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Abstract: In this study, carbon nanotube-reinforced silver composites (CNT/Ag) were prepared by
the powder metallurgy process via spark plasma sintering (SPS) and hot pressing sintering (HP) with
composite powders through an improved electroless plating method assisted by ultrasonic spray
atomization. The dispersion of CNTs was effectively improved by ultrasonic spray atomization, and
uniform silver layers were deposited on the surface of CNTs by electroless deposition. The property
testing results showed significant improvements of the electrical conductivity, hardness, and tensile
strength in the samples prepared by SPS, as compared to their HP sintered counterparts. When the
volume fraction of CNTs reached 2.5%, the tensile strength reached a maximum value of 221 MPa,
which was more than twice that of the pure silver samples. The structural analysis indicated different
degrees of CNT agglomeration and matrix mean grain sizes in the composites prepared by SPS and
HP, which are responsible for the differences in properties.

Keywords: carbon nanotubes; silver matrix composites; electroless deposition; spark plasma sintering;
hot pressing

1. Introduction

Since carbon nanotubes (CNTs) were discovered, a significant amount of research has been
conducted to exploit their properties [1,2]. Theoretical and experimental studies have shown that
these materials possess great mechanical properties, excellent toughness, and superior physical
properties [3–6]. There are many kinds of reinforcing phases of silver matrix composites, and the
properties of the composites primarily depend on the properties, content, distribution, and dispersion
of the reinforcing phase [7]. CNT silver matrix composites have many special properties that neither
pure silver nor silver alloys have. CNTs have many advantages, including a stable size, high specific
strength and modulus, easy machining, and good thermal conductivity, among others. They are
widely used in many fields, such as field launch, medical treatment, power transmission, printing, and
soldering [8,9]. However, the production of CNT-Ag composites is severely limited due to both the
dispersion of CNTs in the silver matrix and the interfacial binding force between CNTs and silver.

To enhance the interfacial bonding, CNT-metal powders are usually prepared via physical
evaporation, magnetron sputtering, and electroless plating. Of these methods, electroless plating
is particularly intriguing because of its low cost, inherent selectivity, and simplicity [10–12]. In this
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study, silver was deposited on the surface of CNTs by electroless plating assisted by ultrasonic spray
atomization (EPUSA) to improve the interfacial bonding between the CNTs and the silver matrix.
The coated layers of silver can then serve as a medium layer for adhesion improvement and load
transferring [13,14].

For this paper, the effects of EPUSA on the dispersion of CNTs and the properties of composites
sintered by SPS and HP were studied. The improved electroless plating method that we adopted allows
for the realization of the process on a micrometer scale. This achieves the preparation of a layer of
uniform silver nanoparticles on the surface of the CNTs. To obtain a higher uniformity of CNT deposits
on the Ag matrix, the produced CNTs coated with Ag nanoparticles (Ag@CNTs) were mixed with
silver powders via solution ball milling (SBM) to obtain composite powders (Ag@CNTs /Ag). Then the
Ag@CNTs/Ag composites were prepared by SPS and HP. In both cases, a cylindrical graphite die is
filled with a powder bed. A uniaxial macroscopic compaction pressure is then applied via graphite
punches to the constrained powder bed, which is simultaneously exposed to a high temperature. The
high-temperature source is the primary difference between HP and SPS. In HP, a high temperature
is obtained by resistance heating elements surrounding the die. In the case of SPS, a pulsed direct
current is sent to the powder bed. As a novel sintering technique, the SPS technique can implement
extremely fast cooling rates, and is characterized by a short holding time at a relatively lower sintering
temperature, which might be appropriate for the fabrication of the desired composites in the present
study. In this paper, the influence of the sintering mode on the distribution of CNTs is discussed. The
effect of the distribution state of CNTs on the enhancement of carbon nanotube-silver composites was
investigated and discussed from the aspects of both electrical and mechanical properties.

