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Abstract: Liquid crystals (LCs) are organic materials characterized by the intermediate properties
between those of an isotropic liquid and a crystal with a long range order. The LCs possess strong
anisotropy of their optical and electro-optical properties. In particular, LCs possess strong optical
nonlinearity. LCs are compatible with silicon-based technologies. Due to these unique properties,
LCs are promising candidates for the development of novel integrated devices for telecommunications
and sensing. Nematic liquid crystals (NLCs) are mostly used and studied. Smectic A liquid crystals
(SALCs) have a higher degree of long range order forming a layered structure. As a result, they have
lower scattering losses, specific mechanisms of optical nonlinearity related to the smectic layer
displacement without the mass density change, and they can be used in nonlinear optical applications.
We theoretically studied the nonlinear optical phenomena in a silicon-SALC waveguide. We have
shown theoretically that the stimulated light scattering (SLS) and cross-phase modulation (XPM)
caused by SALC nonlinearity can occur in the silicon-SALC waveguide. We evaluated the smectic
layer displacement, the SALC hydrodynamic velocity, and the slowly varying amplitudes (SVAs) of
the interfering optical waves.

Keywords: silicon photonics; optical waveguide; smectic A liquid crystal (SALC); stimulated light
scattering (SLS)

1. Introduction

Liquid crystals (LCs) are promising candidates for applications in novel integrated devices for
telecommunications, sensing, and lab-on-chip bioscience [1]. These applications are based on the
unique optical properties of LC. The orientational energy of LC molecules is comparatively small,
and for this reason they are characterized by an easy susceptibility to external field perturbation [2].
As a result, the LC effective refractive index can be controlled by an external electric field which
may be used for optical transmission, reflection, switching, and modulation applications [2]. LCs are
highly nonlinear optical materials because their properties such as temperature, molecular orientation,
density, and electronic structure can be easily perturbed by an applied optical field [2].

The liquid crystal on silicon technology (LCOS) is widely used in telecommunications [3,4].
The basic element of the LCOS technology is the LCOS cell consisting of the LCOS backplane,
LC layer and cover glass [3,4]. The LCOS cell can simultaneously perform the electrical and optical
functions [3,4]. The photonic applications of the LCOS devices include the spatial light modulation
(SLM), the holographic beam steering, optical wavelength selective switching, and the optical power
control [4]. The LCOS SLM technology is a promising candidate for the so-called structured light
where the optical field amplitude, phase, and polarization can be controlled spatially while the time
and frequency spectrum can be controlled temporally [3]. Nonlinear silicon photonics can be used
in on-chip optical signal processing and computation due to its low cost and compatibility with
CMOS technology [5]. The development of nonlinear silicon photonics is limited by the absence of the
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second-order nonlinear susceptibility χ(2) due to centrosymmetric structure of Si, comparatively low
third-order nonlinear susceptibility χ(3), the two-photon absorption (TPA) and free carrier absorption
(FCA) [5]. To mitigate these disadvantages new materials with better nonlinear properties may be
integrated with silicon. In such a case, the new materials may improve the nonlinearity of an optical
device while silicon can confine the optical modes to nanoscale [5]. The organic nonlinear materials
with a large χ(3) can be used for the creation of a silicon-organic hybrid waveguide [5]. In particular,
liquid crystals (LCs) may be used as a waveguide core where the modulation and switching of photonic
signals is possible by using electro-optic or nonlinear optic effects [1,6–13].

We briefly discuss the basic properties of LCs. LCs are characterized by the properties intermediate
between solid crystalline and liquid phases [2,14]. LCs flow like liquids, but possess a partial long
range order and anisotropy of their physical parameters such as dielectric constants, elastic constants,
viscosities, nonlinear susceptibilities [2]. Various phases in which such materials can exist are called
mesophases [2]. There are three types of LCs: thermotropic LCs, polymeric LCs, and lyotropic
LCs [2,14].

(1) Lyotropic LCs can be obtained in a solution with an appropriate concentration of a material.
(2) Polymeric LCs are the polymers consisting of the monomer LC molecules.
(3) Thermotropic LCs self-assemble in various ordered arrangement of their crystalline axis

depending on the temperature.

Thermotropic LCs are most widely used and studied because of their extraordinary linear,
electro-optical, and nonlinear optical properties and the possibility to control the transitions between
different mesophases by varying the operating temperature [1,2]. The thermotropic LCs consist
of elongated molecules with the direction of their axes determined by the unit vector −→n called
director [2,14]. The long range ordering of LC mesophase is characterized by the director spatial
distribution [2,14]. There exist three main types of thermotropic LCs: nematic LC (NLC), cholesteric
LC (CLC), and smectic LC (SLC) [2,14]. NLC molecules are centrosymmetric in such a way that −→n and
−−→n are equivalent, the molecules are positionally random, but they are mostly aligned in the direction
defined by the director −→n [2,14]. CLC consists of chiral molecules, or they may be obtained by adding
of chiral molecules to NLC [2]. As a result, they exhibit a helical structure where the direction −→n of
the molecular orientation rotates in space around the helical axis with a period of about 300 nm [2].
The phase transition between the nematic and smectic A phases had been investigated both theoretically
and experimentally in a large number of publications (see, for example, [2,15–22]). It is essentially
the second kind phase transition [18]. The phase transition temperature TSmA−N may be different for
different LC materials. For example, for 8CB TSmA−N ≈ 307 K, for 9CB TSmA−N ≈ 321 K [22].

