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Abstract: Ultraviolet (UV) photofunctionalization has been suggested as an effective method to
enhance the osseointegration of titanium surface. In this study, machined surface treated with
UV light (M + UV) was compared to sandblasted, large-grit, acid-etched (SLA) surface through
in vitro and in vivo studies. Groups of titanium specimens were defined as machined (M), SLA,
and M + UV for the disc type, and M + UV and SLA for the implant. The discs and implants
were assessed using scanning electron microscopy, confocal laser scanning microscopy, electron
spectroscopy for chemical analysis, and the contact angle. Additionally, we evaluated the cell
attachment, proliferation assay, and real-time polymerase chain reaction for the MC3T3-E1 cells. In a
rabbit tibia model, the implants were examined to evaluate the bone-to-implant contact ratio and
the bone area. In the M + UV group, we observed the lower amount of carbon, a 0◦-degree contact
angle, and enhanced osteogenic cell activities (p < 0.05). The histomorphometric analysis showed
that a higher bone-to-implant contact ratio was found in the M + UV implant at 10 days (p < 0.05).
In conclusion, the UV photofunctionalization of a Ti dental implant with M surface attained earlier
osseointegration than SLA.

Keywords: dental implants; titanium; osseointegration; photofunctionalization; ultraviolet light;
surface treatment

1. Introduction

Dental implant restorations to replace missing teeth have become a routine practice in dental
clinics. Using the implants as a prosthesis helps patients feel more comfortable and these implants
are more functional compared to the traditional removable dentures [1–3]. For successful implant
restorations, osseointegration must be achieved between the bone and the implant. Osseointegration is
the direct structural and functional connection between living bone and the surface of a load-carrying
implant [4], and it is an essential factor in achieving a successful implant. Generally, it is necessary to
wait for several months after implant placement for osseointegration to be achieved [5]. Unsuccessful
osseointegration leads to the early failure of implants, meaning that the implants cannot endure
masticatory forces, resulting in implant mobility or pain [6,7]. This includes other time-consuming
situations, such as an edentulous area with limited bone quantity, or problems in patients with
osteoporosis, diabetes, cancer, irradiation, old age, and heavy smokers [8–10].
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The original implant surface was a smooth machined surface, with an approximate Sa value
of 0.5 µm [11,12]. This machined surface has certain advantages, including a simple manufacturing
process (turning and polishing) and the ability to maintain a good hygienic state, resulting in a
low incidence of peri-implant disease [12,13]. However, implants with a machined surface have
shown a low bone-to-implant contact ratio (BIC) and a frequent failure of osseointegration before
loading [14]. To enhance the osseointegration process, various surface modifying techniques have
since been developed, where a roughened surface has demonstrated the best clinical long-term results.
There are various roughening techniques, although the sandblasted, large-grit, acid-etched (SLA)
surface is the most widely used and reported technique. The SLA surface sufficiently differentiates
the pre-osteoblastic cells, enhances the osseointegration process, and leads to a higher BIC compared
to the machined surface [15,16]. However, the roughened surface has been reported to accelerate
plaque accumulation, wherein it is more difficult to remove plaque on the roughened surface than on
the machined surface [12]. In this regard, reports show a greater incidence of peri-implant disease
stemming from the use of the roughened surface compared to the machined surface [17].

Meanwhile, the photofunctionalization of implants using ultraviolet (UV) light has been
highlighted as a simple and effective method to stimulate osseointegration in machined surfaces [18–20].
UV photofunctionalization is a phenomenon of changes occurring in titanium (Ti) surfaces after UV
treatment. The process was discovered in 1977, where UV treatment transforms the natural hydrophobic
properties of Ti surfaces into superhydrophilic properties by altering the physicochemical properties
of the Ti. The process has been applied in environmental engineering and microbiology [21,22].
UV treatment creates the hydrophilic phase on the surface structure, thereby transforming the
surface into a hydrophilic surface [23]. Photofunctionalization is also reported to enhance biological
capabilities [18,19]. Consequently, the purpose of this study was to evaluate the effect of UV
photofunctionalization on implants with a machined surface compared to the SLA surface, using an
in vitro and in vivo study.

