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Abstract: The authors developed a method for the automated detection and calculation of quantitative
parameters of dimples of ductile fracture on the digital images of fracture surfaces obtained at different
scales. The processing algorithm of fractographic images was proposed, which allowed high quality
recognition of the shape and size of dimples to be achieved, taking into account the morphological
features of their digital images. The developed method for identifying dimples of various physical
and morphological characteristics was tested on the VT23M alloy. The test results showed that the
method meets the quality requirements for the automated diagnostics of fracture mechanisms of
titanium alloys.
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1. Introduction

Titanium alloys are used for the protective clothing of soldiers (plates of body armor), as well
as implants, surgical instruments, internal and external prosthetics, including such critical high-tech
elements as heart valves. In addition, titanium alloys are used for the manufacture of aircrafts and
space vehicles [1–5].

Fracture patterns of metals in general and high-strength titanium alloys in particular depend on a
stage-like nature of damage accumulation during deformation. That is, macro-fracture patterns actually
depend on the stage-like nature of transition from the equilibrium to non-equilibrium accumulation of
damage, and on the random stage of fracture [6,7]. Deformation causes a plurality of pores concentrated
predominantly in the central part of the neck, which coalesce with grain conglomerates leading to the
formation of a continuous crack in the plane normal to the direction of loading. Thus, the central crack,
which grows by means of thinning and breaking connections between the pores, together with the
newly formed crack leave “traces” on the surface in the form of dimples, which are a sort of “markers”
or signs that can be used to reproduce the “history” of the material fracture [8–10].

It is known that the processes of structural damage are depicted on the stress–strain diagram
causing its nonlinearity, whereas fracture can be considered as the final stage of deformation that goes
from the micro- and meso- levels to the macrolevel [11]. These physical–mechanical links between the
levels of deformation and fracture are particularly important when analyzing the causes of unpredictable
fracture of structures and evaluating their degradation mechanisms using fractographic analysis.
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Fractographic analysis, as a separate line of research in fracture mechanics, uses physics of solid
body (the theory of dislocations, etc.), material science (the construction of correlations between fracture
parameters and the size of grains, inclusions, etc.), optic-digital methods, etc., as its tools [12–15]. Until
recently, parameter measurements of fracture surfaces were made manually or automatically, however,
measurement software was positioned by the operator, which complicated fractographic research.
A large variety of materials complicated not only the development of generalized approaches to the
morphological analysis of destroyed surfaces, but also the interpretation of the data obtained [16,17].

It should be noted that in the previous works, the authors proposed approaches that formed
the basis for the development of the method of fractographic recognition, control and calculation
of parameters of the dimples of tearing based on the use of neural networks [18–20]. In previous
work, 17 models of neural networks with various sets of hyperparameters have been developed and
investigated. Then, their accuracy and speed were investigated, and the optimal neural network model
was selected. The proposed network contained two convolution layers, two subsampling layers, and
two fully connected layers (Figure 1).

Materials 2019, 12, x FOR PEER REVIEW 2 of 13 

 

of unpredictable fracture of structures and evaluating their degradation mechanisms using 

fractographic analysis. 

Fractographic analysis, as a separate line of research in fracture mechanics, uses physics of solid 

body (the theory of dislocations, etc.), material science (the construction of correlations between 

fracture parameters and the size of grains, inclusions, etc.), optic-digital methods, etc., as its tools [12–

15]. Until recently, parameter measurements of fracture surfaces were made manually or 

automatically, however, measurement software was positioned by the operator, which complicated 

fractographic research. A large variety of materials complicated not only the development of 

generalized approaches to the morphological analysis of destroyed surfaces, but also the 

interpretation of the data obtained [16,17]. 

