meter (Kruss, Berlin, Germany).

2.8. Change in the Filtration of the NIPAM/Bentonite Drilling Fluid with Temperature

The filtration of slurry was monitored using the HTHP filtration tester (Tongchun, China). Into the
tank, 350 mL slurry was poured and it was filtrated at 3.5 MPa at eight temperatures (30, 50, 70, 90, 110,
130, 150, and 180 ◦C) for 1 h. The formulations of the water-based drilling fluids are listed in Table 1.

Table 1. Composites of the water-based drilling fluids.

ID Composite Style

WD1 4 wt% bentonite + 0.3 wt% potassium peroxydisulfate (KPS)

Basic mudWD2 4 wt% bentonite + 0.3 wt% KPS + 0.2 wt% low-viscosity
polyanionic cellulose (Lv-PAC)

WD3 4 wt% bentonite + 0.3 wt% KPS + 0.5 wt% Lv-PAC

WD4 4 wt% bentonite + 0.3 wt% KPS + 1.0 wt% Lv-PAC

DW1 4 wt% NIPAM/bentonite + 0.3 wt% KPS

Modified mud
DW2 4 wt% NIPAM/bentonite + 0.3 wt% KPS + 0.2 wt% Lv-PAC

DW3 4 wt% NIPAM/bentonite + 0.3 wt% KPS + 0.5 wt% Lv-PAC

DW4 4 wt% NIPAM/bentonite + 0.3 wt% KPS + 1.0 wt% Lv-PAC

2.9. Change in the Rheology of the NIPAM/Bentonite Drilling Fluid with the Temperature

Into the tank, 300 mL drilling fluid was added and it was rolled at various temperatures for 24 h.
Then, the rheology of the aging drilling fluid was measured using a Fann 35A viscosimeter (Tongchun,
China). The rheological parameters were calculated from readings in the range of 3 to 600 rpm via the
following formulas [17].

µa = θ600/2 (mPa·s), (1)

µp = θ600 − θ300 (mPa·s), (2)

τo = (θ300 − µp)/2 (N/m2), (3)
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where µa is the apparent viscosity, µp is the plastic viscosity, τo is the yield point, and θ300 and θ600
represent readings at 300 and 600 rpm, respectively.

2.10. Inhibition by the NIPAM/Bentonite Drilling Fluid of the Expansion of Shale as a Function of
the Temperature

First, the shale was ground and screened using 200-mesh sieves. Next, 10 g shale powder was
added into a mold and pressured at 10 MPa for 5 min. After that, the compacted shale was placed in
a HTHP dilatometer (Tongchun, China) and 10 mL drilling fluid was injected by N2 gas. The linear
expansion of the core over 16 h was recorded by the dilatometer. The linear expansion ratio was
calculated via the following equation:

ω = (Rt −Ro)/H × 100%, (4)

where ω is the linear expansion ratio, %; Rt is the reading height at time t, mm; Ro is the initial reading,
mm; and H is the original depth of the shale, mm.

3. Discussion and Results

3.1. Chemical Characterization of Adsorbed NIPAM Monomers in Bentonite at Various Temperatures

The chemical composition of the NIPAM/bentonite composite was identified via FTIR analysis,
as shown in Figure 2. The peaks at 661 cm−1 can be assigned to the wagging vibration of
water molecules [21], which indicated the adsorption water in bentonite. The peaks at 783 cm−1

and 1041 cm−1 represent the symmetric and asymmetrical stretching vibrations of the Si–O–Si of
montmorillonite [22], respectively.
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Figure 2. FTIR analysis of NIPAM/bentonite at various temperatures. Kb(X) refers to the pure bentonite;
KN(X) refers to the hydrated NIPAM/bentonite; and X refers to the drying temperature, ◦C.