2. Materials and Methods

2.1. Ti Samples, Surface Analysis, and UV Treatment

2.1.1. Preparation of the Ti Disc and Implant

In this experiment, commercially pure grade 4 Ti was tested in the shape of a disc (10 mm in
diameter and 1 mm in thickness) and a screw-shaped implant (3.3 mm in diameter and 7 mm in length).
The surface of the specimen was treated using the following methods: (a) M: The machined surface
was turned and polished using sandpaper (600–1000 times); (b) SLA: The surface was sandblasted
with alumina (Al2O3) particles, which were 50 µm in size and acid-etched, using hydrochloric acid
and sulfuric acids (SLA surface; Point Implant Co., Seoul, Korea); and (c) M + UV: Machined surface
treated with ultraviolet (UV) light. For the disc type, all the three surface treatments were examined for
a negative control (M), a positive control (SLA), and an experimental group (M + UV). For the implant
type sample, two surface treatments, i.e., the control (SLA) and the experimental group (M + UV),
were investigated.

2.1.2. Surface Analysis

Three samples were used in each group for each examination. We performed field emission
scanning electron microscopy (FE–SEM; Hitachi S-4700, Hitachi, Tokyo, Japan) for a qualitative
evaluation of the overall surface image. This was followed by a confocal laser scanning microscope
(CLSM; LSM 800, Carl Zeiss AG, Oberkochen, Germany), where the surface roughness was
quantitatively measured. The surface roughness parameters—arithmetical mean height (Sa), root mean
square height (Sq), and developed interfacial area ratio (Sdr)—were measured at three randomly
selected points in each sample. In addition, the chemical composition was analyzed using electron
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spectroscopy for chemical analysis (Sigma Probe, Thermo VG, East Grinstead, UK). Furthermore, the
surface wettability of the Ti discs was examined using the contact angle from the sessile drop method,
as measured by a contact angle meter (Pheonix 150, SEO, Kyunggido, Korea). All the procedures were
performed under controlled conditions of 20 ◦C temperature and 46% humidity.

2.1.3. UV Light Treatment

UV light treatment was achieved by irradiating the Ti discs in a specially manufactured generator
using four 15 W bactericidal lamps (G15T8, Sankyo Denki, Tokyo, Japan), for at least 48 h. The intensity
was approximately 5 mW/cm2 (λ = 254 ± 20 nm).

2.2. In Vitro Experiment

2.2.1. Cell Culture

Murine pre-osteoblast MC3T3-E1 cells were purchased from ATCC (American Type Culture
Collection; Manassas, VA, USA). The cells were seeded onto the discs (1 × 104 cells/well) in a 12-well
culture plate (Nunc, Roskilde, Denmark), and then cultured in α-minimum essential medium (α-MEM;
Thermo Fisher Scientific, Waltham, MA, USA) supplemented with a 10% fetal bovine serum (FBS) and
1% penicillin/streptomycin. The cells were incubated at 37 ◦C under a humidified atmosphere of 95%
air and 5% CO2. The culture medium was replaced every three days, and the osteogenic medium
contained 10 mM β-glycerophosphate and 50 µg/mL ascorbic acid in the α-MEM.

2.2.2. Cell Attachment

At 24 h after being seeded, the cell attachment was dual-stained using fluorescent dyes:
4′,6-diamidino-2-phenylindole (DAPI; Invitrogen, Carlsbad, CA, USA) and Alexa Fluor 568 phalloidin
(Invitrogen, Carlsbad, CA, USA) to detect the nucleus and actin filaments, respectively. Fluorescence
was visualized by a CLSM (LSM 800, Carl Zeiss AG, Oberkochen, Germany), and analyzed with the
ZEN2010 software (Carl Zeiss, Oberkochen, Germany).

2.2.3. Cell Proliferation

The proliferative activity of cells was measured using a methyl thiazolyl tetrazolium (MTT)
assay (Sigma-Aldrich, St. Louis, MO, USA) at 1, 3, and 7 days after being seeded. The culture
media was replaced with an MTT solution and incubated for 3 h at 37 ◦C. After removing the MTT
solution, 0.5 mL of 10% dimethyl sulfoxide in isopropanol (iDMSO) was added for 30 min at 37 ◦C.
Then, the proliferation rate was assessed by its optical density (OD) at 570 nm. The value of the OD
was measured using a microplate reader (BioTek, Winooski, VT, USA).