It should be noted that in the previous works, the authors proposed approaches that formed the 

basis for the development of the method of fractographic recognition, control and calculation of 

parameters of the dimples of tearing based on the use of neural networks [18–20]. In previous work, 

17 models of neural networks with various sets of hyperparameters have been developed and 

investigated. Then, their accuracy and speed were investigated, and the optimal neural network 

model was selected. The proposed network contained two convolution layers, two subsampling 

layers, and two fully connected layers (Figure 1). 

 

Figure 1. Architecture of the neural network used for the investigation of fractograms. 

In the developed network, the linear activation function Rectified Linear Unit (ReLU) was used. 

As a loss function, categorical cross-entropy was used. It measures the performance of a classification 

model, of which the output is a probability value between 0 and 1. As metrics, we used accuracy: the 

proportion of correct predictions with respect to the targets. During training of CNNs, we used the 

Adam optimizer. It implements an algorithm for first-order gradient-based optimization of stochastic 

objective functions, based on adaptive estimates of lower-order moments. 

For training of the neural network, we used 562,856 image fragments measuring 31 × 31 pixels. 

The test dataset consisted of 134,596 image fragments. 

The neural network classified the pixels into two categories: “dimples” and “edges”, and 

admitted the affiliation of each pixel to one of these classes. Also, we compared the results of dimples 

recognition by the proposed network with results obtained by a known algorithm to analyze the 

fractograms. It has been found that the results are very similar (more than 90% similarity), but the 

neural network reveals the necessary features more accurately than the previous method [19–21]. 

However, the question arises as to how the area of fractographic control affects the calculated 

parameters of dimples. It remains relevant to create effective computer diagnostic systems for the 

automated processing of the fractographic images obtained, preceded by a diagnostic conclusion on 

the surface condition. Therefore, the need to develop and test the approaches of automated 

fractographic analysis of material fractures and their interpretation, in our opinion, does not raise 

doubts. 

The purpose of this research is to develop and investigate the method for recognizing 

fractographic images, and find scientific approaches to the analysis of coalescence processes 

undergone by dimples of ductile tearing, taking into account their size and geometry. 

Figure 1. Architecture of the neural network used for the investigation of fractograms.

In the developed network, the linear activation function Rectified Linear Unit (ReLU) was used.
As a loss function, categorical cross-entropy was used. It measures the performance of a classification
model, of which the output is a probability value between 0 and 1. As metrics, we used accuracy: the
proportion of correct predictions with respect to the targets. During training of CNNs, we used the
Adam optimizer. It implements an algorithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order moments.

For training of the neural network, we used 562,856 image fragments measuring 31 × 31 pixels.
The test dataset consisted of 134,596 image fragments.

The neural network classified the pixels into two categories: “dimples” and “edges”, and admitted
the affiliation of each pixel to one of these classes. Also, we compared the results of dimples recognition
by the proposed network with results obtained by a known algorithm to analyze the fractograms.
It has been found that the results are very similar (more than 90% similarity), but the neural network
reveals the necessary features more accurately than the previous method [19–21].

However, the question arises as to how the area of fractographic control affects the calculated
parameters of dimples. It remains relevant to create effective computer diagnostic systems for the
automated processing of the fractographic images obtained, preceded by a diagnostic conclusion on the
surface condition. Therefore, the need to develop and test the approaches of automated fractographic
analysis of material fractures and their interpretation, in our opinion, does not raise doubts.

The purpose of this research is to develop and investigate the method for recognizing fractographic
images, and find scientific approaches to the analysis of coalescence processes undergone by dimples
of ductile tearing, taking into account their size and geometry.
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2. Methods of Macro-Analysis of Fracture Surfaces

High-strength titanium alloy VT23M was used as a research material. Specimens were loaded
with a dynamic impulse and then stretched to fracture statically. The process of mechanical testing is
described in detail in [6,7]. Investigation of the fracture surface was performed by scanning electron
microscopy using the scanning electron microscope (SEM) REM 106I.