Besides, the stretching vibration peak at 1660 cm−1 corresponds to the C=O bond of the carbonyl
group of the acylamide [23]. The peak at 1624 cm−1 corresponds to the conjugative stretching
vibration of the C=C of the alkyl group [24]. The deformation vibration absorption peak at 1545 cm−1

corresponds to the N–H bond of the secondary amide [25]. The characteristic absorption band peaked
at 2958 cm−1, which corresponds to the stretching vibration of the C–H bond of the alkyl group [26].
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In addition, the sharp peak at 3680 cm−1 corresponds to the vibration of the OH groups of bentonite [27].
These peaks show that the composite of NIPAM and bentonite was prepared well.

With increasing temperature, the adsorbed NIPAM monomers cannot be evaporated unless the
experimental temperature exceeds 90 ◦C according to curves KN(50) through KN(90). Besides, the sharp
peak of the OH groups of bentonite disappeared in the composite according to curves KN(50) and
KN(90). Hence, NIPAM monomers may react with OH groups or adsorb with active OH groups with
hydrogen bond [28].

3.2. Isothermal Adsorption Model of NIPAM Monomers on Bentonite

The adsorption isotherm is an indispensable tool for studying the adsorption mechanism of
an adsorption process and can indicate, for example, the adsorption nature of the adsorption process
and the adsorption capacity of the adsorbent. The most suitable isotherm model of an adsorption
system according to adsorption isotherm and the corresponding model parameters can reveal important
information on the adsorption mechanism [15,29].

In Figure 3, the S-shape of the curves indicated three stages of adsorption. At the beginning of
S-shape curves the adsorption amount increased smoothly, indicating that NIPAM monomers were
simply adsorbed with physical adsorption [30]. In this stage, most of NIPAM monomers may be locked
into the micropores of bentonite with capillary force and Van der Waals’ force [31,32]. With the increase
of NIPAM concentration, more NIPAM monomers can react with bentonite and the adsorption amount
showed an exponential growth, which may involve chemisorption. When the concentration was above
40 mg/L, the adsorption amount tended to the maximum, which indicates adsorption equilibrium.

Besides, the adsorption capacities of NIPAM monomers at several temperatures (30 ◦C, 70 ◦C, and
90 ◦C) are plotted. At the low temperature (30 ◦C), the NIPAM adsorption increased sharply from 0 to
2.76 mg/g as the NIPAM solution concentration increased from 0 to 20 mg/L. However, the adsorption
of NIPAM monomers was obviously decreased when the temperature exceeded the phase transition
temperature of the NIPAM solution [33]. Experimentally, the equilibrium adsorption increased slowly
from 0 to 2.40 mg/g as the original NIPAM solution concentration increased from 0 to 45 mg/L at high
temperature (70 ◦C). However, most of the NIPAM monomers (qm = 1.79 mg/g) were still adsorbed
onto bentonite at 90 ◦C, even if the NIPAM monomers tended to evaporate in the FTIR analysis.
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To identify the adsorption mechanism of NIPAM, the experimental equilibrium data were fitted
to the Langmuir [34], Freundlich [35], Temkin [36], and Dubinin–Raduskevich [30] isotherm equations.
The models are described by the following formulas:

Langmuir model :
Ce

qe
=

Ce

qm
+

1
qmb

, (5)

Freundlich model : ln qe = ln KF +
1
n

ln Ce, (6)

Temkin model : qe= BlnA + BlnCe, (7)

D–R model : ln qe= lnqm − B1Σ2, (8)

Σ = RT ln(1 + 1/Ce), (9)

E =
1
√

2B1
, (10)

where Ce is the equilibrium NIPAM concentration in the solution (mg/L); b is the Langmuir adsorption
constant (L/mg); qe is the equilibrium adsorption capacity of the sample (mg/g); qm is the theoretical
maximum adsorption capacity of the sample (mg/g); KF (L/mg) and n are Freundlich isotherm constants
that, respectively, correspond to the capacity for and intensity of the adsorption; A is the equilibrium
binding constant (L/mg) and B is related to the heat of adsorption; B1 is the D–R model constant
(mol2kJ−2), which is related to the mean free energy of the adsorption per mole of the adsorbate;
Σ is the Polanyi potential; and E is the mean free energy of adsorption (kJ/mol). The values of the
isotherm parameters are listed in Table 2, according to which the D–R model more accurately describes
the adsorption equilibrium of bentonite on NIPAM monomers because it has the highest correlation
coefficient values (R2, 0.9988, 0.9977, 0.9929) at the experimental temperatures (30 ◦C, 70 ◦C, and 90 ◦C)
among the examined models.