SLC are characterized by the positional long range order in the direction of the elongated molecular
axis and possess a layered structure with a layer thickness of about 2 nm approximately equal to
the length of a SLC molecule [2,14]. Inside the layers, molecules are not ordered and represent a
two-dimensional liquid [2,14]. There are different SLC phases [2,14].

(1) Smectic A LC (SALC) where the long axes of the molecules are perpendicular to the layer plane.
(2) Smectic B LC where the hexagonal in-layer ordering of the molecules perpendicular to the layer

plane exists.
(3) Smectic C LC where the molecules are tilted with respect to the layers.
(4) Smectic C∗ LC consisting of the chiral molecules and possessing the spontaneous polarization.
(5) So-called exotic smectic phases.

The nonlinear optical phenomena such as degenerate and nondegenerate wave mixing,
optical bistabilities and instabilities, self-focusing and self-guiding, phase conjugation, stimulated
light scattering (SLS), optical limiting, interface switching, beam combining, and self-starting laser
oscillations have been observed in liquid crystalline materials [14,23]. NLCs are mainly studied and
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used in linear and nonlinear optical applications [2,4,23]. For instance, in NLC the optically induced
director axis reorientation results in the so-called giant optical nonlinearity (GON) with the nonlinear
refractive index coefficient nNL

2 ∼ 10−4 − 10−3 cm2/W [14]. However, NLCs are characterized by
large losses and relatively slow responses limiting their integrated electro-optical applications [2].
The light scattering properties of SALC thin film waveguide have been studied both theoretically and
experimentally [24]. The scattering losses in smectic waveguides caused by dynamic distortions of
the smectic layer planes are several orders of magnitude lower than in nematic waveguides [2,24],
and SLCs may be used in nonlinear optical applications [2]. Recently, the reconfigurable smectic layer
curvature has been studied [25]. The using of the external electric field to create the dynamic variations
of the smectic layer configuration attracted a wide interest [25]. The different types of the periodic
focal conic domain (FCD) arrays with the domain size, shape, orientation, and lattice symmetry
controlled by external fields can be obtained [25].The applications of SALC such as soft-lithographic
templates, superhydrophobic surfaces, microlens arrays, and optically selective photomasks have been
developed [25].

The nonlinear optical phenomena in SALC have been investigated theoretically [26–36]. It has
been shown that the light self-focusing, self-trapping, Brillouin-like SLS, and four-wave mixing (FWM)
related to the light enhanced smectic layer normal displacement u

(−→r , t
)

occur in SALC under certain
conditions. The nonlinear effects based on this nonlinearity mechanism specific for SALC are strongly
anisotropic, and the corresponding SLS gain coefficient is significantly larger than the one in the case
of the Brillouin SLS in isotropic organic liquids. The nonlinear interaction of the surface plasmon
polaritons (SPPs) in the metal-insulator-metal (MIM) waveguide has been analyzed [36]. In particular,
it has been shown theoretically that the strong SLS of the transverse magnetic (TM) even modes can
occur in the optical slab waveguide with a SALC core [35].

In this paper, we investigated in detail SLS in the Silicon-SALC slab waveguide. We discussed in
detail the peculiarities of different types of LCs and concentrated on the optical properties of SALC.
We derived the SALC layer equation of motion and the truncated equations for the optical wave
slowly varying amplitudes (SVAs). We discussed the contribution of the TM even and odd modes
and the transverse electric (TE) modes of the Silicon-SALC waveguide. We solved simultaneously the
Maxwell equations including the nonlinear polarization for the waveguide modes and the equation
of motion for the smectic layer normal displacement u

(−→r , t
)

in the optical wave field. We evaluated
u
(−→r , t

)
and the hydrodynamic velocity −→v

(−→r , t
)

in the SALC core of the waveguide. We obtained
the novel explicit solutions for the SVAs of the interfering waveguide modes and made numerical
estimations of the waveguide mode parameters and the gain. The results of the numerical estimations
are presented in Figures 2–8. The paper is constructed as follows. The theoretical model is presented in
Section 2. The nonlinear polarization in the waveguide SALC core is evaluated in Section 3. The SVAs
of the pumping and signal TM waveguide modes and the hydrodynamic velocity of smectic layers are
calculated in Section 4. The conclusions are presented in Section 5.

2. Theoretical Model

A typical LC slab waveguide represents a LC thin film with a thickness of about 1 µm sandwiched
between two glass slides of lower refractive index than LC [2]. One of slides is covered with an organic
film. The input laser radiation is inserted into the film via the coupling prism [2]. The laser excites
the TE and/or TM modes in the film which are then introduced into the LC core [2]. Such a structure
can be placed on a Si substrate [8]. One of the claddings can be made of SiO2 [8]. For the sake of
definiteness, we consider the homeotropically oriented SALC core where the molecular elongated
axes are perpendicular to the waveguide claddings and the smectic layer planes parallel to them.
The structure of the optical slab waveguide with a homeotropically oriented SALC core is shown in
Figure 1.
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Figure 1. Optical slab waveguide with the homeotropically oriented SALC core of the thickness 2d.
Ex,z, Hy and Ey, Hx,z are the electric and magnetic fields of the TM and TE modes, respectively.