2. Experimental Section

Figure 1 is an experimental flow chart of the synthesis progress of CNT-Ag composites. First,
a layer of silver nanoparticles was deposited onto the pretreated CNT surfaces by ultrasonic spray
atomization. The composite powders of the modified CNTs and silver powder were then obtained by
ball milling. Finally, the composite materials were prepared by sintering the composite powders via
HP and SPS.
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Figure 1. Experimental flow chart for synthesis of CNTs-Ag composites. (SBM: solution ball milling).

2.1. Synthesis of Ag@CNTs

The silver deposited on the CNT surfaces was obtained by electroless plating assisted by ultrasonic
spray atomization (EPUSA). Commercial Ag powder (purity ≥ 99%) and multi-walled CNTs (inner
diameters of 5–12 nm, outer diameters of 20–50 nm, lengths of 10–20µm, purity≥ 95 wt.%) were acquired
from Time Nano Co., Ltd. of China (Chengdu, China). Pretreatments including oxidation, sensitization,
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and activation were performed before the electroless plating, as described by Zhao et al. [15]. After
carrying out the pretreatment processes, the CNTs were dispersed in a 200 mL hydrazine hydrate
solution by mechanical and ultrasound agitation to get the suspension Solution B. Solutions A (0.006 M
AgNO3 and 0.115 M NH3·H2O) and B were prepared at a 1:1 (volume) ratio. In the EPUSA process,
Solutions A and B were respectively atomized to droplets with ultrasonic atomizers, and the droplets
were then delivered to a three-mouth flask for the upcoming solution mixture and electroless plating
for 5 min at 293 K. The gained precipitates were dried at 323 K in a vacuum drying oven to obtain the
Ag@CNTs powders. Further details on the preparation of the Ag@CNTs powders can be found in our
previous reports [13,14].

2.2. Spark Plasma Sintering and Hot Pressing of Composites

Two kinds of composite powders of CNTs/Ag and Ag@CNTs /Ag were produced by SBM. In the
process, different contents Ag@CNTs were mixed with Ag powders, put into a planetary ball mill using
pure ethanol as the liquid medium, and then milled for 2 h under an air atmosphere condition. The
rotation speed was 300 rpm in a one-way manner, and the ball to powder ratio was 10:1. After filtering
and drying, a series of flake alloy powders with different volume fractions of CNTs was obtained. The
mixed powders were then dried at 333 K for 12 h in a vacuum oven. Afterwards, the mixed powders
were put into a cylindrical graphite die with an inner diameter of 20 mm, and were sintered by SPS
(SPS-330, Fuji Radio Corp., Chiryu City, Japan) and HP ((HIGH-MULTI-5000, Fuji Radio Corp., Chiryu
City, Japan). SPS sintering was conducted at 973 K with a pressure of 50 MPa in a vacuum condition
for 5 min, and the heating rate was 100 K/min. The sintering temperature by HP was the same as that
by SPS, and had a heating rate of 20 K /min and was maintained at 973 K for 30 min under the same
conditions as SPS.

2.3. Characterization

The samples were characterized with a metalloscope (Kingsalee 9-21, Carl Zeiss Corp., Jena,
Germany), scanning electron microscopy (SEM, FEI NovaNano-450, FEI Corp., Hillsboro, OR, USA),
transmission electron microscopy (TEM, Tecnai G2 TF30 S-Twin, FEI Corp., Hillsboro, OR, USA), and
Raman spectroscopy (LabRAM HR Evolution, HORIBA JOBIN YVON Corp., Kyoto, Japan). Electrical
conductivities were measured with an eddy current conductivity meter (Sigma2008B, Xiamen Tianyan
Instrument Co., Ltd., Xiamen, China), and the values of Vickers hardness were measured using a micro
hardness tester (HVST-1000Z, Shanghai Research Runguang Technology Co., Ltd., Shanghai, China)
with a load of 0.98 N for 15 s, and the measurement was carried out 30 times for each sample.