Within the framework of the morphological analysis of fractures of specimens from the VT23M
alloy, the fracture surface was considered as a set of complementary elements, the main elements of
which are the dimples of tearing and boundaries between them [22,23]. It should be noted that such
interpretation not only provides for the physical and mechanical correctness of further analysis of the
size and shape of dimples of tearing, but allows the process of deformation and fracture of the VT23M
alloy to be considered as a multi-stage process taking place at different scale levels.

In the macroscopic view of the fracture surface of a flat specimen from the VT23M alloy, two
zones are observed: the fibrous zone (the central part of the specimen) and the zone of the cut (in
the vicinity of the lateral surfaces) indicating fracture of the VT23M alloy in the conditions of stable
crack propagation. Characteristic microphotographs demonstrate the presence of a dimple relief on
the fracture surface of the VT23M alloy at different magnifications, as shown in Figure 2a.
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Figure 2. SEM images of fracture surfaces of specimens from the VT23M alloy at various magnifications:
(a)—x3000; (b)—x1200; (c)—x800; (d)—x200; a frame on the fracture surface provides a link to the
location of the fragment of the fracture surface shown in Figure 2a.

The images presented in Figure 2a show a fragment of the fracture surface and the geometry of
dimples. The images presented in Figure 2b–d show the same surface (outlined by a frame) located at
the cut of the specimen at different magnifications (outlined by the frame). It should be noted that in
all cases these are dimples of tearing with fairly clear-cut edges and a “flat” bottom.
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Various magnifications of the fracture surface allow characteristic fracture mechanisms to be
established at various scale levels and peculiarities of the development of defects, in particular,
macro-fracture of specimens at the supercritical stage, which immediately precedes the moment of
fracture [24,25].

The investigated fracture surface has a dimple structure formed as a result of coalescence of a set
of micropores. The localization and identification of dimples in the image show that the appearance of
pores was accompanied by plastic deformation of the intersections between them [18,19]. However,
they are thick enough to identify each individual dimple. The crests of tearing between the pores
have a matted uneven surface, which differs by the color intensity at different parts of the fracture.
The fracture surface is uneven; smaller dimples are located on the lateral surfaces of large dimples,
which are marked by crests of tearing [26,27].

On the basis of the previously proposed algorithm for identifying and investigating dimples,
the parameters of dimples [28] found on the fracture surface were evaluated, and for each of them,
the equivalent diameter (di), maximal length, visual depth, inclination and area were calculated.
The equivalent diameter of the dimple is the diameter of the circle with an area equal to the recognized
area of the dimple.

The nature of the surface damage accumulation was determined by the parameters of the dimples
of tearing located on it [8,29]. It is established empirically that the dimple shape coefficient is informative
for their classification. In order to detect changes in the shape of dimples, the roundness coefficient Kc

was used, which is equal to the percentage of dimple pixels that fall into a circle with an equivalent
diameter di, the center of which is aligned with the center of mass of dimple Ci(xci, yci) [18–20]:

Kc =

∑ fi
m=1 g(

→
rm, di)

fi
· 100% (1)

where g(
→
rm, Di) is the indicative function that shows whether the m-th pixel falls into the circle with

equivalent diameter di;

g(
→
rm, di) =

 1, at |
→
rm| ≤ di/2

0, at |
→
rm| > di/2

(2)

where
→
rm is the radius vector directed from the center of the circle Ci(xci, yci) to the m-th pixel of the

object with coordinates (xm, ym).

3. Results of the Analysis of the Number of Dimples of Tearing

In this paper, each image of the fracture surface was considered as a complexly organized system,
which is characterized by a significant group and individual variations. This approach, in our opinion,
allows us to adequately assess its geometric features, namely, to combine the common diagnostic
features with stochasticity both in the structure of the stage and in the structure of the entire image,
and to develop reliable methods for determining invariant informational features [28,29].