2.2.4. Cell Differentiation

Total RNA in the cell cultures was extracted using the TRIzol method described by Chomczynski
at 1, 4, 7, 10, and 14 days after osteoblast differentiation [24]. A reverse transcriptase–polymerase chain
reaction (RT–PCR) was performed with primer sets for type I collagen (Col), alkaline phosphatase (Alp),
and osteocalcin (Ocn), as described in Table 1. Quantitative real-time PCR was performed using a Takara
SYBR premix Ex Taq (Takara Bio, Kusatsu, Japan) on a 7500 real-time PCR system (Applied Biosystems,
Foster City, CA, USA). Each primer contained a final concentration of 200 nM, and a quantity of
cDNA corresponding to 50 ng of total RNA. The PCR primers were synthesized using Integrated
DNA Technology (Coralville, IA, USA). According to the manufacturer’s instructions, the PCR cycling
conditions comprised 40 cycles at 95 ◦C for 5 s, and 60 ◦C for 34 s after denaturation at 95 ◦C for 30 s.
The cycle threshold (Ct) values were acquired using the automated threshold analysis in the Sequence
Detection software version 1.4 (Applied Biosystems, Foster, CA USA). Each target mRNA expression was
calculated using the comparative cycle threshold method according to the manufacturer’s instructions.
The relative mRNA expression levels were normalized to glyceraldehyde-3-phosphate dehydrogenase
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(GAPDH). The GAPDH mRNA expression levels remained steady during the osteoblast differentiation,
showing similar Ct values.

Table 1. Primer sequences for the reverse transcriptase–polymerase chain reaction (RT–PCR).

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′)

Col 1 GCTCCTCTTAGGGGCCACT CCACGTCTCACCATTGGGG
Alp 2 GGCTACATTGGTCTTGAGCTTTT CCAACTCTTTTGTGCCAGAGA
Ocn 3 CTGACAAAGCCTTCATGTCCAA GCGCCGGAGTCTGTTCACTA

1 Type I collagen; 2 Alkaline phosphatase; 3 Osteocalcin.

2.3. In Vivo Experiment

2.3.1. Animals

The rabbit tibia model was used. All the procedures were conducted with the approval of the
Ethics Committee of Animal Experimentation of the Institutional Animal Care and Use Committee
(CRONEX-IACUC 201803003; Cronex, Hwasung, Korea), according to the guidelines of Animal
Research: Reporting In Vivo Experiments (ARRIVE).

Thereafter, four female New Zealand white rabbits (3–4 months old and 2.5–3.0 kg in weight)
were anesthetized via a 1 mL intramuscular injection with a dose of 15 mg/kg of tiletamine/zolazepam
(Zoletil 50, Vibrac Korea, Seoul, Korea) and 5 mg/kg of xylazine (Rompun, Bayer Korea, Seoul, Korea).
Then the tibiae of the rabbits were shaved and disinfected with povidone iodine solution. Local
anesthesia was administered in the surgical area with 2% lidocaine containing 1:100,000 epinephrine
(Yuhan Co., Seoul, Korea).

2.3.2. Surgical Procedure

A full-thickness flap was made on the medial side of both tibiae, followed by exposure of the
underlying bone. In each tibia, two holes for implant placement were drilled bicortically using
implant surgical drills under copious sterile saline irrigation. The diameter of the drills was increased
sequentially, with a final drill diameter of 2.8 mm. Then, the implant with a diameter of 3.3 mm was
inserted into the hole and engaged bicortically with sufficient stability. The SLA and M + UV implants
were allocated to each hole based on a 2 × 2 Latin square randomization. Following the implant
placement, the periosteum and fascia were sutured with 4-0 resorbable polyglactin material (Vicryl,
Ethicon, Somerville, MA, USA), and the skin was sutured with 4-0 monofilament nylon (Blue nylon,
Ailee, Busan, Korea). Post-operatively, each rabbit was kept in a separate cage and administered with
5 mg/kg of enrofloxacin (Komibiotril, Komipharm International Co., Siheung, Korea) for seven days.