Optical waves interact through the nonlinear polarization in a medium [37]. Generally, different
types of SLS are described by the coupled wave equations for the light waves and for the corresponding
material excitations [37]. The wave equation for electric field

−→
E
(−→r , t

)
of the optical wave propagating

in a nonlinear medium has the form [37].

curl curl
−→
E + µ0

∂2−→D L

∂t2 = −µ0
∂2−→D NL

∂t2 (1)

where µ0 is the free space permeability,
−→
D L and

−→
D NL are the linear and nonlinear parts of the electric

induction, respectively.
The SLS in the liquid crystalline waveguide with a SALC core is described by the coupled

wave equations of the type (1) for the waveguide modes and the hydrodynamic equations for SALC.
The SALC hydrodynamics in general case is very complicated taking into account the anisotropy
and including the fluctuations of the mass density ρ, the layer displacement u

(−→r , t
)

along the Z axis
normal to the layers and the change of the director −→n [15,16]. The character of the fluctuation modes
is determined by the propagation direction [15–18]. We assume that the SALC temperature is far from
the temperature TSmA−N of the SALC-NLC phase transition. Since the optical losses in SALC are
negligible [2] the waveguide temperature is assumed to be constant and the smectic A phase is stable.
In such a case, the system of hydrodynamic equations for SALC has the form [15].

ρ
∂vi
∂t

= −∂Π
∂xi

+ Λi +
∂σ′ik
∂xk

(2)

Λi = −
δF
δui

(3)

σ′ik = α0δik All + α1δiz Azz + α4 Aik + α56 (δiz Azk + δkz Azi) + α7δizδkz All (4)

Aik =
1
2

(
∂vi
∂xk

+
∂vk
∂xi

)
(5)

div−→v = 0 (6)
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vz =
∂u
∂t

(7)

δik =

{
1, i = k
0, i 6= k

(8)

where −→v is the hydrodynamic velocity, Π is the pressure,
−→
Λ is the generalized force density, σ′ik is

the viscous stress tensor, αi are the viscosity Leslie coefficients, F is the free energy density of SALC.
The SALC free energy density in the presence of the external electric field

−→
E
(−→r , t

)
has the form.

F =
1
2

B
(

∂u
∂z

)2
+

1
2

K
(

∂2u
∂x2 +

∂2u
∂y2

)2

− 1
2

ε0εikEiEk (9)

Here B ∼ 106 − 107 J/m3 is the elastic constant related to the layer compression, K ∼ 10−11 N is
the Frank elastic constant associated with the SALC purely orientational energy, ε0 is the free space
permittivity, and εik is the SALC permittivity tensor including the nonlinear terms related to the smectic
layer strains. SALC is an optically uniaxial medium with the optical axis Z normal to the layer plane.
It is given by [16].

εxx = εyy = ε⊥ + a⊥
∂u
∂z

(10)

εzz = ε‖ + a‖
∂u
∂z

(11)

εxz = εzx = −εa
∂u
∂x

, εyz = εzy = −εa
∂u
∂y

(12)

where ε⊥, ε‖ are the diagonal components of the permittivity tensor perpendicular and parallel to the
optical axis, respectively, a⊥ ∼ 1, a‖ ∼ 1 are the phenomenological dimensionless coefficients, and εa is
the permittivity anisotropy. In our case, the losses in SALC can be neglected and the linear permittivity
is real [2].

εa = ε‖ − ε⊥ (13)

For the wave vector
−→
k S oblique to the smectic layer plane in SALC there exist two practically

uncoupled acoustic modes. One of these modes is the ordinary longitudinal sound wave caused by
the mass density oscillations and described by the dispersion relation Ω = s1kS independent of the
propagation direction where the sound velocity s1 =

√
A/ρ, and A is the elastic constant related to

bulk compression [15–18]. The second mode is the so-called second sound (SS) with the following
dispersion relation [15,17].

ΩSS = s2
kS⊥kSz

kS
, s2 =

√
B
ρ

(14)

where s2 is the SS velocity, kS⊥, kSz are the SS wave vector components in the layer plane and normal
to it, respectively. SS corresponds to the changes in the layer spacing, it is neither longitudinal,
nor transverse, and vanishes for the wave vector parallel or perpendicular to the smectic layer
plane as it is seen from Equation (14) [15–18]. Since the elastic constant B � A ∼ 109 J/m3,
the SS may propagate in the SALC without the density change [15–18]. SS has been observed
experimentally [19–21]. In such a case, SALC may be considered to be incompressible liquid according
to Equation (6), the pressure Π = 0, and the SALC energy density F determined by Equation (9) does
not include the bulk compression term. The purely orientational term second term in Equation (9)
can be neglected since for the typical values of the elastic constants and kS ∼ 105 m−1 B � Kk2

S.
The normal layer displacement u

(−→r , t
)

by definition has only one component along the Z axis. Hence,

the generalized force density
−→
Λ has only the z component according to Equation (3):

−→
Λ = (0, 0, Λz).

Equation (7) is specific for SALC since it determines the condition of the smectic layer continuity
and the absence of the permeation process which can be neglected in the high frequency limit [15,17].
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Taking into account the assumptions mentioned above and combining Equations (2)–(12) we obtain
the equation of motion for smectic layer normal displacement u

(−→r , t
)

in an external electric field
−→
E
(−→r , t

)
[36].