The input data for the analysis of the fractogram geometry were the discrete values of the diameters
of dimples of ductile tearing within the area analyzed. They are fully determined by the zonal-spatial
structure of the diameters of dimples of ductile tearing obtained by means of image segmentation
methods. Let us consider the morphology of dimples typical of various magnifications:

х3000: Dimples measuring 2–6 µm were found. The predominant group was represented by
dimples ≤2 µm. Such low dispersion of dimensions is inherent in this image, since dimples were
analyzed on a very small area, not reached by large dimples.

х1200: Dimples measuring 2–10 µm were found. The predominant group was represented by
dimples ≤4 µm. An increase in dispersion was due to an expansion of the analyzed area and the correct
recognition of the edges of dimples.
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х800: Dimples measuring 2–12 µm were found. The predominant group was represented by
dimples ≤2 µm. Such high dispersion of dimensions is inherent in this image, since dimples were
analyzed on a large area. The whole range of dimples inherent in the fracture surface of this specimen
was present on it. In terms of analysis, this image was the most informative.

х200: Dimples measuring 2–6 µm were found. The predominant group was represented by
dimples ≤2 µm. A decrease in dispersion is due to the fact that large dimples with edges decorated
with smaller “micro-dimples” were not recognized.

The choice of an “optimal” increase in the surface analyzed had to provide for the detection of the
entire range of dimples and allow their size to be estimated. The obtained distribution histograms of
small dimples were almost non-sensitive to changes in the scale of the surface area analyzed.

It was found that the size distribution of dimples had an asymmetric view. This made it difficult
to use mid-sized dimples to assess the most dangerous fracture mechanisms. The size of small dimples
in the fracture is related to the size of grains and non-metallic inclusions, while large dimples, which
had a more complex shape, resulted from the coalescence of pores. The results obtained were typical
of high-strength materials characterized by a significant number of small dimples and only a few large
dimples [30,31]. Such distribution of dimples evidences a combination of high strength and sufficient
plasticity. However, the lack of large dimples in Figure 3d raises doubts as to the correctness of their
recognition. It is clear that an increase in the dimple size reduces the likelihood of its falling into the
fractogram with a large magnification, therefore, large dimples did not fall into the image, as shown in
Figure 3a–c.
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Figure 3. Specific distribution of dimensions of dimples found on the fracture surface of specimens
from the VT23M alloy with the following magnifications: (a) x3000; (b) x1200; (c) x800; (d) x200.

The algorithm used allows the distribution of intensity within the analyzed area to be taken into
account and the geometry of individual dimples to be estimated, as shown in Figure 4a–c. In the
context of fractographic control, using which the fracture of the analyzed VT23M alloy was considered
as a set of two main components (dimples and their boundaries), the non-recognition of large dimples
was found on fracture surfaces obtained at small magnifications, as shown in Figure 4d.
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Figure 4. Histograms of equivalent diameters of dimples found on the fracture surface of specimens
from the VT23M alloy with the following magnifications: (a) x3000; (b) x1200; (c) x800; (d) x200.

To evaluate the convergence of the results obtained for one plot at different magnifications, the
recognized images of fractograms were overlapped, as shown in Figure 5. Figure 5a presents the
superimposed results of detecting the edges of dimples with magnifications x1200 and x800, and
Figure 5b presents the results obtained with magnifications x800 and x200. Approximately in the center
of the image, a dimple is painted, which is used as a marker that allows comparison of the two images.
A high degree of coincidence of the edges of dimples obtained with different magnifications was noted.
A high degree of coincidence typical of the boundaries of recognized dimples was revealed, indicating
the correctness of the size estimation of single dimples and their conglomerates, which is interpreted
as isomorphism of the shape and size within a cyclic random process.