Table 2. Adsorption isotherm parameters for the adsorption of NIPAM onto bentonite.

Isotherm Parameters
T/◦C

30 70 90

Langmuir
qm (mg/g) 3.673 2.679 1.914
b (L/mg) 0.119 0.053 0.040

R2 0.6949 0.7218 0.6143

Freundlich
n (g/L) 0.620 0.537 0.596

KF (L/mg) 0.0113 0.0027 0.0034
R2 0.4804 0.7910 0.9741

Temkin
B 1.710 0.496 0.421

A (L/mg) 0.238 0.799 0.386
R2 0.9764 0.6900 0.6391

D–R

qm (mg/g) 3.850 2.831 2.787
B1 (mol2 kJ−2) 0.00161 0.00170 0.00177

E 17.62 17.13 16.82
R2 0.9988 0.9977 0.9929

Based on the D–R model, the surface of the composite was not homogeneous, and the adsorption
potential was not constant [30]. Using the D–R model, the adsorption type (physical or chemical
adsorption) can be determined according to the free energy (E). If the mean free energy (E) is <8 kJ·mol−1,
physical forces such as Van der Waals forces and hydrogen bonds may affect the adsorption mechanism.
The adsorption process is triggered by ion exchange when the value of the mean free energy changes
from 8 to 16 kJ·mol−1. If the calculated E value is >16 kJ·mol−1, the adsorption process is of a chemical
nature [20]. According to Table 2, the values of E (17.62, 17.13, 16.82 kJ·mol−1) were >16 kJ·mol−1, hence,
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chemical adsorption is involved in the adsorption process of NIPAM monomers onto bentonite, which
accords with the conclusion of the FTIR analysis. There may be hydrogen bond and cation exchange
between NIPAM monomers and montmorillonite. The active primary amines could generate hydrogen
bonds with the hydroxyl groups of montmorillonite [16]. Besides, the protonation of amine groups can
allow active monomers to exchange cations on a montmorillonite surface for charge balance [37].

3.3. Change in the Basal Spacing of NIPAM/Bentonite with the Temperature

As discussed above, NIPAM monomers can be significantly adsorbed into bentonite. Figure 4
shows the interlayer swelling of clay crystal as the function of the NIPAM monomers. By adding
NIPAM, the basal spacing of the clay interlayer increased from 18.34 Å to 20.18 Å in comparison with
curves Kb(30) and KN(30), and the expansion was approximately 2 Å. Therefore, the inserted NIPAM
monomer may tend to lay flat on the clay surface and cannot remove the adsorption water from clay
interlayer without sufficiently many carbon chains [16,37].

As the bentonite was heated to 50 ◦C, the basal spacing decreased 1.22 Å in comparison with
curves Kb(30) and Kb(50), hence, some of the adsorption water evaporated. However, the basal spacing
of the composite still exceeded that of pure bentonite in comparison with curves Kb(50) and KN(50),
which demonstrated that conversion of the hydrophilic–hydrophobic property of NIPAM/bentonite
was still not realized at this temperature. Especially, the basal spacing of the composite was smaller than
that of bentonite when the temperature was increased to 70 ◦C. Hence, adsorbed NIPAM monomers
began to displace the water in the clay interlayer because of the cross-linking of some adsorbed NIPAM
monomers on the adsorption site of bentonite [38], which resulted in an increase in the number of
hydrophobic alkyl groups [39,40]. However, the basal spacing of the composite was close to that of the
pure bentonite at the higher temperature (100 ◦C) in comparison with curves Kb(100) and KN(100),
which indicated some of NIPAM monomers had evaporated.
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corresponds to the hydrated bentonite; X denotes the drying temperature, °C; KN(X) corresponds to 
the hydrated NIPAM/bentonite; X denotes to the heating temperature, °C; and interlayer expansion 
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Figure 4. Effect of the adsorbed NIPAM on the swelling of the clay crystal as a function of the temperature.
(a) Shows basal spacing of the hydrated bentonite and NIPAM/bentonite at different temperatures; and
(b) describes the difference of interlayer expansion of both samples. Kb(X) corresponds to the hydrated
bentonite; X denotes the drying temperature, ◦C; KN(X) corresponds to the hydrated NIPAM/bentonite;
X denotes to the heating temperature, ◦C; and interlayer expansion represents the expansion of the
basal spacing in the clay interlayer, which is based on that of dried clay (120 ◦C). The up arrow denotes
the increase of interlayer expansion with the number of NIPAM monomers; the down arrow denotes
the decrease of interlayer expansion with the NIPAM monomers.
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3.4. The Excitation of NIPAM/Bentonite in KPS Aqueous Solution

