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Abstract: The aluminium matrix composites (AMCs) have become a tough competitor for various
categories of metallic alloys, especially ferrous materials, owing to their tremendous servicing in the
diversified application. In this work, additional efforts have been made to formulate a mathematical
model, by using dimensionless analysis, able to predict the mechanical characteristics of the AMCs
that have already been optimized and characterized by the authors. Here, the experimental and
statistical data obtained from the Taguchi L18 orthogonal array and analysis of variance (ANOVA)
have been used. They permit collection of the output responses and allow the identification of
significant process parameters, respectively, which thereafter were used to design the mathematical
model. Second order polynomial equations have been obtained from the specific output response and
the relevant input parameter were incorporated with the highest level of contribution. The obtained
quadratic equations indicate the regression values (R2) equal to unity, hence, proving the performances
of the fit. The results demonstrate that the developed mathematical models present very high accuracy
for predicting the output responses.

Keywords: fused deposition modelling; investment casting; mathematical modelling; aluminium
matrix composite

1. Introduction

In the last two decades, the rapid advancement of technology has contributed to large modification
in the manufacturing sector. During this period, the demand for materials that can sustain the
extreme level of service conditions increased globally. Specifically, in aerospace and automobile
sectors, the requirement of materials having high strength, toughness, hardness, and prolonged
service life was always a challenge. Apart from these properties, one of the major requirements is
‘light weight’. Different studies have reported the needs of lighter material as one of the motivations
behind the invention of reinforced materials, commonly, referred to as metal matrix composites [1–3].
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Amongst various categories of metal matric composites, the one based on the aluminium (Al) matrix
is in high demand, owing to its excellent thermal, mechanical, tribological, chemical, and structural
characteristics [4–6]. Further, there exists a wide range of manufacturing processes, which can be used
for the fabrication of the tailor-made composites with desirable properties [7]. Specifically, aluminium
matrix composites (AMCs) are basically popular because of the low weight/density ratio, high wear
resistance, cost effectiveness, high elastic modulus, and excellent strength [8–11]. Further, Sajjadi et al.
reveal Al-Al2O3 as the most popular type of AMCs because it contains micro Al2O3 particles within the
matrix of Al [12]. Such as, the Al-Al2O3 based composites have continually extended their applicability
within industrial applications [13,14].

Traditionally, the reinforcements are introduced to the metallic matrix via an ex-situ method [15,16],
wherein the matrix and reinforcements are mixed with each other outside the mould cavity or die.
This method of reinforcement results in poor wettability between the reinforcement and the matrix due
to the increased surface area and presence of surface contamination on the reinforcements [17]. In order
to overcome the interface issue, recent trends have been shifted towards the use of reinforcements
within the cavity or mould itself [18]. As defined in the literature, there are various routes, commercially
available, for the preparation of AMC. The most widely used commercial routes are the stir casting
and powder metallurgy [19–21]. There, the machinability of AMCs is very poor, in contrast to pure
Al, due to the brittle reinforcements in the matrix. The investment casting (IC) process has shown
its superiority, over the other solutions; in-terms of producing highly complex and near-net shaped
parts with very fine surface finish [22]. Additionally, this process is simple, cost effective, and allows
manufacturing a wide range of materials; however, the stretched production cycles represents one
of the critical challenges for the IC [23,24]. As continuum improvement, the hybridization of IC
and stir casting process has become the most popular methods to develop superior metal matrix
composites (MMCs) [25,26]. The intrinsic weaknesses of IC process (such as: low strength of wax
pattern, un-economical injection moulding cost, high die design cost, and longer production runs)
can be eliminated by using fused deposition modelling (FDM) process for pattern making [27–30].
FDM works on the same principle as the Additive Manufacture (AD), wherein the thin plastic slices
are deposited at a defined distance. The interface, therefore, can result in poor surface finish due to
an integral stair-casing. Boschetto and Veniali suggested the barrel finishing of formed FDM parts as
an efficient method to enhance their surface finish [31].