An in-depth analysis of fractograms and obtained results allowed us to schematize the analyzed
dimples of tearing, as shown in Figure 6. We constructed a 2-D scheme of the plot of the analyzed
fracture surface, which contains all types of dimples: A—individual dimples (small- and medium-sized);
B—large dimples; C + D—large dimples, the surface of which is decorated with small dimples. These
small dimples are located mainly on the walls of large dimples. It should be emphasized that the
shape of these dimples is predominantly an irregular geometric one orientated towards the shift of
the material. The geometry of these dimples is a source of information about the gradient of plastic
deformations in the local macrodimple [32,33].
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and medium-sized); B—large dimples; C + D—large dimples (C), the surface of which is decorated
with small dimples (D).

Given that the fracture surfaces are, in a way, “sewn” from a sequence of dimples of different
sizes, which have typical segments, it was found that dimples of type A and B were recognized in
full, dimples of type D were recognized completely, and dimples of type C were not recognized,
because their boundaries were not recognized with magnification x200. As a result, these dimples were
referred to as types A and B. Therefore, the approach used does not allow physically correct results
to be obtained for dimples of type C + D, since it is focused on the recognition of individual objects.
However, when used as the initial stage of the analysis, one can determine the smallest elements of the
dimple structure and estimate its geometric dimensions.

The disadvantages of the proposed approach can be eliminated by using the brightness analysis of
the local areas identified by the operator. This will provide for an additional in-depth analysis, which
will make it possible to determine the contours of large dimples (C). All the small dimples that fell into
these contours were considered as dimples of type D.

4. Identification of Large Dimples Decorated with Microdimples

An in-depth analysis consisted in detecting large dimples decorated with small dimples within
the closed contour of a microdimple. At the physical level, it was necessary to identify a set of features
and parameters that indicate the belonging of dimples to the C + D type.

To identify dimples, we used a previously developed and tested algorithm based on the convolutional
neural network [19]. Then, we calculated the quantitative parameters of the resulting set of dimples [20]:
The area, equivalent diameter, visual depth, slope, and number.

Surface fractograms obtained with different magnifications were studied. The peculiarity of the
image obtained with a small magnification is that it contains large dimples, on the walls and the
bottom of which there are many small dimples. If one focuses only on small dimples, the information
about complex large dimple-like formations will be lost. Therefore, a slightly different approach
was used for the analysis of such images (Figure 7). Initially, regions of large complex dimples were
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identified, and the distribution of small dimples within these large formations and beyond them were
investigated separately.Materials 2019, 12, x FOR PEER REVIEW 8 of 13 
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To investigate the quantitative composition of large dimples (C + D), a crossover Gaussian filter
with a large kernel size was first applied to the fractogram image i0 (Figure 2a). As a result, an image
was obtained that contained the topology of large dimples. Next, the thresholds were applied to it,
resulting in a binary image mask im, which indicates places of the fractogram, on which large dimples
are located. On the basis of this mask, image iin was formed, which represents the intersection of the
initial fractogram with a mask and contains large dimples (Figure 8b):

iin = i0 ∩ im. (3)

To estimate the parameters of small dimples, the calculations were repeated for the image outside
the previously found large dimples. To do this, we highlighted image iout as an intersection of
fractogram i0 with an inverted mask (im)

iout = i0 ∩ im. (4)

Then, using the previously described algorithm [15], the quantitative parameters of the fractogram
dimples located within the mask were investigated. According to the results of identifying dimples
of type C + D, it is noticeable that the defects identified spatially correspond to the sections of the
fractogram which can be classified by expert evaluation as large dimples decorated with microdimples.
Within these areas, the number of micro-dimples was calculated, and their geometric parameters
were determined.

Physical correctness of visualization of large dimples should be emphasized separately, because it
allowed the quantitative characteristics of the dimples to be analyzed in detail. A good agreement
between individual dimple parameters was revealed. However, the smallest increases (in our case)
allow large surface areas to be covered and the geometry of large dimples to be taken into account, as
shown in Figure 9a,b.
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Figure 8. Fractogram of the fracture surface (Figure 2d) of specimens from alloy VT23M: Fractogram
sections highlighted by a mask (a); image i_in with large dimples, inside of which there are small
dimples (b); fragment of the obtained image with dimples recognized inside large dimples (c); image
i_out with the surface outside large dimples (d).