Figure 5a describes the switching of NIPAM/bentonite in KPS aqueous solution. Thermoresponse
of NIPAM/bentonite in KPS aqueous solution was investigated via the change of transmission, as shown
in Figure 5b. First, the transmission of the composite decreased gradually with the increase in room
temperature (20 ◦C) to 60 ◦C. Then, the transmission decreased significantly to the minimum at
70 ◦C, which indicated the generation of NIPAM polymers and the beginning of thermoresponse of
NIPAM monomers.

The FTIR characterization of the NIPAM/bentonite after excitation is shown in Figure 5c.
In comparison with the characterization of NIPAM/bentonite before excitation, the peak area of
C=O band of the acylamide increased and the peak of the C=C of the alkyl group disappeared in of
the composite at 70 ◦C. The peaks at 2850 cm−1, 1390 cm−1, and 2920 cm−1 respectively correspond
to the wagging vibration, symmetric stretching vibration, and antisymmetric stretching vibration
of –CH2 group [41–43]. These peaks indicated the polymerization of NIPAM monomers. Besides,
the characteristic peak of hydroxyl groups on the surface of bentonite disappeared in the characterization
of PNIPAM/bentonite after polymerization, which indicates that produced NIPAM polymers reacted
with bentonite. Furthermore, we attempted to investigate the changing of the basal spacing in the clay
interlayer (Figure 5d). As shown in Figure 5d, the characteristic peak at 3680 cm−1 of montmorillonite
disappeared in the composite after excitation, which indicates montmorillonite layers were completely
separated [44–46] with the radical polymerization of NIPAM monomers.

Especially, the NIPAM polymers (PNIPAM) grafted on bentonite were easy to cross-link with
each other because the experimental temperature was above the low critical solution temperature
(LCST) of PNIPAM [47,48]. The measured average particle size increased significantly from 26.85 to
39.42 µm in comparison with Figure 5e,f. Besides, the excited NIPAM/bentonite was stable during
experimental temperature between 50 ◦C and 90 ◦C (Figure 5b), unless the experimental temperature
was decreased to 40 ◦C. The measured average particle size decreased significantly to 31.26 µm, as shown
in Figure 5g; meanwhile, the measuring transmission of the composite increased by 40~50% (Figure 5b).
This temperature indicated the stretching of PNIPAM polymers due to hydrophilic amide groups [47,48].
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NIPAM/bentonite composite before excitation (at 20 °C) and after excitation (at 70 °C) in FTIR and 
XRD analysis; (e) and (f) respectively describe the particle size of NIPAM/bentonite in KPS aqueous 
solution at 20 °C and 70 °C; while (g) shows the particle size of excited NIPAM/bentonite at 40 °C. 
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collapse) [49,50]. Therefore, drilling technologists and engineers created a thin film (which is also 
called a mud cake) on the surface of each borehole, using the difference in the drilling pressure to 
reduce the water loss of the water-based drilling fluid. This paper modified the bentonite with 
NIPAM monomers to further improve the plugging of the mud cake. By using a HTHP filtration 
meter, the performance of NIPAM/bentonite in the filtration of water-based drilling fluids was 
evaluated, the results are plotted in Figure 6. 