The collaboration of FDM and IC has been extensively researched in the literature, which duly
cited the myriads of merits [32–36]. In the recent years, the authors have investigated a novel method
for the production of the in-situ based AMCs, through the use of FDM assisted by the IC process.
In this respect, the authors developed in-house composite polymeric composites that were used for
the production of sacrificial patterns for the IC process. As observed in [1,2,37], the manufactured Al
castings consist of Al2O3 distributions, which permit the validation of the authenticity of the adopted
methodology. Further, the input process parameters; refer to Appendix A (i.e., Table A1), have been
optimized by using Taguchi L18 orthogonal array-based design of experimentation techniques in
response of dimensional accuracy [1], surface hardness [2], and surface roughness [3]. In this work,
mathematical models, based on the obtained results of [1–3], for all the aforementioned output
responses have been developed by using dimensionless modelling, Buckingham’s π-approach. Further,
regression equations have been implemented against the best features of the input process parameters,
as per analysis of variance (ANOVA).

2. Materials and Methods

Figure 1 presents the methodology adopted in this research. By using a Fish bone diagram (see
details on Figure 2), we highlight the main process parameters associated to the IC which can affect the
quality features of the IC components. The number of IC slurry layer (NSL) has been judicially selected
as an input parameter due to its significance highlighted in the literature [38–40]. The following are
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the procedural steps followed to obtain AMCs, which refer to the original Taguchi L18 orthogonal
array (Table A1), as given in the Appendix A:

• The alternative feedstock filaments (FP) have been prepared using PA, Al2O3, and Al in different
%wt. proportions with the help of single screw extrusion process.

• The formed filaments were used for the development of sacrificial patterns of cubical shape with
three different volumes (VP), such as 17,576 mm3, 27,000 mm3, and 39,304 mm3. They were
produced at low, high, and solid density of FDM process (DP) by using uPrint-SE system of
Stratasys Inc. (Edina, MN, USA). In the works, reported previously, it has been seen that the
change in the in-fill density affects the mechanical and tribological performances of the developed
AMCs [1–3]. The prime reason behind the selection of FDM technology is due to its affordability
and suitability for hybridization within the IC process [23,24,41]. Further, the selection of
the process parametric levels from previous studies has been judicially selected, based on the
pilot studies.

• Prior to shell moulding, the barrel finishing (BF) process was performed on the samples, for the
refurbishment of resulted surface finish [31]. Here, barrel finishing time (BFT) and barrel finishing
media weight (BFW) have been selected as input process parameters.

• Then, the IC moulds were prepared by coating the trees (consisting of riser, pouring basin, gating,
and also the FDM printed sacrificial pattern) with refractory layers of silica. The number of IC
slurry layers (NSL) has also varied in accordance to Table A1 in the Appendix A.

• Autoclaving and baking were performed in one step at 1150 ◦C (by maintaining the pouring
sprue in a vertical up position so that the Al2O3 filler particles could be arrested within the cavity
only). At this range of temperature, the matrix of the sacrificial patterns evaporates, immediately,
without causing mould cracks.

• Finally, pouring of molten Al-6063 has been carried out.
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The castings manufactured were tested for surface hardness, dimensional accuracy and surface
roughness by using HVS-1000BVM hardness tester (HV0.01 scale; ASTM-E384, Laizhou, China),
Vernier Caliper (Mitutoyo: least count 0.01mm, Takatsu-ku, Kawasaki, Japan) and Mitutoyo SJ-210
(Japan, ISO: 1997) surface roughness tester, respectively. For microstructural evaluation, the Scanning
Electron Microscopy (SEM, JEOL, Peabody, MA, USA) analysis has been performed on the casting
manufactured in the experiment #16, #17 and #18 associated to Table A1. It has been seen that the Al2O3

particles presented in Al matrix allow to enhance the quality characteristics of the castings, especially
the hardness on the surface. Figure 3 shows the SEM micrographs and their associated Energy
Dispersive Spectroscopy (EDS) spectrums (JEOL, USA). The measurements indicate the presence of Al,
O, Si, Fe, and C-peaks, which confirm the existence of alumina. These elements identified on the EDS
measurements (i.e., Al, O, and C) are the common sign of alumina surface [42]. They were noted as
well as the presence of elements Fe and Si, which denote some small impurity.
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3. Dimensionless modelling: Buckingham Pi Approach