−ρ∇2 ∂2u
∂t2 +

[
α1∇2

⊥
∂2

∂z2 +
1
2
(α4 + α56)∇2∇2

]
∂u
∂t

+ B∇2
⊥

∂2u
∂z2

=
ε0

2
∇2
⊥

{
−2εa

[
∂

∂x
(ExEz) +

∂

∂y
(
EyEz

)]
+

∂

∂z

[
a⊥
(

E2
x + E2

y

)
+ a‖E

2
z

]}
(15)

where ∇2
⊥ =

(
∂2/∂x2)+ (∂2/∂y2). Taking into account the SALC symmetry we may choose without

the loss of generality the propagation plane in a slab waveguide as the xz plane. Then, using
expressions (10)–(12) we obtain for the linear and nonlinear parts of the electric induction

−→
D L and

−→
D NL.

DL
x,y = ε0ε⊥Ex,y, DL

z = ε0ε‖Ez (16)

DNL
x = ε0

(
a⊥

∂u
∂z

Ex − εa
∂u
∂x

Ez

)
; DNL

y = ε0a⊥
∂u
∂z

Ey (17)

DNL
z = ε0

(
a‖

∂u
∂z

Ez − εa
∂u
∂x

Ex

)
(18)

It is seen from Equations (17) and (18) that the nonlinear polarization in SALC is related to the
smectic layer normal and tangential strain ∂u/∂z and ∂u/∂x as it was mentioned above [26–36].
We solve the wave Equation (1) according to the SVA approximation procedure [37]. In the
linear approximation, we solve the homogeneous part of Equation (1) neglecting the nonlinear
polarization (17) and (18).

curl curl
−→
E + µ0

∂2−→D L

∂t2 = 0 (19)

We obtain from Equation (19) the general solution and the linear dispersion relations for the
waveguide modes [38,39]. Then, we evaluate the nonlinear polarization (17) and (18), derive the
truncated equations for the SVAs of the waveguide mode electric fields in the SALC core and evaluate
the complex SVA magnitudes and phases [37,38]. In the next section, we evaluate the waveguide
modes and the nonlinear polarization defined by Equations (17) and (18).

3. Nonlinear Polarization in the SALC Core of the Waveguide

The TM and TE mode electric and magnetic fields have the form, respectively [38–40].

−→
H TM (x, z, t) = Hy (x, z, t) ay;

−→
E TM (x, z, t) = (Ex (x, z, t) , 0, Ez (x, z, t)) (20)

−→
E TE (x, z, t) = Ey (x, z, t) ay;

−→
H TE (x, z, t) = (Hx (x, z, t) , 0, Hz (x, z, t)) (21)

We consider separately the TM and TE modes propagating in the slab optical waveguide with
the SALC core because Equations (15)–(18) show that in the framework of the slab waveguide model
TE and TM modes do not interact. We start with the analysis of the TM even modes. Assuming that
the waveguide is symmetric with the identical claddings z > d, z < −d characterized by the same
permittivity εr2 and the refraction index n2 =

√
εr2, solving Equation (1) in the linear approximation

and using the boundary conditions for the tangential components of the magnetic and electric field in
the cladding HyC and ExC and in the SALC core HySA and ExSA, respectively [38–40].

HyC (z = d) = HySA (z = d) ; ExC (z = d) = ExSA (z = d) (22)
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we obtain for the electric field Ex,zSA, Ex,zC in the SALC core |z| ≤ d and in the cladding z > d, z < −d,
respectively [35,39].

ExSA = −iE0zSA
kε‖
βε⊥

sin kz exp [i (ωt− βx)] (23)

EzSA = −E0zSA cos kz exp [i (ωt− βx)] (24)

ExC =

{
i α

β E0zC exp (−αz) exp i (ωt− βx) , z > d
−i α

β E0zC exp (αz) exp i (ωt− βx) , z < −d
(25)

EzC =

{
E0zC exp (−αz) exp i (ωt− βx) , z > d
E0zC exp (αz) exp i (ωt− βx) , z < −d

(26)

Here ω is the optical mode angular frequency, β is the propagation constant, k is the wave vector
in the core, and α is the wavenumber in the cladding. They are given by

β =

√
ε‖

[(ω

c

)2
− k2

ε⊥

]
(27)

α =

√
β2 − ω2

c2 εr2 (28)

Expression (27) shows that the TM mode propagates in an anisotropic medium as an extraordinary
wave [41]. The wave vector k for the TM even modes is defined by the dispersion relation

tan kd =
ε⊥
εr2

√(
V
kd

)2
−

ε‖
ε⊥

; V =
2πd
λ0

√
ε‖ − εr2; ε‖ > εr2 (29)

where λ0 = 2πc/ω and c are the free space wavelength and light velocity, respectively. Consider now
the TM odd modes. In this case, the electric field components Eodd

x,zSA in the SALC has the form [39].

Eodd
zSA = Eodd

0zSA sin kz exp i (ωt− βx) (30)

Eodd
xSA = −

ikε‖
βε⊥

Eodd
0zSA cos kz exp i (ωt− βx) (31)

The boundary conditions (22) give the following dispersion relation for the TM odd modes.

