
Supplemental Information for

Polymer-functionalized nanograins of Mg-doped amorphous calcium carbonate via a flow-chemistry approach

Benedikt Demmert^{1,4}, Frank Schinzel¹, Martina Schüßler¹, Mihail Mondeshki², Joachim Kaschta³, Dirk W. Schubert³, Dorrit E. Jacob⁴, and Stephan E. Wolf^{1,5,*}

- 1 Department of Materials Science and Engineering (WW), Institute of Glass and Ceramics (WW3), Friedrich-Alexander University Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany
- 2 Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
- 3 Department of Materials Science and Engineering (WW), Institute of Polymer Materials (WW5), Friedrich-Alexander University Erlangen-Nuremberg (FAU), Martensstrasse 5, D-91058 Erlangen, Germany
- 4 Department of Earth and Planetary Sciences, Macquarie University, Sydney, 2109 NSW, Australia
- 5 Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
- * Correspondence: stephan.e.wolf@fau.de

Figure S1. X-ray diffractograms of Mg-doped ACC generated in the flow-chemistry setup in the presence of PSS **(A)** and PAA **(B)**.

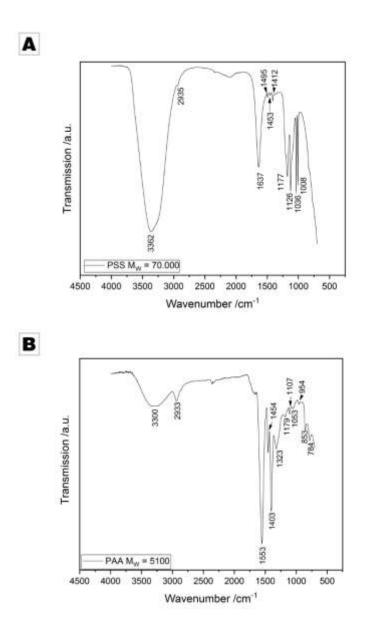
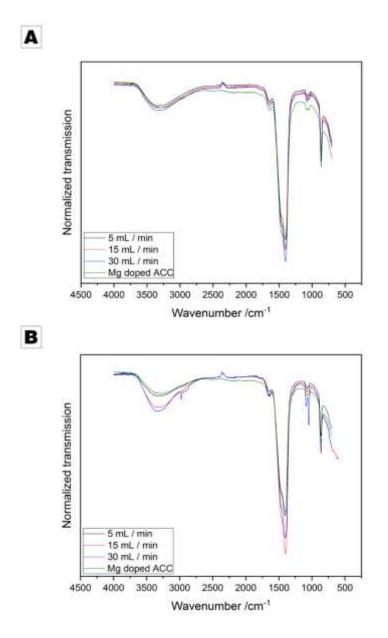



Figure S2. ATR-FTIR spectra of the pure polymers PSS (A) and PAA (B).

Figure S3. ATR-FTIR spectra of **(A)** PSS-functionalized and **(B)** PAA-functionalized Mg-doped ACC, prepared at varying flow rates. In the range from 3000 to 2700 cm⁻¹ only bands arising from solvents are detected, i.e., water or ethanol. In the case of PAA, the water bands at 1048 cm⁻¹ and 3400 cm⁻¹ increase with increasing flow rate.