Dimensionless modelling of the experimental data is considered an efficient method in order
to formulate analytic mathematical functions that are out of a highly complex experimental system
associated to numerous process parameters [43]. The concept of dimensionless analysis helps to reduce
the influence of variables by means of physical equations [44–46]. To date, dimensionless modelling with
the help of Buckingham Pi approach has been extensively investigated for a wide range of scientific and
engineering applications including fluid dynamics [47], energy [48], electronics [49], heat transfer [50]
and others. According to the Buckingham approach, any practical problem containing “n” factor sand
further “m” dimensions, then the subtraction of n and m will result the counts of independent factors,
which could be assumed. Presently, “n” and “m” are 7 and 3, respectively. Therefore, the problem
will consist of π1, π2, π3 and π4 that are the dimensional magnitudes. Furthermore, the mathematical
formulae derived for the assumed independent parameters help to develop the dimensional relationships
by following a set of standard steps [51,52]. Standard quantities of the same physical nature (mass,
length, and time) are used based on fundamental units. Consequently, it can be said that these systems
belong to the same class. To generalize, a set of systems of units that differ only in the magnitude
(but not in the physical nature) of the fundamental units are called a class of systems of units [53].
Unlike other statistical approaches, the mathematical modelling in the case of Buckingham’ Pi approach
could be very tedious if a proper set of producers is not considered. Based on [53], following are the
step-by-step descriptions of the modelling process adopted in the present work:

i. First of all, the units of the input and the output process parameters have been unified and
converted into physical quantities (such as M, L, and T). Further, it is of utmost importance to
highlight that any kind of categorical parameter, either input or output, is not suitable for the
modelling. Moreover, upon such conversions, it should be considered that the replacement could
be represented in-terms of M, L, and T formats. Therefore, in present work, the original Table A1
in the Appendix A has been modified in order to balance the units, as well as to convert the
qualitative parameters into quantitative. For instance, the parameter “filament proportion” has
been quantified in-terms of its tensile strength; density of the FDM pattern has been considered in
terms of mass and volume; mould wall thickness has been converted from a number of layers to
thickness of the wall, etc. Table 1 is the final prepared modified version of Table A1.
The obtained dimensions of input and output parameters would be:
Hardness (H) as ML−1T−2, Dimensional accuracy as L,
Surface roughness as L,
Filament proportion (P) in-terms of tensile strength of filament as MLT−2,
Volume of FDM reinforced pattern (V) as L3,
Density of FDM pattern (%) as ML−3,
BF cycle time (t) as T,
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BF media weight (W) as M and the Number of IC slurry layers (l) resulting into mould wall
thickness as L.

ii. Then, it is mandatory to find out the significance level of the input process parameters for the
measured outcomes. In the present case, ANOVA has been implemented with the help of
MINITAB-17 based statistical software in order to identify the significance and contribution of
input parameters. Table 2 shows the contribution percentage of input process parameters for
surface hardness, dimensional accuracy, and surface roughness.

iii. Before starting to formulate the π equations (let us say ‘x’), it is necessary to identify the ‘x −
1’ top performing input parameters. For instance, in the case of surface hardness, when ‘x’ is
equal to 4 that allows to develop 4 π-equations, three top performing input parameters have to
be identified.

iv. Now, the top performing input parameters and the output parameters being analyzed represent
the π equations.

v. After calculating the π equations, the π1 (related to the output parameter) is solved as a function
of other πs (π2, π3, and π4, consisted of input parameters).

vi. Once the step-v is completed, a constant ‘K’ has been considered whose value has been driven
from a second order quadratic equation of the fitness curve that connect the output response
and the most contributing input parameter.

vii. Further, the fitness curve should be plotted between the measured output values and the
corresponding values of the most significant input parameter, while keeping the rest of the
parameters constant. Alternatively, in the present case, the plots have been drawn between
the three levels of the input process parameters and the average of the corresponding output
result. For instance, in case of Figure 4, the average of hardness for experiment #1, #4, #7, #10,
#13, and #16 has been plotted against first level of FD (5.12 × 10−6 N/mm3) and the average of
hardness for experiment #2, #5, #8, #11, #14, and #17 has been plotted against second level of
FD (7.63 × 10−6 N/mm3). Similar procedure has been adopted for the third level of the FD.

viii. Noticeably, the regression (R2) ~ 1 indicates the best fitness of the data.

3.1. Hardness

In the present study, hardness is considered a function of all input process parameters that is
expressed by Equation (1).