3. Results and Discussion

3.1. Microstructure of Ag@CNTs

To demonstrate the dispersion improvement of CNTs via ultrasonic spray or EPUSA, CNTs were
put into deionized water and then ultrasonic spray was applied. Silicon substrates were used to collect
the droplets for 2 min and 5 min, respectively and then dried for SEM observation. The dispersion of
original CNTs is presented in Figure 2a and the dispersion of ultrasonic-spayed CNTs was effectively
improved as shown in Figure 2b,c, as a result of the ultrasonic agitation and the limited volume of
each droplet. The good dispersion will be maintained throughout the EPUSA reaction process. The
excellent dispersion of CNTs is an important basis for the uniform nano silver coating deposited on
their surfaces. Additionally, the uniform nano silver coating deposited on CNTs can prevent the
agglomeration of CNTs in the reaction process. To obtain uniform and continuous silver coating, a
reaction time of 5 minutes was used in this study. From the microstructures displayed in Figure 2d,e,
it can be seen that the silver metal was deposited on the CNT surfaces in a coated type morphology.
The Ag@CNTs composite powders are relatively decentralized, as can be seen in Figure 2d, which is
beneficial for solving the problem of the distribution of CNTs in the Ag matrix via the SBM process.



Materials 2019, 12, 1949 4 of 13

Materials 2019, 12, x FOR PEER REVIEW 4 of 13 

 

2d, which is beneficial for solving the problem of the distribution of CNTs in the Ag matrix via the 

SBM process.  

 

Figure 2. Effects of EPUSA on the dispersion of CNTs, (a) the CNTs before EPUSA; (b) CNTs of 2 min 

with EPUSA; (c) CNTs of 5 min with EPUSA; (d) TEM image of Ag@CNTs composites prepared by 

EPUSA and (e) TEM image of Ag@CNTs. 

3.2. Microstructure of the Powders and Composites 

Figure 3a reveals that some CNT agglomerations exist on the silver powders. The CNT 

agglomerations have not been dispersed under the impact of the milling balls during ball milling 

progress. Figure 3b–d show the surface morphologies after SBM of the Ag@CNTs /Ag composite 

powders with CNT contents of 1 vol.%, 2.5 vol.%, and 5 vol.%, respectively. It can be clearly seen 

from Figure 3b,c that the CNTs coated with Ag are uniformly dispersed in the silver matrix without 

agglomeration, and that the Ag@CNTs exist in an embedded form. Furthermore, by increasing the 

content of Ag@CNTs, the CNT volume content was increased; as can be seen in Figure 3d, when 

CNTs reached up to 5 vol.%, a certain amount of agglomerates appeared in the silver matrix. In our 

previous work, it was found that CNT aggregates still exist in the form of aggregates after sintering, 

and these aggregates indeed reduce the properties of matrix composites. Therefore, Ag@CNTs 

obtained by EPUSA was used in the later research to explore the influence of the sintering mode on 

the composite properties of materials.  

Figure 2. Effects of EPUSA on the dispersion of CNTs, (a) the CNTs before EPUSA; (b) CNTs of 2 min
with EPUSA; (c) CNTs of 5 min with EPUSA; (d) TEM image of Ag@CNTs composites prepared by
EPUSA and (e) TEM image of Ag@CNTs.

3.2. Microstructure of the Powders and Composites

Figure 3a reveals that some CNT agglomerations exist on the silver powders. The CNT
agglomerations have not been dispersed under the impact of the milling balls during ball milling
progress. Figure 3b–d show the surface morphologies after SBM of the Ag@CNTs /Ag composite
powders with CNT contents of 1 vol.%, 2.5 vol.%, and 5 vol.%, respectively. It can be clearly seen
from Figure 3b,c that the CNTs coated with Ag are uniformly dispersed in the silver matrix without
agglomeration, and that the Ag@CNTs exist in an embedded form. Furthermore, by increasing the
content of Ag@CNTs, the CNT volume content was increased; as can be seen in Figure 3d, when CNTs
reached up to 5 vol.%, a certain amount of agglomerates appeared in the silver matrix. In our previous
work, it was found that CNT aggregates still exist in the form of aggregates after sintering, and these
aggregates indeed reduce the properties of matrix composites. Therefore, Ag@CNTs obtained by
EPUSA was used in the later research to explore the influence of the sintering mode on the composite
properties of materials.