2.3.3. Sacrifice and Microcomputed Tomography (Micro-CT)

Two experimental animals were sacrificed at 10 days and the other two animals at 28 days after
the surgery by an intravenous overdose of potassium chloride. The implants were surgically harvested
en bloc with the surrounding bone. Then the implant–bone blocks were immediately immersed in
a 10% neutral buffered formalin fixative. Micro-CT imaging was performed using a SkyScan 1275
(Bruker microCT, Kontich, Belgium). The X-ray source was set at an acceleration voltage of 100 kV and
a pixel size of 10 µm. Each sample was scanned three times, using 360◦ spiral scanning on the SkyScan
1275 with a scanning time of 2 h. Reconstruction was performed using an NRecon (v. 1.7.3.2, Bruker
microCT). The region-of-interest (ROI) was defined as the area within consecutive threads engaged in
the upper cortical bone (Figure 1a). The analysis was performed using the CTAn software (v. 1.18.4.0,
Bruker microCT; Figure 1b), and it also involved the visualization software DataViewer (v. 1.5.4.0,
Bruker microCT) and CTVox (v. 3.3.0, Bruker microCT).
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implant contact ratio (BIC) was calculated by the length of the green line divided by the total length 
of the well (green and red line); (d) the definition of the bone area (BA) was calculated by the area of 
red color divided by the total area of the well. 
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Kulzer, Hanau, Germany). The embedded blocks were sectioned perpendicular to the longitudinal 
axis of the implant using the EXAKT system (EXAKT Apparatebau, Norderstedt, Germany), 
following the method described by Donath and Breuner [25]. The section was then ground to a 
thickness of 40 μm and stained with hematoxylin and eosin (H&E) for examination using a light 
microscope. These undecalcified, ground sections were observed under a light microscope (BX51, 
Olympus, Tokyo, Japan) to measure the BIC and bone area (BA; Figure 1c,d). The region-of-interest 
(ROI) was defined as the same area that was used in the micro-CT analysis. The measurement was 
performed under a ×100 magnification, using the SPOT software version 4.0 (Diagnostic Instruments, 
Sterling Heights, MI, USA) and Image-Pro Plus (Media Cybernetics, Rockville, MD, USA). 

2.4. Statistical Analysis 

The Kruskal–Wallis test was used to evaluate statistically significant differences amongst the 
three groups of discs. If there was a significant difference amongst the three groups, the post-hoc 
Tukey method was applied. To compare the two groups of implants, the Mann–Whitney U test was 
performed to determine the statistically significant differences. p < 0.05 was set as the statistical 
significance. All statistical analyses were performed using SPSS 20.0 (IBM Corp., Armonk, NY, USA). 

3. Results 

Figure 1. (a) The schematic drawing of the region-of-interest (ROI). The ROI was defined as
an area within threads engaged in the upper cortical bone (red dot box); (b) microcomputed
tomography (micro-CT) images for the measurement of the bone-to-implant contact ratio (BIC);
(c) the bone-to-implant contact ratio (BIC) was calculated by the length of the green line divided by the
total length of the well (green and red line); (d) the definition of the bone area (BA) was calculated by
the area of red color divided by the total area of the well.

2.3.4. Histological Preparation and Histomorphometric Measurement

After µCT scanning, the implant–bone blocks were dehydrated in a series of ethanol with
increasing concentrations and then embedded in light-curing resin (Technovit 7200 VLC, Hereaus
Kulzer, Hanau, Germany). The embedded blocks were sectioned perpendicular to the longitudinal
axis of the implant using the EXAKT system (EXAKT Apparatebau, Norderstedt, Germany), following
the method described by Donath and Breuner [25]. The section was then ground to a thickness of
40 µm and stained with hematoxylin and eosin (H&E) for examination using a light microscope. These
undecalcified, ground sections were observed under a light microscope (BX51, Olympus, Tokyo, Japan)
to measure the BIC and bone area (BA; Figure 1c,d). The region-of-interest (ROI) was defined as the
same area that was used in the micro-CT analysis. The measurement was performed under a ×100
magnification, using the SPOT software version 4.0 (Diagnostic Instruments, Sterling Heights, MI,
USA) and Image-Pro Plus (Media Cybernetics, Rockville, MD, USA).

2.4. Statistical Analysis

The Kruskal–Wallis test was used to evaluate statistically significant differences amongst the three
groups of discs. If there was a significant difference amongst the three groups, the post-hoc Tukey
method was applied. To compare the two groups of implants, the Mann–Whitney U test was performed
to determine the statistically significant differences. p < 0.05 was set as the statistical significance.
All statistical analyses were performed using SPSS 20.0 (IBM Corp., Armonk, NY, USA).
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3. Results