So,

H = f(P, V, %, t, W, l) (1)

Based on the Table 2; the least significant parameters for this particular parameter are BF cycle
time, BF media filament proportion, and weight that will directly go in “π” groups. The “π” eqns. for
hardness can be written as:

π1 = H (F)a1 (t)b1 (W) c1 (2)

π2 = % (F)a2 (t)b2 (W)c2 (3)

π3= l (F)a3 (t)b3 (W)c3 (4)

π4 = V (F)a4 (t)b4 (W)c4 (5)

After substituting the decided dimensions in the “π” groups, Equations (6), (8), (10), and (12) are
formed. Now, in order to solve these further, the resulted equations are equated to zero. For instance,
the π1 will be solved as follows:

π1 = ML−1T−2 (ML−1T−2)a1 (T)b1 (M) c1 (6)
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Equating the basic dimensions to zero:
M: 1 + a1 + c1 = 0
L: −1 − a1 = 0
T: −2 −2a1 + b1 = 0
We get,
a1 = −1, b1 = 0 and c1 = 0
So, Equation (2) can be re-written as:

π1 = H/F (7)

Similarly, on solving π2;

π2 = ML−3 (ML−1T−2)a2 (T)b2 (M)c2 (8)

Similarly, equating the basic dimensions to zero:
M: 1 + a2 + c2 = 0
L: −3 − a2 = 0
T: −2a2 + b2 = 0
We get,
a2 = −3, b2 = −6 and c2 = 2
So, Equation (3) can be re-written as;

π2 = %/F3t6 (9)

On solving π3;

π3 = L (ML−1T−2)a3 (T)b3 (M)c3 (10)

Equating the basic dimensions to zero:
M: a3 + b3 = 0
L: 1 − a3= 0
T: −2a3 + b3 = 0
We get,
a3 = 1, b3 = 2 and c3 = −1
The Equation (4) for π3 can be re-written as;

π3 = lFT2/W (11)

Solving π4;

π4 = L3 (ML−1T−2)a4 (T)b4 (M)c4 (12)

Equating the basic dimensions to zero:
M: a4 + c4 = 0
L: 3 – a4 = 0
T: 0 – 2a4 + b4 = 0
We get,
a4 = 3, b4 = 6 and c4 = −3
The Equation (5) for π4 can be re-written as;

π4 = VF3t6/W3 (13)

The final relationship between all four Equations of “π” can be assumed as;
π1 = f(π2,π3 and π4)
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Table 1. Modified Taguchi L18 orthogonal array.

Exp.
No.

Tensile
Strength,
N/mm2

Volume of Fused
Deposition Modelling

(FDM) Reinforced
Pattern (mm3)

Density of
FDM Pattern,

N/mm3

BF Cycle
Time (sec)

BF Media
Weight (N)

Mould Wall
Thickness

Obtained, mm

H, N/mm2

(Converted from HV
with a Multiplying

Factor of 9.807)

∆d,
mm

Ra, mm (Converted from
µm with a Dividing

Factor of 0.001)

1 21.65 17576 5.12 × 10-6 1200 98 11.5 877.72 0.026 4762
2 21.65 17576 7.63 × 10−6 2400 147 13 900.28 0.033 5151
3 21.65 17576 9.16 × 10−6 3600 196 15 1127.80 0.02 4778
4 21.65 27000 5.12 × 10−6 1200 147 13 787.50 0.056 4371
5 21.65 27000 7.63 × 10−6 2400 196 15 848.30 0.063 5582
6 21.65 27000 9.16 × 10−6 3600 98 11.5 1127.80 0.053 6094
7 21.65 39304 5.12 × 10−6 2400 98 15 756.11 0.043 5368
8 21.65 39304 7.63 × 10−6 3600 147 11.5 901.26 0.08 5658
9 21.65 39304 9.16 × 10−6 1200 196 13 984.62 0.016 6404

10 21.53 17576 5.12 × 10−6 3600 196 13 915.97 0.016 4709
11 21.53 17576 7.63 × 10−6 1200 98 15 940.49 0.076 4573
12 21.53 17576 9.16 × 10−6 2400 147 11.5 1317.08 0.056 4658
13 21.53 27000 5.12 × 10−6 2400 196 11.5 934.60 0.033 5297
14 21.53 27000 7.63 × 10−6 3600 98 13 919.89 0.05 5889
15 21.53 27000 9.16 × 10−6 1200 147 15 1024.83 0.06 6845
16 21.53 39304 5.12 × 10−6 3600 147 15 824.76 0.033 8564
17 21.53 39304 7.63 × 10−6 1200 196 11.5 1004.23 0.043 5721
18 21.53 39304 9.16 × 10−6 2400 98 13 1041.50 0.046 5894
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Table 2. Percentage contribution of input process parameters.