The structural changes of CNTs after sintering were detected by Raman spectra, which are
presented in Figure 4. Two features in the first-order Raman spectra are a G-band at 1570–1580 cm−1,
indicating two-dimensional graphitic ordering of nested graphene layers of McCants, and a D-band at
1340–1350 cm−1, which is highly responsive to the non-planar atomic distortions, amorphous carbon,
CNT curvature, and other carbon impurities. It can be seen from the results that the intensity ratio
of the D to G modes basically did not change after sintering, indicating that the structural integrity
of the CNTs was well preserved. Slightly different from the case of composite powders after SBM,
the G-band of CNTS in the composite material slightly shifted to a higher wavenumber, and such a
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peak shift has been attributed to the structural change of CNTs during processing [16,17], the bonding
condition, and even the infiltration of metal atoms in CNTs [18,19].Materials 2019, 12, x FOR PEER REVIEW 5 of 13 
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Figure 4. Raman spectra of: composite powder and composite material of HP and SPS.

Figure 5 presents the metallographic images of the composite material with a CNT content of
2.5 vol.% respectively prepared by HP and SPS. Silver grain sizes were estimated by averaging the
length and width of at least 200 grains in the metallographic observation. The particle size distributions
are shown in Figure 5e,f. The average particle size increased from 5.22 µm to 7.62 µm, exhibiting an
increase of about 45.9%. Moreover, the particle size range of the composite materials obtained by SPS
is mostly distributed in the small particle size range, and the structure is even. It is generally believed
that grain refinement will contribute to strengthening and toughening of the materials [20].
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Figure 5. Metallographic observations and statistical charts of the composites: (a,c,e) for SPS, (b,d,f)
for HP.

Figure 6 displays the SEM images of the 2.5 vol.% Ag@CNTs/Ag materials respectively prepared
by SPS and HP. As can be seen from Figure 6a–c, there is a large number of CNT aggregates in the
sample prepared by HP. The presence of these aggregates obviously reduces the performance of the
sample. Figure 6d shows that there are no obvious aggregates in the sample prepared with SPS, and
the CNTs are relatively well dispersed at the grain boundary of the Ag matrix. The enlarged images in
Figure 6e,f clearly show that the CNTs are dispersed separately in the matrix.

Figure 7 presents the TEM images of the microstructures of the Ag@CNTs/Ag composites. It
can be seen from Figure 7a that silver exists around the CNTs, including at the interface of the CNTs
and the Ag matrix. This is because the silver deposited on the surface of the CNTs has diffused into
the silver matrix during the sintering process. Some of the silver has spread at the interface of the
CNTs and the silver matrix, which improved the interface bonding between them. This is one of the
important reasons for improving the mechanical properties of the samples sintered by SPS. However,
it can be seen in Figure 7b that there is a large amount of agglomerated CNTs at the grain boundary,
which is also consistent with the result of SEM in the front. The reason for this is that the grains grew
with the increase of the heat preservation time during HP, resulting in grain boundary migration and
CNT agglomeration. This is also a key factor that led to the poor mechanical properties of the sample
sintered by HP. In our previous work, we have found that there is an interface zone between the Ag
matrix and the CNT reinforcement that has a thickness of about 2–4 nm. Moreover, the amorphous
layer of CNTs exhibits good wettability with the Ag matrix. The Ag matrix and Ag nanoparticles are in
parallel, and coherent interfaces are formed through the (111) plane.
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3.3. Mechanical Properties of the Composites