Figure 5. The switching of NIPAM/bentonite in KPS aqueous solution. (a) Describes the switching
of NIPAM/bentonite in KPS aqueous solution; (b) shows the transmittance of NIPAM/bentonite in
KPS aqueous solution at various temperatures; (c,d) respectively show the characteristic peaks of
NIPAM/bentonite composite before excitation (at 20 ◦C) and after excitation (at 70 ◦C) in FTIR and XRD
analysis; (e,f) respectively describe the particle size of NIPAM/bentonite in KPS aqueous solution at
20 ◦C and 70 ◦C; while (g) shows the particle size of excited NIPAM/bentonite at 40 ◦C.

3.5. Plugging of NIPAM/Bentonite in the Filtration of Water-Based Drilling Fluids

The water loss of water-based drilling fluids is crucial to the hydration of boreholes and can
cause serious engineering problems (e.g., fracture development, formation leakage, and borehole
collapse) [49,50]. Therefore, drilling technologists and engineers created a thin film (which is also called
a mud cake) on the surface of each borehole, using the difference in the drilling pressure to reduce the
water loss of the water-based drilling fluid. This paper modified the bentonite with NIPAM monomers
to further improve the plugging of the mud cake. By using a HTHP filtration meter, the performance of
NIPAM/bentonite in the filtration of water-based drilling fluids was evaluated, the results are plotted
in Figure 6.

The filtration of basic mud increased with the experimental temperature. The value of VF of WD1
mud increased with the experimental temperature. Almost all the mud was lost when the temperature
exceeded 150 ◦C. With the addition of common Lv-PAC polymers, the filtrations of the WD drilling
fluids obviously decreased. Experimentally, the original filtration of the WD drilling fluid decreased
from 63 mL to 19 mL. However, the filtration still significantly increased with the temperature of the
drilling fluid, which was due to the thermal degradation of the Lv-PAC polymers networks [51,52].
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Figure 6. Effects of NIPAM/bentonite on the filtration of the drilling fluid at various temperatures.
The experimental pressure was 3.5 MPa; (a,b) respectively refer to the filtrations of WD drilling fluids
and DW drilling fluids at various temperatures.

In addition, the filtration of the basic mud can be reduced by replacing common bentonite with
modified bentonite. With the increase in temperature, the VF value of the DW drilling fluid also
increased in the initial phase. However, the filtration was significantly reduced when the experimental
temperature of the DW drilling fluid was close to the alterative zone (70–110 ◦C) due to the improvement
of the plugging of the mud cake, as shown in Figure 7. According to the ESEM imaging results,
the initial surface of the mud cake was porous when the temperature was below the alterative zone
and the pores were mainly filled with high molecular polymers, which exhibited a similar pattern to
Lv-PAC polymers [53]. When the temperature was increased to 70 ◦C, the pores on the surface of the
mud cake were further filled with polymers. According to the ESEM imaging results, the surface of
the mud cake was more compact than before due to the coalescence of the NIPAM monomers. In this
chemical process, the polymerization initiator (KPS) was adsorbed onto the montmorillonite surface
with ion exchange and caused the free radical polymerization of NIPAM monomers, which are bound
to montmorillonite via hydrogen, and electrovalent and coordinate bonds [38–40].
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drilling fluids on shale expansion at various temperatures. 
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Using a contact angle meter, the conversion of the surface of the composite can be vividly observed,
as shown in Figure 7. The hydrophobicity of the mud cake obviously improved with the increase of
the contact angle from 68.84◦ to 88.28◦ with increasing temperature. Therefore, the adsorbed water
was more easily squeezed out in the case of the hydration of a borehole.