3.1. Surface Characteristics

In the overall evaluation of the Ti samples via the FE–SEM images, the M and M + UV surfaces
showed similar evidence of machine turning (continuous straight traces) with smooth surfaces, although
the SLA surface presented a rougher surface with a typical honeycomb appearance (Figures 2a and 3a).
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Figure 2. (a) Scanning electron microscopy (SEM) images of the Ti discs. M: Machined surface (top
row); SLA: Sandblasted with large grit and acid etched surface (middle row); M + UV: machined surface
treated with ultraviolet light (bottom row). Scale bars: 10 µm. (b) Surface roughness (Sa and Sq) and
surface area ratio (Sdr) of the Ti discs evaluated by confocal laser scanning microscopy (CLSM) analysis.
The values for the M and M + UV surfaces are similar and smaller than the SLA. (c) Element content of
the surfaces of the Ti disc according to the energy dispersive x-ray spectrometer (XPS). M + UV shows a
significantly lower carbon percentage than the M disc, but there is no significant difference between the
SLA and M + UV. (d) The changes in wettability of the Ti discs. Superhydrophilicity after UV treatment
for 48 h was observed. Scale bars: 10 mm. (e) The value of the contact angle of the Ti discs. Without
UV treatment, the Ti disc was hydrophobic, but became superhydrophilic (zero degree angle) after
UV treatment for 48 h. Error bars show the standard deviation. (*) and (**) represents significance
compared with each pair, p < 0.05 and p < 0.01, respectively.

Surface roughness parameters for the samples are shown in Figures 2b and 3b. In the disc
specimen, the SLA surface showed higher Sa, Sq, and Sdr values, and these were significantly different
from the M and M + UV surfaces (p < 0.01). There was no statistical difference between the M and
M + UV surfaces (p > 0.05). Similarly, for the implant specimen, the M + UV and SLA surfaces were
statistically different across all the parameters (p < 0.05).

Chemical compositions from the x-ray spectrometer (XPS) revealed that, compared with the
43.42% ± 0.31% carbon in the M disc, the M + UV disc contained about 32.35% ± 1.50% carbon, which
was statistically different (p = 0.000). The SLA showed 31.87% ± 1.42% carbon, with no significant
difference from the M + UV disc (p = 0.051). On the other hand, the M + UV implant showed a
significantly lower carbon percentage compared to the SLA implant (p = 0.049; Figures 2c and 3c).
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like shaped, implying that the osteoblasts were not prone to attach to the SLA surfaces. 

3.2.2. Cell Proliferation 

The MTT assay showed that the amount of cells increased in a time-dependent way on all the 
surfaces. On the M + UV surface, the cells proliferated more significantly than the other surfaces at 
days 1, 3, and 7, with a p-value of less than 0.01, as shown in Figure 4b. On day 7, the amount of cells 
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Figure 3. (a) Scanning electron microscopy (SEM) images of the Ti implants. SLA: Sandblasted with
large grit and acid etched surface (top row); M + UV: Machined surface treated with ultraviolet light
(bottom row). Magnification: ×30, ×1000, ×2000, and ×5000 from the left. (b) Surface roughness (Sa
and Sq) and surface area ratio (Sdr) of the Ti discs according to the confocal laser scanning microscopy
(CLSM) analysis. The values of the M + UV surfaces are smaller than the SLA, which means it is
smoother than the SLA. (c) Element content of the surfaces of the Ti discs according to the energy
dispersive x-ray spectrometer (XPS). The M + UV discs contain half of the carbon percentage of the
SLA discs. Error bars show the standard deviation. (*) represents the significance compared with each
pair, p < 0.05.

Contact angle measurement was performed for the disc-type specimens. The M and SLA discs
showed a hydrophobic status with angles of 63.6 ± 4.7◦ and 68.3 ± 2.5◦, respectively. On the other
hand, 48 h after UV treatment, the M + UV discs showed superhydrophilicity at a 0◦ contact angle
(p = 0.000; Figure 2d,e).

3.2. In Vitro Test

3.2.1. Cell Attachment

The CLSM images of the cells are shown in Figure 4a. A wider spread of cells was observed in the
M + UV groups compared to the other groups. In the SLA discs, the cells were sharp and needle-like
shaped, implying that the osteoblasts were not prone to attach to the SLA surfaces.

3.2.2. Cell Proliferation

The MTT assay showed that the amount of cells increased in a time-dependent way on all the
surfaces. On the M + UV surface, the cells proliferated more significantly than the other surfaces at
days 1, 3, and 7, with a p-value of less than 0.01, as shown in Figure 4b. On day 7, the amount of
cells on the M + UV surface was two times greater than cells on the SLA surface (0.068 ± 0.0005 vs.
0.040 ± 0.001, p = 0.000). In particular, at day 3 and 7, the cells proliferated more on the M surface than
on the SLA surface.