Figure 8 shows the electrical conductivity of the composites with different CNT content. Compared
with the hot-pressing sintering process (HP), the conductivity of the CNT-Ag composite prepared by
spark plasma sintering (SPS) ranges from 62.25 to 61.62 MS/m, with no significant decrease (in Figure 8).
As a reference, the standard conductivity of sterling silver is 63.01 MS/m. The difference in the electrical
conductivity of the composites at the same CNT volume percentage using different sintering methods
can be explained as follows. First, when the SPS sintering method is used, the Ag@CNTs are evenly
distributed on the grain boundary, and form a network that contributes to the phase continuity of CNTs
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and provides an interconnected electrical path for the reduction of resistivity [21]. Second, when the
HP sintering method is used, the formation of a large number of Ag-CNT aggregates not only hinders
the densification of samples, but also becomes the source of defects, which leads to the reduction of
the conductivity of the composites. Moreover, the silver nanoparticles deposited on the surface of
Ag@CNTs play an important role in reducing the resistivity by filling and connecting the empty areas
of the silver matrix. On the other hand, electron scattering at the strong interface that formed between
the Ag-CNTs and the Ag substrate is also important to the electronic conductivity. The negative effect
on electron transport is offset by the low boundary resistance combined with the strong interface [22].
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Furthermore, with increasing CNTs, the conductivity of composites exhibits a gradually decreasing
trend. This is because the electron scattering of CNTs at a high volume percentage will decrease the
electrical conductivity. The high surface area of the CNTs results in a larger volume of the interface
between the CNT-Ag composite, leading to greater scattering in the electron transfer process, and thus
increasing the resistivity of the composites [9].

Figure 9 shows the hardness of the composites. A significant enhancement in hardness is observed
when CNTs are incorporated into the Ag matrix. The hardness values increase almost linearly with
the CNTs content. When the volume fraction of CNTs reached 5%, the hardness values of the two
series of composites are 74.83 and 92.05, respectively, which is about 69.11% and 66.73% more than
that of the pure silver sample. This is mainly because CNTs have a higher stiffness and strength than
does the Ag matrix, and the uniform dispersion of CNTs in the collective can effectively improve
the mechanical properties. However, at the same volume percentages of CNTs in the two series of
composites, the significant difference in the hardness of the composites may be explained as follows.
First, CNTs mostly exist as aggregates in composites prepared by the HP process. The agglomeration
of CNTs results in the reduction of the compactness of the composites, which leads to the reduction of
hardness. Second, the improved interfacial strength of Ag@CNTs and the embedding distribution can
inhibit the matrix deformation. The uniform dispersion of Ag@CNTs within grain boundaries can
also inhibit nucleation and motion of dislocation to a greater extent, leading to the improvement of
mechanical properties [23]. The results demonstrated that the significant increase in hardness was
derived from the uniform distribution of Ag@CNTs in the Ag matrix, and the interface strength of the
CNT-Ag interface. Therefore, based on these results, when the uniformly distributed CNTs in the Ag
matrix share the external loads, it can be expected that the mechanical properties of the Ag matrix
enhanced by CNTs will be improved.
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Figure 9. Hardness of the CNTs@Ag/Ag composites prepared via SPS and HP.

The engineering stress-strain curves of the CNTs@Ag/Ag composites are presented in Figure 10.
The loading direction is parallel to the compaction direction of the samples. The tensile strength of the
composite material with a volume fraction of 2.5% is 220 MPa, about twice that of pure silver sintered
by SPS. However, in 5 vol.% Ag@CNTs/Ag composites, the tensile strength decreases to 150 MPa,
which is only about 1.3 times that of pure silver. In the tensile strength test, when the volume fraction
of CNTs increased to more than 2.5%, the accumulation of CNTs in the silver matrix reduced the
tensile property and enhanced the crack expansion. The results also show that the elongation of the
composites decreased when the volume fraction of CNTs increased to 5%. The elongation of pure silver
is about 48%, while the content of 5 vol.% CNTs decreased this to 35%. When the contents of CNTs
were the same, the tensile strength of the composites prepared by SPS was much higher than that of the
composites prepared by HP. This can be explained by the following factors. First, the strengthening
mechanism of CNT reinforcement is believed to be related to the unique structural characteristics
and the excellent mechanical properties of CNTs, as well as the good bonding interfaces between the
CNTs and the Ag matrix. Additionally, compared with graphite, CNTs have high aspect ratios and a
large specific surface area, and are therefore expected to have more of an impact on restraining the
dislocation motion and propagation during tensile testing [23]. Finally, the CNT clusters generated a
large number of pores, which led to crack propagation during tensile testing. More specific data can be
viewed in Table 1.Materials 2019, 12, x FOR PEER REVIEW 10 of 13 
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Table 1. Relative density, electrical conductivity and mechanical properties of the composites with
different CNTs contents.