− cot kd =
ε⊥
εr2

√(
V
kd

)2
−

ε‖
ε⊥

(32)

The solution of the dispersion relations (29) and (32) for the TM even and odd modes are presented
in Figure 2a,b, respectively. It is seen from Figure 2a,b that for the frequency ω = 5π× 1014 s−1 and for
the typical values of the waveguide parameters there exist two even TM modes TMeven

0,1 and one odd TM
mode TModd

1 . The normalized wavenumber kd and propagation constant βd dependence on the optical
wavelength λ for the even modes TMeven

0,1 and for the odd mode TModd
1 are presented in Figure 3a,b,

respectively. The normalized wavenumber in the cladding αd spectral dependence is shown in
Figure 4. It is seen from Figure 4 that the fundamental even mode TMeven

0 does not have a cutoff
while the second even mode TMeven

1 has a cutoff wavelength coinciding with the cutoff wavelength in
Figure 3a,b, respectively. Comparison of Figures 3a and 4 shows that in the wavelength region under
consideration kd > π/2, and αd 6= 0 for the odd mode TModd

1 [39]. The solutions of the dispersion
relations (29) and (32) presented in Figure 3a,b show that for the waveguide SALC core thickness
of 2d = 2 µm, the typical values of LC and cladding permittivity [8], and the wavelengths λ0 ≈
1.4–1.55 µm important for optical communications the single mode regime occurs. We consider the
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interaction of the TM modes with the close optical frequencies ω1,2 such that the frequency shift ∆ω =

ω1 −ω2 ∼ 108–109 s−1 � ω1 which is typical for the light scattering in SALC [15,19]. The numerical
estimations of the propagation constant β and the wave vector k according to Equations (27) and (29)
show that for the frequency shifts ∆ω ∼ 108–109 s−1 the values of β and k are practically the same for
the TM modes with the close frequencies ω1,2. Consequently, the strong interaction occurs only for
the counter-propagating TM modes. For the sake of definiteness, we consider the interaction of the
TM even modes (23) and (24). Obviously, the nonlinear interaction of the TM odd modes would be
practically the same. Using expressions (23) and (24) we can write for such TM even mode electric
field [35].

−→
E SA1,2 =

1
2

E0zSA1,2 (x, t)
{
−−→a xi

kε‖
βε⊥

sin kz∓−→a z cos kz
}

exp [i (ω1,2t∓ βx)] + c.c. (33)

where c.c. stands for complex conjugate, and −→a x, −→a z are the unit vectors of the X and Z axes,
respectively. We assume that E0zSA1,2 (x, t) = |E0zSA1,2| exp iθ1,2 are the complex SVAs [37].∣∣∣∣∂2E0zSA1,2

∂x2

∣∣∣∣� ∣∣∣∣β ∂E0zSA1,2

∂x

∣∣∣∣ ;
∣∣∣∣∂2E0zSA1,2

∂t2

∣∣∣∣� ∣∣∣∣ω ∂E0zSA1,2

∂t

∣∣∣∣ (34)

Figure 2. Graphic solution of the disperison relations for the TM even modes (a) and odd modes (b);

f (kd) = ε⊥
εr2

√(
V
kd

)2
− ε‖

ε⊥
, ω = 5π × 1014s−1.

Figure 3. The normalized wavenumber kd (a) and propagation constant βd (b) dependence on the
optical wavelength λ for the even modes TMeven

0,1 (curves 1, 3) and the odd mode TModd
1 (curve 2).
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Figure 4. The dependence of normalized wavenumber in the cladding αd for the even modes TMeven
0,1

(curves 1, 3) and odd mode TModd
1 (curve 2) on the optical wavelength.

At the small distances of several mm typical for the optical waveguide length the dependence of
SVAs on x and the dispersion effects can be neglected, and the SVAs E0zSA1,2 (t) depend only on time.
Substituting expressions (33) into equation of motion (15) and keeping in the right-hand side (RHS)
only the terms with the frequency difference ∆ω we obtain.

−ρ∇2 ∂2u
∂t2 +

[
α1

∂2

∂x2
∂2

∂z2 +
1
2
(α4 + α56)∇2∇2

]
∂u
∂t

+ B
∂2

∂x2
∂2u
∂z2

= −2ε0β2kE0zSA1E∗0zSA2

[
εa

ε‖
ε⊥

+ a⊥
1
2

( kε‖
βε⊥

)2

+
1
2

a‖

]
× sin 2kz exp {i [(ω1 −ω2) t− 2βx]}+ c.c.

(35)

Then the particular solution of Equation (35) related to its RHS yields the dynamic grating of the
smectic layer normal displacement.

u (x, z, t) = U0 sin 2kz exp {i [(ω1 −ω2) t− 2βx]}+ c.c. (36)

where

U0 =

ε0β2kE0zSA1E∗0zSA2

[
εa

ε‖
ε⊥

+ a⊥ 1
2

( kε‖
βε⊥

)2
+ 1

2 a‖

]
2ρ (β2 + k2) G (k, β, ∆ω)

(37)

G (k, β, ∆ω) = (∆ω)2 − i∆ωΓ−Ω2 (38)

Γ =
1
ρ

[
4

α1β2k2

(β2 + k2)
+ 2 (α4 + α56)

(
β2 + k2

)]
; Ω2 = 4

Bβ2k2

ρ (β2 + k2)
(39)

Here Ω, Γ are SS frequency and decay factor, respectively [15–21]. The SS frequency Ω
and decay factor Γ dependence on the optical wavelength λ for the first two TM modes are
presented in Figure 5a,b, respectively. Numerical estimations show that for the typical values
of SALC parameters [15–21], the optical wavelength in the range of λopt ∼ 1.3–1.55 µm and
∆ω ∼ 108–109 s−1 the homogeneous layer oscillations are overdamped. For this reason, the rapidly
decaying homogeneous solution of Equation (35) can be neglected. We have taken into account only
the solution (36) enhanced by the interfering optical TM modes (33).
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Figure 5. The SS frequency Ω (a) and decay constant Γ (b) dependence on the optical wavelength for
the even modes TMeven

0,1 (curves 1,3) and the odd mode TModd
1 (curve 2).