Source Surface Hardness (H) Dimensional Accuracy (∆d) Surface Roughness (Ra)

FP 7.69% 0.76% 4.16%
VP 8.85% 16.95% 43.84% *
DP 65.75% * 19.83% 3.03%
BFT 1.03% 3.30% 6.45%
BFW 0.8 % 31.71% * 2.94%
NSL 14.14% 8.97% 5.72%

Residual Error 1.74% 18% 33.86%
Total 100% 100% 100%

* Highly contributing factor.

Or
H/F =

(
ρ

F3t6 , lFt2

W and VF3t6/W3
)

The above expression can be written as:

H = K·%·F2
·l·t2
·V/W4 (14)

Here, “K” is the proportionality constant.
Experimentally, it has been found that a correlation between the hardness and “%” exists (refer

Table 2). Hence, it was taken as representative factors to develop the mathematical model. The average
values of the hardness obtained at different levels of “ρ” (throughout the Table 1) has been plotted
(see details in Figure 4). In this case, a regression equation (R2 = 1) with a second order has been
determined. Based on the obtained linear equation, the final mathematical model that includes the
hardness is given:

H = [(2E + 13% 2 - 3E + 8% + 1607.5)]F2
·L·t2
·V/w4 (15)
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3.2. Dimensional Accuracy

In a similar way, dimensional accuracy is considered as a function of all input process parameters
that is expressed by Equation (16).

∆d = f (F, V, ρ, t, W, l) (16)
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From Table 2, the least significant parameters are BF cycle time, number of IC slurry layers,
and filament proportion, that will directly go in “π” groups. The “π” equation for dimensional accuracy
can be written as:

π1 = ∆d (F) a1 (t) b1 (L) c1 (17)

π2 = W (F) a2 (t) b2 (L) c2 (18)

π3 = % (F) a3 (t) b3 (L)c3 (19)

π4 = V (F) a4 (t) b4 (L) c4 (20)

The same set of mathematical iterations has been repeated for dimensional accuracy and the
relationship between the all four “π” equations is given in Equation (21) as below:

∆d/l = f
(

W
Ft2l

,
ρl2

Ft2 and
V

l3

)
(21)

On solving the above expression, we get:

∆d = K·%·W·V/F2
·l·t4 (22)

BF media weight, which is the most significant parameter (refer to Table 2) with regards to
dimensional accuracy, of the casted composites, has been taken as the representative parameter to
develop the mathematical model. For this, the average values of the dimensional accuracy obtained at
different levels of “BFW” (throughout the Table 1) has been plotted; refer to Figure 5. Then, a regression
equation (R2 = 1) with a second order has been determined. Based on the obtained linear equation,
the final mathematical model for dimensional accuracy is given as:

∆d = [(−5E − 06W2 + 0.0014W − 0.0345] %·V/F2
·l·t4 (23)
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3.3. Surface Roughness

Further, Equation (24) represents the surface roughness, as a function of all input process variable:

Ra = f (F, V, ρ, t, W, l) (24)
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Based on the Table 2; density of FDM pattern, filament proportion, and BF media weight are the
least significant parameters for surface roughness that will directly go in “π” groups. The “π” equation
for dimensional accuracy can be written as:

π1 = Ra (W) a1 (%) b1 (F) c1 (25)

π2 = V (W) a2 (%) b2 (F) c2 (26)

π3 = t (W) a3 (%) b3 (F) c3 (27)

π4 = l (W) a4 (%) b4 (F) c4 (28)

Now, repeating the same set of mathematical operations the final expression that describes the
relationship between all the four “π” is given as Equation (29):

Ra(ρ/W)1/3 = f

Vρ

W
,

t

(ρ)
1
6 (FW)

1
3

and l(
W
ρ
)

1/3
 (29)

Equation (29) can be written as:

Ra = K·(V·t·l·%ˆ(1/6))/F1/3
·W2/3, (30)