3.2.3. Quantitative Assessment of the Osteogenic Markers

Figure 4c shows the relative mRNA expression of Col, Alp, and Ocn. The RT–PCR analysis
showed that Col was more significantly expressed on the M + UV and SLA surfaces at days 7, 10, and
14 compared to the M surface, although the M + UV and SLA surfaces were not significantly different.
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The expression level of Alp on the SLA surface was not different from the M + UV surface at days 1
and 4, but it was significantly higher than the expression levels at days 7, 10, and 14. The M + UV
surface expressed the Alp gene more than the M surface at days 4, 7, and 14. The expression level of
Ocn on the M + UV surface was significantly higher at day 7, but it was lower at days 10 and 14.Materials 2019, 12, x FOR PEER REVIEW 8 of 14 
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14 compared to the M surface, although the M + UV and SLA surfaces were not significantly different. 
The expression level of Alp on the SLA surface was not different from the M + UV surface at days 1 
and 4, but it was significantly higher than the expression levels at days 7, 10, and 14. The M + UV 
surface expressed the Alp gene more than the M surface at days 4, 7, and 14. The expression level of 
Ocn on the M + UV surface was significantly higher at day 7, but it was lower at days 10 and 14. 

3.3. In Vivo Test 

3.3.1. Histomorphometry 

All the implants were successfully osseointegrated at days 10 and 28 (Figure 5a). At day 10, the 
BIC ratios of the M + UV implants (55.93% ± 6.19%) were significantly higher than that of the SLA 
implants (43.38% ± 3.20%, p = 0.021). However, at day 28, the BIC ratios of the M + UV implants (64.88% 

Figure 4. (a) Confocal microscopic images of the MC3T3-E1 cells, 24 h after being seeded on the Ti
discs. The areas in the dotted box are magnified in the bottom row. Scale bars: 50 µm at ×100 and
20 µm at ×200 magnification. (b) Evaluation of cell proliferation of the MC3T3-E1 cells by an MTT
assay at 1, 3, and 7 days after being seeded on the Ti discs. (c) Evaluation of the cell differentiation
of MC3T3-E1 cells by real-time PCR at 1, 4, 7, 10, and 14 days after being seeded on the Ti discs. The
relative mRNA expression levels were normalized to glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). The osteogenic markers are type I collagen (top), alkaline phosphatase (ALP, middle), and
osteocalcin (OCN, bottom). UV photofunctionalization enhanced the osteoblastic gene expression.
Error bars show the standard deviation. (*) and (**) represent the significance compared with each pair,
p < 0.05 and p < 0.01, respectively.

3.3. In Vivo Test

3.3.1. Histomorphometry

All the implants were successfully osseointegrated at days 10 and 28 (Figure 5a). At day 10, the
BIC ratios of the M + UV implants (55.93% ± 6.19%) were significantly higher than that of the SLA
implants (43.38% ± 3.20%, p = 0.021). However, at day 28, the BIC ratios of the M + UV implants
(64.88% ± 5.35%) were not significantly different from that of the SLA implants (59.93% ± 6.44%,
p = 0.149; Figure 5b).
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the three-dimensional BIC of the M + UV implants was significantly higher than that of the SLA 

Figure 5. (a) Representative histologic sections of the rabbit tibia at 10 and 28 days after the implant
placement. In the SLA implant, the osteoblast and organic matrix, which had not mineralized yet,
was more observable on the interface between the bone and implant compared to the M + UV implant
(red arrow head; magnification ×12.5, ×40, and ×100 from the left, hematoxylin and eosin staining).
The scale bars: 1 mm at×12.5, 200µm at×40, and 100µm at×100 magnification. (b) The bone-to-implant
contact ratio (BIC) was evaluated histologically at days 10 and 28. The M + UV implant shows a
significantly higher BIC than the SLA at day 10, but there is no significant difference at day 28. (c) The
bone area ratio (BA) evaluated histologically at 10 and 28 days. The M + UV implants show significantly
more BA than the SLA at days 10 and 28. (d) The bone-to-implant contact ratio evaluated by micro-CT
(3D BIC) at days 10 and 28. The M + UV implants show a significantly higher 3D BIC than the SLA
at day 10, but there is no significant difference at day 28. Error bars show the standard deviation.
(*) represents the significance compared with each pair, p < 0.05.