In addition, it was reported that the shale formation accounts for approximately 75% of the drilled
strata and 90% of borehole instability problems that occurred in the shale formation [54]. Therefore,
this paper further investigates the effects of WD4 and DW4 drilling fluids on the linear expansion of
shale. According to Figure 8, the expansion of shale significantly increased from 36.37% to 63.89%
with the increase of temperature from 30 ◦C to 110 ◦C, which was consistent with the plugging of the
WD4 drilling fluid and the degradation of the Lv-PAC polymers. The expansion of shale is reduced by
almost half, from 42.34% to 22.28% at 70 ◦C and reduced to 36.44% at 110 ◦C as a function of the DW4
drilling fluid. Therefore, the NIPAM/bentonite drilling fluid was beneficial for inhibiting the hydration
of the shale at high temperature.
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fluids on shale expansion at various temperatures.

3.6. Function of NIPAM/Bentonite on the Rheological Characteristics of the Drilling Fluids

The rheology of a drilling fluid is important for its application in drilling engineering, which is
closely related to drilling problems such as carrying cuttings, maintaining borehole stability,
and improving the drilling speed of the machinery. Therefore, this paper measured the function of
the NIPAM/bentonite composite on the rheology of drilling fluids in room temperature (30 ◦C) by
using a Fann 35A viscosimeter [55–57], as shown in Figure 9. The shear rate is determined by the
geometric structure of the viscosimeter (the distance between the rotor and the hammer is 1.17 mm),
and the reading of the rotary viscometer is proportional to the shear stress (the coefficient of the torsion
spring is 3.87 × 10−5). Therefore, the shear rate and the shear stress can be calculated via the following
equations [17,55,58]:

τ = 0.511θN, (11)

γ = 1.703N. (12)

τ is the shear stress, Pa; γ is the shear rate, s−1; N is the rotation rate, rpm; and θN is the reading at
rotational speed N.
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Figure 9. Effects of NIPAM/bentonite on the viscosity of the drilling fluid at various shear rates.
(a,b) respectively show the shear stresses of WD4 drilling fluids and DW4 drilling fluids at room
temperature (30 ◦C).

To increase the stability of the drilling fluids, Lv-PAC polymers were added to increase the
structural strength of the drilling fluids [18]. The rheology of the WD drilling fluids (Figure 9a) was
similar to that of the DW drilling fluids (Figure 9b); both had the characteristics of pseudoplastic fluids
and were described by the Bingham and Herschel–Bulkely models [59,60], which are expressed by the
following formulas:

Bingham model : τ = τo + µpγ, (13)

Herschel–Bulkely model : τ = τy + Kγn. (14)

τo is the yield point in the Bingham model, Pa; µp is the plastic viscosity, mPa·s; τy is the yield point
in the Herschel–Bulkely model, Pa; K is the consistency index of the drilling fluid; and n is the flow
behavior index of the drilling fluid.

The experimental results demonstrate that the rheology of the DW drilling fluids was similar to
that of the WD drilling fluids, as presented in Table 3. Both satisfied the Bingham model but better fit the
Herschel–Bulkely model. According to the rheological parameters, the yield point and the consistency
index were slightly increased for NIPAM/bentonite relative to pure bentonite, hence, NIPAM/bentonite
improves the structural strength of the drilling fluid. In addition, the flow behavior index of the
drilling fluid can be maintained well in comparison with the WD and DW drilling fluids, hence, the
NIPAM/bentonite composite can be dispersed well in a water-based fluid, possibly because adsorbed
NIPAM monomers can improve the hydrophilicity of bentonite if the experimental temperature is
below the polymerization temperature of the NIPAM monomers.

Table 3. Rheological parameters of WD and DW drilling fluids at room temperature (30 ◦C).