Substituting expressions (33) and (36) into Equations (17) and (18) we evaluate the nonlinear part
of the electric induction

−→
D NL =

(
DNL

x , 0, DNL
z
)

which has only x and z components for the TM modes.
Separating the phase matched parts of

−→
D NL with the frequencies ω1,2, respectively, we obtain.

DNL
x (ω1) = ε0U0iβE0zSA2 sin kz exp [i (ω1t− βx)]

×
{
−a⊥

k2ε‖
β2ε⊥

cos 2kz + 2εa cos2 kz

}
(40)

DNL
z (ω1) = ε0kU0E0zSA2 cos kz exp [i (ω1t− βx)]

×
{

a‖ cos 2kz + 2εa
ε‖
ε⊥

sin2 kz
} (41)

DNL
x (ω2) = ε0U∗0 iE0zSA1 sin kz exp [i (ω2t + βx)]

×
{
−a⊥

k2ε‖
βε⊥

cos 2kz + 2εaβ cos2 kz

}
(42)

DNL
z (ω2) = −ε0kU∗0 E0zSA1 cos kz exp [i (ω2t + βx)]

×
{

a‖ cos 2kz + 2εa
ε‖
ε⊥

sin2 kz
} (43)

The nonlinear polarization (40)–(43) is related to the specific cubic nonlinearity related to the
smectic layer displacement which occurs without the change of the SALC mass density.

The electric field E0ySA1,2 of the TE modes (21) is perpendicular to the optical axis Z. It has
the form.

−→
E SA1,2 =

1
2

E0ySA1,2 (x, t)−→a y cos kz exp [i (ω1,2t∓ βx)] + c.c.

TE modes propagate in an anisotropic medium as ordinary waves with the propagation constant
β2 =

(
ω2ε⊥/c2)− k2 including only the transverse permittivity ε⊥ [41]. The boundary conditions for

the TE modes have the form.

EyC (d) = EySA (d) ; HzC (d) = HzSA (d) (44)

They yield the TE mode dispersion relation similar to the isotropic medium [38].

tan kd =

√
V2

TE

(kd)2 − 1; V =
2πd
λ0

√
ε⊥ − εr2, ε⊥ > εr2 (45)
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In LC typically ε‖ > ε⊥ [2,14], and under the condition ε‖ > εr2 > ε⊥ only TM modes can
propagate in the slab optical waveguide. In general case, the nonlinear polarization enhanced by the
TE modes includes only the component DNL

y = ε0a⊥ (∂u/∂z) Ey as it is seen from expression (17),
and the dynamic grating amplitude U0TE ∼ E0ySA1E∗0ySA2. Obviously, the nonlinear interaction of
the TE modes is isotropic and less pronounced than the TM mode interaction including both the
longitudinal and the transverse component of the electric field. For this reason, we analyze in detail
the TM mode nonlinear interaction.

4. Evaluation of the TM Mode SVAs

Using the standard procedure [37], we substitute expressions (33), (16), and (40)–(43) into
Equation (1), separate the linear and nonlinear parts, neglect the small terms ∼

∣∣∂2E0zSA1,2/∂t2
∣∣

according to the SVA approximation condition (34) and equate the phase matched terms the frequencies
ω1,2, respectively. Then we obtain the coupled equations for the SVAs E0zSA1,2 (t).

ε‖
∂E0zSA1

∂t

{
ax

k
β

sin kz− azi cos kz
}

= ω1U0E0zSA2{axiβ sin kz

[
−a⊥

k2ε‖
β2ε⊥

cos 2kz + 2εa cos2 kz

]

+azk cos kz
[

a‖ cos 2kz + 2εa
ε‖
ε⊥

sin2 kz
]
}

(46)

ε‖
∂E0zSA2

∂t

{
ax

k
β

sin kz + azi cos kz
}

= ω2U∗0 E0zSA1{axiβ sin kz

[
−a⊥

k2ε‖
β2ε⊥

cos 2kz + 2εa cos2 kz

]

−azk cos kz
[

a‖ cos 2kz + 2εa
ε‖
ε⊥

sin2 kz
]
}

(47)

We multiply Equations (46) and (47) by the vectors
{

ax
k
β sin kz− azi cos kz

}∗
and{

ax
k
β sin kz + azi cos kz

}∗
, respectively, substitute the SVA expressions

E0zSA1,2 (x, t) = |E0zSA1,2| exp iθ1,2 (48)

and separate the real and imaginary parts of the resulting equations. Then we obtain the following
equations for the magnitudes |E0zSA1,2| and phases θ1,2 of the TM mode SVAs.