In terms of the BA, the M + UV implants were significantly higher compared to the SLA implants
(46.55%± 8.59%) at day 10 (65.09%± 10.42% vs. 46.55%± 8.59%, p = 0.042) and at day 28 (72.70%± 5.52%
vs. 61.83% ± 4.89%, p = 0.043; Figure 5c).

3.3.2. Micro-CT

The three-dimensional BIC was evaluated using micro-CT. The micro-CT analysis revealed that
the three-dimensional BIC of the M + UV implants was significantly higher than that of the SLA
implants at day 10 (88.87% ± 5.1% vs. 81.6% ± 3.28%, p = 0.046), but it was not statistically different at
day 28 (91.91% ± 1.55% vs. 87.47% ± 2.93%, p = 0.201; Figure 5d).
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4. Discussion

In this study, we found that UV photofunctionalization on a Ti screw-shaped implant with an
M + UV surface showed a higher BIC than the SLA surface at day 10, and there was no significant
difference at day 28. This was confirmed in both two-dimensional and three-dimensional measurements.
The results indicated that the UV photofunctionalization could accelerate the osseointegration process,
and achieve firm fixation between the implant and the surrounding bone earlier. These findings are
supported by other studies, where Park et al. found that after four months of healing, the UV-treated
implants in rabbits showed a higher BIC than the untreated implants. The authors observed that UV
treatment decreased both carbon impurities on the surface and water contact angles [26]. Similarly,
Aita et al. showed that the UV-treated acid-etched implants at week two had a push-in value equivalent
to the untreated acid-etched implant [18]. Pyo et al. measured the removal torque test in UV-treated
implants and showed that it was 50% higher than in untreated implants [27]. Hirota et al. retrospectively
studied and found that the use of photofunctionalization reduced the risk of early implant failure with
an odds ratio of 0.30 (p < 0.05) [28]. Soltanzadeh studied the effect of UV photofunctionalization on
immediately loaded implants in a rat model. After the placement, the implants were immediately
loaded with 0.46 N of static lateral force. The results showed that osseointegration was successful in
100% of photofunctionalized implants, but 28.6% of untreated ones. The value of the push-in test was
2.4 times higher in photofunctionalized implants [29].

Histologically, the BA was significantly higher at days 10 and 28 in the M + UV compared to
the SLA implants, meaning that the M + UV implant had a higher amount of mineralized bones
between threads of implants. Pyo et al. evaluated the osteogenic dynamics using fluorescent labeling
at four weeks after implant placement; and found that in the UV-treated implant, the interfacial areas
between the bone and implant and the areas within the threads were filled with calcein-positive tissues
compared to the untreated implants. This meant that UV photofunctionalization could lead to earlier
bone deposition [27]. Ueno et al. showed that the UV-treated acid-etched implant had a marked
bone formation in a gap healing model without cortical support [20]. Kitajima et al. measured the
implant stability quotients (ISQ) for 55 photofunctionalized implants with low and extremely low
initial stability at the time of placement and stage-two surgery. Then they calculated the ISQ increase
per month, defining the osseointegration speed index (OSI). The OSI ranged 3.9–4.7 substantially
higher than the OSIs for untreated implants reported in other literatures (0.36–2.8) [30]. Ijishima et al.
evaluated the effect of photofunctionalization on aged rats. The aged rats showed considerably lower
biological capabilities (cell attachment, proliferation, and ALP activity) than the young. However,
the enhancement of cell attachment and differentiation were observed on the photofunctionalized Ti
discs compared with untreated one. Moreover, in the femurs of aged rats, the photofunctionalized
mini-implant showed the higher push-in value than untreated one after two weeks of healing. These
findings supported that UV photofunctionalization could be also valuable in the compromised sites [31].

Generally, the surface roughness is considered as a main factor for the improvement of
osseointegration. However, in this study, UV treatment did not physically change any surface
roughness as shown in the SEM and CLSM. Rather, it induced superhydrophilicity (0◦ angle),
reduced the percentage of hydrocarbons, and increased the osteoblast proliferation, attachment, and
differentiation, as shown in the in vitro study. This indicated that the only physico-chemical changes
in the Ti surface could enhance the biological activities. In the XPS analysis, Roy et al. found that
UVC photon energy decreased carbon deposition and the amount of H2O on Ti surface, and produced
many –OH groups (TiOH) without any changes in surface topography. They explained that, through
these chemical changes, the UV photofunctionalization could create the superhydrophilicity of Ti.
The improvement of biological capabilities by UV photofunctionalization was supported by other
studies [32]. Aita et al. showed that Col and osteopontin (Opn) were more expressed in the UV-treated
discs [18]. The RT–PCR analysis performed by Zhang et al. showed that the expression of genes
encoding Col, Runx2, BMP, and Opn increased in the UV-treated surface [33]. In contrast, Att et al.
assessed the RT–PCR of genes for Opn and Ocn in bone marrow cells derived from the femur of
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eight-week-old male Sprague-Dawley rats, and found that there was no significant difference at days
10 and 20. The differences may have been caused by the kinds of cells, time points, and intensity and
wavelength of the UV generator. Further research is required to elucidate this aspect.