Sample
Relative
Density

(%)

Hardness
(HV)

Electrical
Conductivity

(MS/m)

Ultimate
Strength

(MPa)

Yield
Strength

(MPa)

Elongation
(%)

SPS (vol.%)

0 98.93 55 62.25 114 65 38.7
1 98.13 65 61.75 218 112 39.8

2.5 97.81 73 61.70 221 121 41.6
5 96.17 92 61.62 116 68 32.1

HP (vol.%)

0 97.96 44 61.57 113 62 41.5
1 96.74 54 61.29 156 81 37.8

2.5 96.65 69 61.16 173 89 37.7
5 95.51 75 60.86 122 72 38.4

Figure 11 shows the surface fracture morphologies of the composite materials prepared by SPS
after tensile testing. Figure 11b displays the surface morphology of the 2.5 vol.% Ag@CNTs/Ag
composite prepared by SPS. Compared with the 1 vol.% Ag@CNTs/Ag composite shown in Figure 11a,
Figure 11b exhibits a larger dimple and a more uniform dimple size. The larger dimple indicates that
the material absorbs more energy in the process of ductile fracture and has better plastic toughness.
When the volume fraction of CNTs reaches 5%, the fracture surface of the composite material has large
and obvious cracks, as shown in Figure 11c. It can be seen from Figure 11 that the distribution of
CNTs can be determined by the fracture morphology of the composite. CNTs with volume fractions
of 1% and 2.5% were uniformly dispersed in the matrix. As the CNTs were dispersed, the material
obtained good mechanical properties. When the content of CNTs reached 5 vol.%, there were many
CNT aggregates around the dimples, which resulted in many of pores. During the tensile test, the pores
are likely to cause crack growth, thus the strength of the composite material decreases significantly.
Figure 11d is the fracture morphology of the composite material with a CNT content of 2.5 vol.%
prepared by HP, from which it is evident that the CNTs mostly exist in the form of CNT clusters. This
will further affect the mechanical properties of the composites.
Materials 2019, 12, x FOR PEER REVIEW 11 of 13 

 

 

Figure 11. Fracture surface morphologies of the CNTs@Ag/Ag composites with different contents of 

CNTs by SPS and HP: (a) 1 vol.% (SPS), (b) 2.5 vol.% (SPS), (c) 5 vol.% (SPS), (d) 2.5 vol.% (HP). 

3.4. Possible Strengthening Mechanisms of CNT@Ag/Ag Composites 

The composites prepared by SPS can obtain finer grains under the condition of rapid sintering. 

In addition, the CNTs in the composite can maintain the characteristics of a complete structure, high 

strength, and high modulus in the process of rapid sintering. The CNTs can also effectively transfer 

the applied load from the matrix to the CNTs through the interface in the process of loading, and 

improve the strength of the composite due to the excellent properties of CNTs. CNTs can also inhibit 

the growth of grains and produce grain refinement. Therefore, the two main strengthening 

mechanisms of load transfer and grain refinement are proposed in this study. 

3.4.1. Strengthening by Grain Refinement 

The strengthening effect of grain refinement can be explained by the Hall-Petch relationship, 

and the increase of strength can be calculated through the following equation [24]:  

∆σ�� = K(D�
��.� − D�

��.�) (1)

where ∆σ�� is the strength increment brought by grain refinement, K = 0.15 MPa·m0.5 for Ag, Dc is 

the average grain sizes of the CNTs@Ag/Ag composite, and Dm is the average grain sizes of reference 

pure Ag. After calculation, the value of ∆σ�� is 11.4 MPa. 

3.4.2. Strengthening by Load-Transfer Mechanism 

The load-transfer mechanism can be estimated using a shear-lag model developed in a previous 

study [25].  