Similar to the dimensional accuracy, volume of FDM reinforced pattern which is the most
significant parameter (refer to Table 2) with regard to surface roughness, of the casted composites,
has been taken as the representative parameter to develop the mathematical model. For this, the average
values of the surface roughness obtained at different levels of “VP” (throughout Table 1) has been
plotted; refer to Figure 6. Then, a regression equation (R2 = 1) with a second order has been determined.
From the obtained linear equation, the final mathematical model for surface roughness is given as:

Ra =
[(
−2E − 6V2 + 0.2101V + 1846.5

)]
·

(
t·l·ρ

1
6

)
/F1/3

·W2/3 (31)

These results obtained in the present work are found to be in-line with the observations presented
in the literature [42,45].
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4. Conclusions

In this work, Vashy-Buckingham’s π-theorem was employed successfully for the development
of the mathematical models related to the hardness, dimensional accuracy, and surface roughness of
AMCs; material that was produced through FDM assisted by the IC process. The ANOVA simulation
were embedded in the present methodology in order to generate a standard database and to recognize
the significance process parameters, respectively. Further, all three mathematical models developed are
of second order polynomial equations, with a regression value equal to 1, which prove the reliability of
the models.
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Appendix A

Table A1. Design of experimentation as per original Taguchi L18 orthogonal array.

Exp.
No. FP VP (mm3) DP BFT BFW NSL

Ra
(µm)

S/N ratio
(dB)

∆d
(mm)

S/N ratio
(dB) HV S/N ratio

(dB)

1 C1 26 × 26 × 26 Low density 20 10 7 4.762 −13.55 0.026 31.34 89.5 39.01
2 C1 26 × 26 × 26 High density 40 15 8 5.151 −14.27 0.03 29.45 91.8 39.18
3 C1 26 × 26 × 26 Solid 60 20 9 4.778 −13.58 0.02 33.30 115 41.18
4 C1 30 × 30 × 30 Low density 20 15 8 4.371 −12.82 0.06 23.37 80.3 38.06
5 C1 30 × 30 × 30 High density 40 20 9 5.582 −14.93 0.063 23.80 86.5 38.72
6 C1 30 × 30 × 30 Solid 60 10 7 6.094 −15.69 0.053 25.32 115 41.22
7 C1 34 × 34 × 34 Low density 40 10 9 5.368 −14.59 0.043 27.06 77.1 37.73
8 C1 34 × 34 × 34 High density 60 15 7 5.658 −15.05 0.08 21.89 91.9 39.25
9 C1 34 × 34 × 34 Solid 20 20 8 6.404 −16.13 0.016 35.22 100.4 39.92

10 C2 26 × 26 × 26 Low density 60 20 8 4.709 −13.45 0.016 35.22 93.4 39.38
11 C2 26 × 26 × 26 High density 20 10 9 4.573 −13.20 0.076 22.29 95.9 39.62
12 C2 26 × 26 × 26 Solid 40 15 7 4.658 −13.36 0.056 24.72 134.3 42.60
13 C2 30 × 30 × 30 Low density 40 20 7 5.297 −14.48 0.033 29.45 95.3 39.56
14 C2 30 × 30 × 30 High density 60 10 8 5.889 −15.40 0.050 25.90 93.8 39.41
15 C2 30 × 30 × 30 Solid 20 15 9 6.845 −16.70 0.060 24.35 104.5 40.37
16 C2 34 × 34 × 34 Low density 60 15 9 8.564 −18.65 0.033 29.20 84.1 38.29
17 C2 34 × 34 × 34 High density 20 20 7 5.721 −15.15 0.043 27.06 102.4 40.20
18 C2 34 × 34 × 34 Solid 40 10 8 5.894 −15.40 0.046 26.44 106.2 40.48

Where, FP, VP, DP, BFT, BFW, NSL, Ra, ∆d, HV, and S/N represent the filament proportion, volume of the pattern,
density of the pattern, barrel finishing time, barrel finishing media weight, number of IC slurry layers, surface
roughness, dimensional accuracy/deviation, Vickers hardness, signal/noise, respectively. Further, C1 and C2 are the
compositions of PAx/Al2O3y/Alz (where x is 60% by wt.; y is 10% and 12% by wt., respectively; and z: 28% and 30%
by wt., respectively).
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