1
ω1

∂ |E0zSA1|2

∂t
F1 (z) =

ε0 |E0zSA1|2 |E0zSA2|2 β2k2hImG (k, β, ∆ω)

ε‖ρ (β2 + k2) |G (k, β, ∆ω)|2
F2 (z) (49)

1
ω2

∂ |E0zSA2|2

∂t
F1 (z) = −

ε0 |E0zSA1|2 |E0zSA2|2 β2k2hImG (k, β, ∆ω)

ε‖ρ (β2 + k2) |G (k, β, ∆ω)|2
F2 (z) (50)

ε‖
∂θ1

∂t
F1 (z) = ω1ε0 |E0zSA2|2

β2k2hReG (k, β, ∆ω)

2ρ (β2 + k2) |G (k, β, ∆ω)|2
F2 (z) (51)

ε‖
∂θ2

∂t
F1 (z) = ω2ε0

β2k2 |E0zSA1|2 hReG (k, β, ∆ω)

2ρ (β2 + k2) |G (k, β, ∆ω)|2
F2 (z) (52)
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where

F1 (z) =
(

k
β

)2
sin2 kz + cos2 kz; F2 (z) = {sin2 kz

[
−a⊥

k2ε‖
β2ε⊥

cos 2kz + 2εa cos2 kz

]

+ cos2 kz
[

a‖ cos 2kz + 2εa
ε‖
ε⊥

sin2 kz
]
}

(53)

and

h = εa
ε‖
ε⊥

+ a⊥
1
2

( kε‖
βε⊥

)2

+
1
2

a‖ (54)

Combining Equations (49) and (50) we obtain for the SVA magnitudes |E0zSA1,2|

∂

∂t

(
|E0zSA1|2

ω1
+
|E0zSA2|2

ω2

)
= 0 (55)

and
|E0zSA1|2

ω1
+
|E0zSA2|2

ω2
= const = I0 (56)

where

I0 =
|E0zSA1 (0)|2

ω1
+
|E0zSA2 (0)|2

ω2
(57)

Equation (56) is the Manley-Rowe relation for the SVA magnitudes |E0zSA1,2| which corresponds
to the conservation of the photon number in the SLS process [37]. It is seen from Equation (38) that for
∆ω = ω1 −ω2 > 0 the imaginary part ImG (k, β, ∆ω) < 0, and the intensity |E0zSA1|2 of the TM mode
with the higher frequency ω1 is decreasing with time while the intensity |E0zSA2|2 of the TM mode with
the lower frequency ω2 is increasing. Consequently, the TM modes with the frequencies ω1,2 are the
pumping and signal waves, respectively, and the Stokes type SLS occurs [37]. Equations (49) and (50)
describe the energy exchange between the TM modes, while Equations (51) and (52) describe the
cross-phase modulation (XPM) process.

We introduce the dimensionless variables

I1,2 =
|E0zSA1,2|2

ω1,2 I0
(58)

such that I1 + I2 = 1. Substituting expressions (58) into Equations (49) and (50), integrating both parts
of these equations over z from −d up to d and using the Manley-Rowe relation (56) we obtain the
following solutions for the normalized SVA intensities I1,2.

I1 (t) =
I1 (0)

{(1− I1 (0)) exp [gF (kd) t] + I1 (0)}
(59)

I2 (t) =
(1− I1 (0))

(1− I1 (0)) + I1 (0) exp [−gF (kd) t]
(60)

where the gain g and the geometric factor F (kd) are given by.

g =
ε0

ε‖

ω1ω2 I0β2k2h |ImG (k, β, ∆ω)|
ρ (β2 + k2) |G (k, β, ∆ω)|2

> 0 (61)
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F (kd) = {
[

a⊥
k2ε‖
β2ε⊥

+ εa

(
1 +

ε‖
ε⊥

)
+ a‖

]
kd +

[
−a⊥

k2ε‖
β2ε⊥

+ a‖

]
sin 2kd

+
1
4

[
a⊥

k2ε‖
β2ε⊥

− εa

(
1 +

ε‖
ε⊥

)
+ a‖

]
sin 4kd}

{[(
k
β

)2
+ 1

]
2kd +

[
1−

(
k
β

)2
]

sin 2kd

}−1 (62)

The pumping intensity threshold in the SLS process described by expressions (59) and (60)
is absent since the losses in SALC can be neglected as it was mentioned above. Comparison of
expressions (59) and (60) shows that for the initial pumping wave intensity larger than the initial
signal wave intensity I1 (0) > I2 (0) the crossing time t0 > 0 exists where I1 (t0) = I2 (t0). It is
given by.

t0 =
1

gF (kd)
ln
[

I1 (0)
I2 (0)

]
(63)

Substituting expression (63) into expressions (59) and (60) we obtain.

I1,2 (t) =
1
2

{
1∓ tanh

[
1
2

gF (kd) (t− t0)

]}
(64)

The spectral dependence of the gain g and its dependence on the normalized intensity I0 are
presented in Figure 6a,b.

Figure 6. The normalized gain g/I0 ( s−2V−2m2) dependence on the optical wavelength λ (a); the gain
g dependence on the normalized intensity I0 (V2m−2s) for the optical wavelength λ = 1.55 µm (b).

Figure 6a shows that the gain is slightly varying in the optical wavelength range of interest
because Γ � Ω as it is seen from Figure 5a,b. The gain g has a maximum value gmax at the SS
resonance condition when ∆ω = Ω and ReG (k, β, ∆ω) = 0 according to expression (38). The numerical
estimations show that for the typical values of k, β ∼ 106 m−1 and ∆ω ∼ 108− 109 s−1 the SS resonance
condition can be satisfied. The numerical estimations also show that for the values of kd defined by
the dispersion relation (29) F (kd) ∼ 1. The dependence of the gain g on the normalized intensity I0 is
linear as it is seen from Figure 6b. Such a dependence is typical for the Brillouin and Rayleigh SLS [37].
The SLS in our case is essentially orientational since the optical nonlinearity mechanism is related
to the SALC layer displacement and occurs without the mass density change [15]. For the feasible
optical wave electric fields E the condition ε0E2/B� 1 is always valid, and the gain saturation does
not take place.