σ��� = σ� [V�
������

�
+ V�]  (2)

S��� = Scos�θ + (1 −
4

3π
)(1 +

1

S
)sin�θ (3)

where σ���  represents the tensile strengthen of the composite, σ�  represents the tensile 

strengthening of the Ag matrix (65 MPa), Vf is the volume fraction of the CNTs (2.5 vol.%), Seff is the 

effective aspect ratio of the reinforcements, � is the misorientation angle between the longitudinal 

axis of the CNTs and the loading axis of the tensile test, and S is the aspect ratio of the CNTs, the 

effective aspect ratio of the CNTs is equal to half the aspect ratio of the CNTs when they are randomly 

distributed (Seff = 0.5S) [9,26]. After calculation, the value of σ��� is 99.8 MPa. 

Figure 11. Fracture surface morphologies of the CNTs@Ag/Ag composites with different contents of
CNTs by SPS and HP: (a) 1 vol.% (SPS), (b) 2.5 vol.% (SPS), (c) 5 vol.% (SPS), (d) 2.5 vol.% (HP).
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3.4. Possible Strengthening Mechanisms of CNT@Ag/Ag Composites

The composites prepared by SPS can obtain finer grains under the condition of rapid sintering.
In addition, the CNTs in the composite can maintain the characteristics of a complete structure, high
strength, and high modulus in the process of rapid sintering. The CNTs can also effectively transfer the
applied load from the matrix to the CNTs through the interface in the process of loading, and improve
the strength of the composite due to the excellent properties of CNTs. CNTs can also inhibit the growth
of grains and produce grain refinement. Therefore, the two main strengthening mechanisms of load
transfer and grain refinement are proposed in this study.

3.4.1. Strengthening by Grain Refinement

The strengthening effect of grain refinement can be explained by the Hall-Petch relationship, and
the increase of strength can be calculated through the following equation [24]:

∆σGR = K
(
D−0.5

c −D−0.5
m

)
(1)

where ∆σGR is the strength increment brought by grain refinement, K = 0.15 MPa·m0.5 for Ag, Dc is the
average grain sizes of the CNTs@Ag/Ag composite, and Dm is the average grain sizes of reference pure
Ag. After calculation, the value of ∆σGR is 11.4 MPa.

3.4.2. Strengthening by Load-Transfer Mechanism

The load-transfer mechanism can be estimated using a shear-lag model developed in a previous
study [25].

σL−T = σm [Vf
Seff + 1

2
+ Vm] (2)

Seff = Scos2θ+ (1−
4

3π
)(1 +

1
S
) sin2 θ (3)

where σL−T represents the tensile strengthen of the composite, σm represents the tensile strengthening
of the Ag matrix (65 MPa), Vf is the volume fraction of the CNTs (2.5 vol.%), Seff is the effective aspect
ratio of the reinforcements, θ is the misorientation angle between the longitudinal axis of the CNTs and
the loading axis of the tensile test, and S is the aspect ratio of the CNTs, the effective aspect ratio of the
CNTs is equal to half the aspect ratio of the CNTs when they are randomly distributed (Seff = 0.5S) [9,26].
After calculation, the value of σL−T is 99.8 MPa.

The calculated value of tensile strength of CNTs@Ag/Ag composites was 225.2 MPa, basically
consistent with the experimental value of 221 MPa. This indicates that the strengthening mechanisms
can be explained based on the effects of the homogeneous dispersion of the CNTs and the load transfer
from the matrix to the reinforcements.

4. Conclusions

In summary, the dispersion of CNTs is effectively improved by the EPUSA in the reaction process,
and the silver nanoparticles are uniformly coated on the CNT surface. The mechanical and electrical
properties of the SPS and HP samples are different due to the different levels of CNT agglomeration
and grain refinement. Generally, Ag@CNTs/Ag composites produced by the SPS method exhibit
better mechanical and electrical properties than their HP counterparts. The strengthening mechanisms
mainly refer to the homogeneous dispersion of the CNTs, and the load transfer from the matrix to
the reinforcements.
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