Rheology Parameters
WD Drilling Fluids DW Drilling Fluids

WD1 WD2 WD3 WD4 DW1 DW2 DW3 DW4

Bingham

µp (Pa·s) 0.0027 0.0044 0.0096 0.0188 0.0029 0.0055 0.0126 0.0244

τo (Pa) 0.6003 0.6370 0.8358 1.3800 0.6834 0.8198 1.1305 1.2965

R2 0.9952 0.9943 0.9897 0.9748 0.9843 0.9889 0.9794 0.9923

Herschel–Bulkely

τy (Pa) 0.5738 0.5686 0.3943 0.0811 0.6552 0.5893 0.2944 0.3339

K (Pa·sn) 0.0038 0.0076 0.0374 0.1223 0.0041 0.0194 0.0773 0.0809

n 0.9514 0.9228 0.8055 0.7323 0.9521 0.8188 0.7413 0.8281

R2 0.9957 0.9956 0.9934 0.9990 0.9879 0.9966 0.9974 0.9993
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In addition, this paper measured the viscosity of the drilling fluid after rolling at various
temperatures, as shown in Figure 10. The viscosity of the WD drilling fluid was obviously reduced by
increasing the temperature from 30 ◦C to 180 ◦C. The apparent viscosity of the WD1 drilling fluid was
reduced by almost half, from 22.0 mPa·s to 13.2 mPa·s, due to the destruction of the gel structure of the
drilling fluid with the thermal degradation of the Lv-PAC polymers networks [51,52].Materials 2019, 12, 2115 16 of 20 
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respectively show the viscosities of WD drilling fluids and DW drilling fluids at various temperatures.

However, the rheology of the DW drilling fluid was more stable. Initially, the viscosity of the DW
drilling fluid decreased in the low temperature range (30~50 ◦C). As the temperature was gradually
increased, the viscosity of the drilling fluid obviously increased in the alterative zone and subsequently
decreased to the original viscosity at high temperature (180 ◦C), which demonstrates the self-recovery
behavior of the NIPAM/bentonite composite.

In the alterative temperature zone, an initiator that is adsorbed on the clay surface via ion
exchange can induce active NIPAM monomers between the clay layers, which can form polymers on
the montmorillonite surface when the experimental temperature is near the polymerization temperature
(70 ◦C). Since the reaction temperature exceeds the lower critical solution temperature (32 ◦C) of the
NIPAM polymers, the wire-ball transition will occur and primary particles with obvious hydrophobicity
will be formed when the free radical of the NIPAM polymer increases to a threshold length [61,62].

However, a change in the viscosity of the DW4 drilling fluid was not observed. In comparison
with the WD4 drilling fluid, the viscosity was more stable between 30 ◦C and 110 ◦C, and decreased
more slowly—from 23.8 to 22.4 mPa·s as the experimental temperature was increased from 110 ◦C to
180 ◦C—because the contribution of the degradation of the Lv-PAC polymers exceeded that of the
self-recovery of the NIPAM monomers. Overall, NIPAM/bentonite was helpful for improving the
stability of the rheology of drilling fluids at high temperature.

3.7. High-Performance Drilling Fluid Based on NIPAM/Bentonite

Based on the results for NIPAM/bentonite at high temperature, this paper further utilized
NIPAM/bentonite to prepare high-performance drilling fluids by mixing it with inert plugging
materials. The drilling fluid composites are listed in Table 4.

Two basic muds were gradually added to barite until the density of the mud reached 2.0 g·cm−3.
Then, the drilling fluid was rolled at 10 ◦C for 16 h. After that, the performance of the drilling fluid
was evaluated, the results are listed in Table 5.
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Table 4. Composites of the water-based drilling fluids.

ID Composite ρ (g·cm−3)

Bent 4.0 wt% bentonite + 1.0% KPS + 1.0 wt% Lv-PAC +
0.5 wt% CMC + 3 wt% CaCO3 + barite 2.0

NIPAM/Bent 4.0 wt% NIPAM/bentonite + 1.0% KPS + 1.0 wt%
Lv-PAC + 0.5 wt% CMC + 3 wt% CaCO3 + barite 2.0

Table 5. Performances of high-density drilling fluids before and after rolling.

ID Rolling ρ (g·cm−3) µa (mPa·s) µp (mPa·s) τo (Pa) VF (mL) VHTHP (mL)

Bent
Before 2.0 72 61 11.35 3.5 5.8

After 1.6 58 50 8.12 5.5 7.2

NIPAM/Bent
Before 2.0 69 57 12.05 3.6 1.2

After 1.9 65 53 11.86 4.8 2.5

ρ, µa, µp, and τo refer to the density, apparent viscosity, plastic viscosity, and yield point, respectively; VF refers to
the filtration of the drilling fluid at 0.1 MPa at 30 ◦C; and VHTHP refers to the filtration of the drilling fluid at 3.5 MPa
at 110 ◦C.