It is seen from expressions (59) and (60) that for t→ ∞ the pumping wave intensity is depleted
I1 (t)→ 0 while the signal wave intensity is amplified up to the saturation level I2 (t)→ 1. The time
dependence for the normalized intensities I1,2 (t) for the initial conditions I1 (0) = 0.8, I2 (0) = 0.2,
pumping wavelength λ1 = 1.55 µm and the pumping wave electric field amplitude E0zSA1 = 105 V/m,
106 V/m is shown in Figure 7. It is seen from Figure 7a,b that the amplified signal wave rise time is
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about 60 µ sec and 0.6 µ sec for the feasible electric field ∼105 V/m, 106 V/m, respectively, which is
much faster than the director axis relaxation time τr ∼ 1 ms in NLC [14].

Figure 7. The time dependence of the normalized intensities I1,2 (t) for the initial conditions I1 (0) = 0.8,
I2 (0) = 0.2, pumping wavelength λ1 = 1.55 µm and the pumping wave electric field amplitude
E0zSA1 = 105 V/m (a) and 106 V/m (b).

Integrating both parts of Equations (51) and (52) over z from −d up to d and substituting
expressions (58)–(60), (62) into these equations, we obtain the expressions for the pumping and
signal wave phases θ1,2. They have the form.

θ1 (t) =
ReG (k, β, ∆ω)

2 |ImG (k, β, ∆ω)| ln {exp [gF (kd) t] (1− I1 (0)) + I1 (0)} (65)

θ2 (t) = −
ReG (k, β, ∆ω)

2 |ImG (k, β, ∆ω)| ln {I1 (0) exp [−gF (kd) t] + (1− I1 (0))} (66)

It is seen from Equations (65) and (66) that XPM occurs, and the depletion of the pumping wave
is accompanied by rapid linear increase of its phase θ1 (t) which corresponds to the fast oscillations of
the amplitude E0zSA1.

t→ ∞, θ1 (t)≈
ReG (k, β, ∆ω)

2 |ImG (k, β, ∆ω)| (gF (kd) t)→ ∞ (67)

The phase of the amplified signal wave θ2 (t) tends to the constant level:

t→ ∞, θ2 (t)→ −
ReG (k, β, ∆ω)

2 |ImG (k, β, ∆ω)| ln I2 (0) (68)

The temporal evolution of cos θ1,2 (t) is shown in Figure 8a,b, respectively. The characteristic time
of the phase variation is about 10−4 s for the pumping wave electric field amplitude E0zSA1 = 105 V/m.
The comparison of expressions (38), (61), (65) and (66) shows that in the SS resonance case ∆ω = Ω,
ReG (k, β, ∆ω) = 0, XPM is absent: θ1,2 = const.

Consider now the hydrodynamic behavior of the SALC core. Substituting expressions (48), (58)
and (64) into expression (37) we obtain the explicit expression of the smectic layer grating amplitude U0.

U0 =

ε0β2kI0
√

ω1ω2

[
εa

ε‖
ε⊥

+ a⊥ 1
2

( kε‖
βε⊥

)2
+ 1

2 a‖

]
4ρ (β2 + k2) G (k, β, ∆ω)

exp i (θ1 − θ2)

cosh
[

1
2 gF (kd) (t− t0)

] (69)
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It is seen from Equation (69) that the crossing time t0 corresponds to the maximum of the smectic
layer strain pulse. Substituting expressions (36) and (69) into Equations (6) and (7) we obtain the
following expressions of the hydrodynamic velocity components vx,z (x, z, t).

vx =
k∆ω

β
U0 cos 2kz exp i [(ω1 −ω2) t− 2βx] + c.c. (70)

vz = i∆ωU0 sin 2kz exp i [(ω1 −ω2) t− 2βx] + c.c. (71)

It is seen from expressions (70) and (71) that they also have the form of the pulses (69).

Figure 8. The temporal evolution of the phases θ1 (t) (a) and θ2 (t) (b) for the pumping wave electric
field amplitude E0zSA1 = 105 V/m and the pumping wavelength λ1 = 1.33 µm.

5. Conclusions

We investigated theoretically the nonlinear optical phenomena in the optical slab waveguide with
the SALC core. We calculated the TM and TE modes in such a strongly anisotropic waveguide. We have
shown that the single mode regime can be realized for the waveguide core thickness of about 1–2 µm
and optical wavelength of λopt ∼ 1.35–1.55 µm important for the optical communication applications.
The cubic nonlinearity of SALC is related to the smectic layer normal displacement. The nonlinear
interaction is especially strong for the counter-propagating TM modes. We solved simultaneously
the equation of motion for the smectic layer normal displacement in the optical field and the wave
equation for the TM mode electric field using SVA approximation. The interfering optical fields create
the smectic layer displacement dynamic grating which propagates in SALC without the mass density
change. As a result the nonlinear polarization occurs and the SLS accompanied by XPM takes place in
the waveguide. We evaluated the pumping and signal TM mode SVA magnitudes and phases. In the
resonance case when the TM mode frequency difference ∆ω equals to the SS frequency Ω the gain g
has a maximum value, and XPM is absent. The smectic layer strain has a pulse form with a maximum
corresponding to the crossing time of the pumping and signal TM modes. We also evaluated the
hydrodynamic velocity enhanced by the interfering TM modes. The numerical estimations show that
the SLS in SALC is much faster than the light scattering in NLC related to the director reorientation.
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