The curves shown in Figure 9b represent the dependence of the Kc dimple parameter on its
equivalent diameter. The resulting set of data for each image was approximated linearly by the least
squares method. The angle of inclination of the obtained straight line to the vertical was determined.
It should be emphasized that this parameter has a physical meaning: An increase in the parameter
value indicates an increase in the integral approximation of the dimple shape of the analyzed set to the
rounded one.

It was found that curves are located at an angle of 74◦ to the vertical, that is, the dimples are
sufficiently rounded (Figure 9b). Further propagation and coalescence of dimples indicates their
tendency to acquire a more elongated shape with an increase in size: for dimples larger than 10 µm,
the shape coefficient acquires the fixed value of 55–60, indicating the effect of shear processes.

The rounded dimples, in our case, up to 6 µm, were formed in areas of structural heterogeneity, in
particular, in the vicinity of inclusions, which was accompanied by the accumulation of local strains
and fracture of the material. The consolidation of dimples and the distortion of their shape is primarily
due to the transition to a volumetric stressed state, which causes the growth and coalescence of defects
with the formation of large dimples [25,34]. It was believed that a change in the roundness coefficient
Kc indicates the localization of the dimple deformation at the microlevel due to the propagation of a
crack formed as a result of coalescence of dimples (Figure 9a). Coefficient Kc indicates the number of
pixels entering the circle, the center of which is located in the center of mass of a circular concentrator
with an equivalent diameter (Figure 9).
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Since the cause of the formation of large dimples was not large inclusions, their presence in a
fracture combined with thin connections between the inclusions indicates a significant influence of
plastic deformations in the coalescence of adjacent pores after ductile fracture [14,25]. In general, after
the application of the proposed approach, arrays of dimples >30 µm were found. These dimples
were outside microdimples (microdimples are located in the larger 30 µm dimples) formed by the
mechanisms of shear and separation, the shape of which is far from rounded [26,27,34].

These dimples caused a large scatter of the Kc parameter, the value of which varies from 20 to 50.
The practical value of the data obtained is that the use of the mask to define the boundaries of

large dimples has allowed to deepen the analysis of the fracture morphology of the titanium alloy
VT23M, to reduce the influence of the scale factor for the analysis of the fractographic image, to ensure
the physical and mechanical correctness of the results obtained.

5. Conclusions

This article is part of a series of publications on the study of fractographic images at various scale
levels (macro, meso, micro) using the concept of physical mesomechanics. An approach is proposed
and tested for the identification of informative features of dimples of ductile tearing, which in the
case of individual dimples is invariant to the scale of measurement. At the core of the method for
recognizing dimples is the use of the convolutional neural network. The offered approach allows
the quantitative characteristics of objects of recognition to be obtained, which makes it possible to
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allocate quantitative classification signs and provide for their physical–mechanical and fractographic
interpretation. Using fractograms with different magnifications allowed the morphological features of
different types of dimples to be understood and described and their classification to be introduced, in
particular: A—individual dimples (small and medium); B—large dimples; C + D—large dimples, the
surface of which is decorated with small dimples.

The algorithm of analysis of fractographic images is proposed, taking into account the classification
features of dimples of ductile tearing. Quantitative analysis of the dimple parameters was performed
based on the calculation of their geometric parameters. The method for analyzing individual dimples
A, B and large dimples C decorated with small dimples D is developed.

The proposed approaches are relevant for fractodiagnostics using a new generation of scanning
microscopes with high resolution and the ability to scan extended areas of fracture surfaces. Even
partial approbation of the proposed methods of analysis revealed new mechanisms of the localized
plastic flow that affect the morphological characteristics of dimples of ductile tearing.
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