With regard to plaque accumulation and peri-implant disease, the implant with a smooth surface
is considered to be superior to an implant with a rough surface. Berglundh et al. observed that, at five
months after the removal of ligature, bone loss accelerated in the SLA implant but not in the polished
implant. Histologically, the size of the inflammatory lesion and the area of plaque were larger in
the SLA surface [12]. Additionally, Albouy et al. compared the turned and the roughened implant
(Ti-Unite), at six months after the ligature removal, and observed a larger amount of bone loss in the
Ti-Unite implant compared to the turned implant (1.47 mm vs. 0.3 mm). This meant that spontaneous
progression of peri-implantitis had occurred in the implant with a rough surface [17]. However, the
machined implant had a definite drawback in that it had a low BIC level, because the osteoblastic
differentiation was lower compared to the smooth surface [34,35]. Therefore, the enhancement of
osteoblastic differentiation on the Ti with an M surface by UV photofunctionalization is considered
to be inspired. Additionally, UV photofunctionalization itself could decrease plaque formation on Ti
surface. De Avila et al. found that after 16 h incubation, there were significantly lower oral bacterial
attachment on the UV-treated Ti disc compared to the untreated one [36].

The hydrophilicity of the implant surface can be induced by UV photofunctionalization [18–20,27,37]
or preservation in a storage medium [38–40]. Both methods are effective and can improve the bone
healing process and attain early osseointegration. However, the latter method has been reported to
lead to foreign deposition and little elimination of hydrocarbons on the Ti surface. Moreover, the saline
storage method is inferior to UV photofunctionalization in osteoblast spreading and adhesion [41].
Considering this point, UV treatment is considered a safer method to modify the implant surface to
make it hydrophilic. On the other hand, Att et al. mentioned that, in UV photofunctionalization,
the superhydrophilicity is not a significant factor in explaining the higher BIC in the UV-treated Ti
discs compared to the acid-etched ones. The elimination of hydrocarbon on the surface was considered
to be a significant factor [19]. The aging of the Ti is related to the contamination and accumulation of
the hydrocarbon on the Ti surface, and it can suppress cell recruitment and biologic activity [42,43].

The combination of variables such as duration, intensity, and wavelength can create various
modes of UV photofunctionalization, noting that the optimal combination is a controversial issue.
The exposure time has been used from 12 min to 48 h [44,45]. However, Aita et al. and Att et al. have
shown that, between 24 and 48 h, there was an increase in hydrophilicity and biological effects [18,19].
Additionally, treatment with UVC (λ = 240 ± 40 nm) has shown more biological improvements
compared to UVA (λ = 360 ± 40 nm). Consequently, in our experiment, to maximize the effects of UV,
the mode of UV photofunctionalization was determined as UVC treatment for 48 h.

There are still several questions regarding UV photofunctionalization. Strictly, the UV light
treatment used in this study may be called physical photo-activation, rather than functionalization,
because no chemical application to the surface, which have been shown in the previous studies,
were used for enhanced bone response [11,46]. More obvious concept of the UV surface treatment
needs to be established in the physical and chemical aspects. Amongst several factors following UV
photofunctionalization, we also still need to identify the main factors for the enhancement of biological
activity, superhydrophilicity, and removal of hydrocarbon. If they contribute to the improvement, there
is a need to understand the mechanism through which they are inter-connected. Therefore, further
studies are needed to fully appreciate the effects of UV photofunctionalization.

5. Conclusions

Within the limitations of the present study, UV photofunctionalization of a Ti dental implant
with an M surface attained an earlier osseointegration compared to an implant with an SLA surface.
The enhancement was considered to result from the superhydrophilicity, the elimination of hydrocarbon
on the surface, and the improvement of osteoblastic activities.
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