Experimentally, the density of the Bent drilling fluid decreased significantly from 2.0 g·cm−3 to
1.6 g·cm−3, which corresponded to a decrease in the solid content of the drilling fluid. The viscosity and
yield point also obviously decreased, hence, the polymer netting ability in the drilling fluid decreased
and the corresponding hanging solid property was weakened. The rheology of the NIPAM/Bent
drilling fluid was more stable. After rolling, the density of the drilling fluid was slightly decreased,
hence, the polymer netting ability was preserved, and the corresponding hanging solid property was
satisfactory. However, the filtration of the NIPAM/bentonite drilling fluid still increased as the drilling
fluid was cooled down, which corresponds to the degradation of Lv-PAC and CMC polymers at high
temperature, and with mechanical rolling friction [63]. However, the filtration of the rolled NIPAM/Bent
drilling fluid obviously decreased in the HTHP experiment as the temperature was increased again
due to the cross-linking of the NIPAM monomers that were adsorbed on bentonite particles, which was
conducive to the formation and plugging of the mud cake. In addition, Figure 11 shows the functions
of the Bent and NIPAM/Bent drilling fluids on the hydration expansion of shale. Under the effect of the
Bent drilling fluid, the expansion of shale gradually increased with the temperature. Under the effect
of the NIPAM/Bent drilling fluid, the plugging of the NIPAM/Bent drilling fluid on shale improved
temporarily in a short temperature range (70–110 ◦C) as the hydration expansion of shale decreased.
Experimentally, the NIPAM/Bent drilling fluid was resistant to high temperature (110 ◦C) and exhibited
satisfactory self-recovery behavior, hence, it has potential for high-temperature stratum drilling.
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4. Conclusions

Bentonite was modified with NIPAM monomers to temporarily plug water-based drilling fluids
at high temperature. Chemical adsorption was involved in the process of bentonite adsorption of
NIPAM monomers due to the function of hydrogen bond and cations exchange, and NIPAM monomers
(qm = 2.79 mg/g) were still adsorbed onto bentonite at 90 ◦C at 0.1 MPa even if the NIPAM monomers
tended to evaporate. In comparison with pure bentonite, more adsorption water was squeezed out
of NIPAM/bentonite when the temperature was increased to 70 ◦C, along with the decrease of the
basal spacing from 18.34 to 15.71 Å. Therefore, the hydrophobicity of the NIPAM monomers in the
clay interlayer can be improved by increasing the temperature, which is because of the increase in the
proportion of alkyl chains with the cross-linking of NIPAM monomers.

Based on the NIPAM/bentonite composite, this paper prepared the basic drilling fluid with
the initiator KPS and Lv-PAC polymers. For the DW drilling fluids, the alterative zone was in the
temperature range between 70 ◦C and 110 ◦C, in which a significant improvement in the plugging of
water-based drilling fluids was realized, where the filtration can be reduced by approximately 50–70%.
With the characterization of the surface of the mud cake, the conversion of the hydrophilic–hydrophobic
property and the self-recovery behavior of the mud cake were observed with the changing temperature.
As the experimental temperature was increased, a compact mud cake temporarily plugged the
water-based drilling fluid at 110 ◦C, with the contact angle increasing from 68.84◦ to 88.28◦ and
inhibition of the shale expansion decreasing from 63.89% to 36.44% at 110 ◦C.

Based on the research discussed above, this paper further prepared a high-density drilling fluid
(ρ = 2.0 g/cm3) with NIPAM/bentonite. The rheology of the high-density drilling fluid (NIPAM/Bent)
was stable before and after rolling. The NIPAM/Bent drilling fluid exhibited self-recovery behavior at
110 ◦C and effectively reduced the hydration expansion of shale over the designed temperature range
(70–110 ◦C). Therefore, NIPAM/Bent has high potential for drilling high-temperature stratum with
self-recovery behavior.
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