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Abstract: In the presented paper, a study of bi-axial buckling of the laminated composite plate with
mass variation through the cutout and additional mass is carried out using the improved shear
deformation theory (ISDT). The ISDT mathematical model employs a cubic variation of thickness
co-ordinates in the displacement field. A realistic parabolic distribution of transverse shear strains
through the plate thickness is assumed and the use of shear correction factor is avoided. A C◦ finite
element formulation of the mathematical model is developed to analyze the buckling behavior of
laminated composite plate with cutout and additional mass. As no results based on ISDT for the
considered problem of bi-axial buckling of the laminated composite plate with mass variation are
available in the literature, the obtained results are validated with the data available for a laminated
composite plate without cutout and additional mass. Novel results are obtained by varying geometry,
boundary conditions and ply orientations.

Keywords: buckling; laminated composite plates; cutout; additional mass

1. Introduction

The composite materials proved to be much more efficient than the traditional materials that led to
its wide use as a structural element around the world. Nowadays fiber reinforced polymer composites
constitute the dominant materials applied in industry, e.g., the aerospace industry. Composites consist
of a combination of two or more materials with different properties. They contain various fibers, which
may be metallic or non-metallic, as well as grains of various materials and flakes. Distribution of these
components may be homogenous or non-homogeneous. Out of all composite materials, laminated
composites are very popular in industries. Excellent properties, such as high strength, high strength to
weight ratio and low weight make them more popular in contemporary industrial environments [1].
They are characterized by high stiffness, damping and good directional properties. The fiber in
composites is the main load-bearing constituent which is stronger and stiffer than other structural
materials. For this reason, composites are used in structural elements, marine parts, aircrafts, etc.

Certain properties, such as static, dynamic and damping are very important [1,2]. In addition,
there are notches in these laminated boards, because the cutouts can be used as doors and windows,
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ports for mechanical and electrical systems or holes for damage control, etc. The advantage of cutting
is a reduction in the total mass that significantly affects the reaction to buckling, as well as reduces total
stiffness and bending behavior.

Various studies were carried out in the area of laminated composite and hybrid composite
materials in the recent years [3–6]. Bending and twisting characteristics were initially investigated
using complex theories. Later, some researchers agreed to develop an improved and simplified theory.
Various theories were proposed to analyze laminated composite plates. The simplest theory based on
the displacement field is the classical laminated plate theory (CLT). The CLT is based on the Kirchhoff

assumptions and neglects the effects of transverse shear stresses and underestimates deflections but
overestimates natural frequencies and buckling loads [7].

Ashton and Whitney [8] were the first to analyze laminated composite panels using classical plate
theory for plate deformation modeling. Reissner [9,10] presented a constant theory containing the
effects of shear strain for the first time. The main assumption made in this study gave a coherent
representation of stress distribution over the entire thickness. The same degree of approximation
was employed by Mindlin [11] on the kinematic assumptions of the displacement fields given by
Reissner [9,10], which resulted in obtaining the governing equations from a direct method for analysis
of thin and thick plates considering transverse shear effects. However, maintaining the zero shear
force condition at the top and bottom of the laminated plate required the involvement of shear
correction factors.

The first order shear strain (FSDT) theory, in which transverse shear stresses are considered, is
used to analyze thick plates [12]. The FSDT assumes constant shear stresses through the thickness
of the plate [6]. The accuracy of FSDT predictions depends to a large extent on the shear correction
factor [12,13]. In order to develop a theory involving shear deformation and rotational inertia, Whitney
and Pagano [14] expanded the work of Yang et al. [15]. A high-shear strain (HSDT) theory was
proposed [16] to circumvent the limitations of the FSDT method, Reddy [17] developed a simple higher
order theory to analyze laminated composite panels. This theory contained the same independent
unknown as in the FSDT and considered the parabolic distribution of shear stress through plates
thickness with zero transverse shear stresses on the upper and lower surface of the plate without the
participation of shear correction coefficients. The HSDT gives a non-linear distribution of transverse
shear stresses by the thickness of the plate when the boundary conditions are met. Therefore, there
is no need to apply the shear correction factor in the HSDT. The origin of higher shear deformation
theories (HSDT) goes back to the work of Hildebrand et al. [18] who made significant contributions by
dispensing all the assumptions of Kirchoff’s plate theory. Kant et al. [19] derived the complete set of
equations of an isotropic version of the Lo et al. [20] theory and presented extensive numerical results
with a proposed numerical integration technique. The general finite element formulation for the plate
bending problem based on a higher-order displacement model and a three-dimensional state of stress
and strain was devised. The theory incorporates linear and quadratic variations of transverse normal
strain and transverse shearing strains and stresses, respectively through the thickness of the plate [19].
Swaminathan and Patil [21] proposed a refined higher-order model to solve the natural frequency of
simple supported anti-symmetric sandwich composites and sandwich panels.

Due to an infringement of the continuity of transverse stresses on the border of the contact layers
and the involvement of complex models, researchers suggested various forms of the improved theory
of a higher order. In order to gain access to the buckling behavior of laminated composites, different
models were proposed using different theories of different researchers. Baharlou [22] presented a
method of analysis of free vibration and buckling of laminated composite panels. Nguyen-Van et al. [23]
conducted the buckling and vibration analysis of laminated composite plate/shell structures via a
smoothed quadrilateral flat shell element with in-plane rotations. Other research used the Ritz method
to model the simply supported, rectangular, laminated composite plates to calculate the critical buckling
loads subjected to different loading conditions [24].



Materials 2019, 12, 1750 3 of 23

Harris [25] considered the buckling and post-buckling behavior of orthotropic laminated plates.
Aydin et al. [26] carried out a numerical buckling analysis of laminated composite plates with an
elliptical/circular cutout using a finite element method (FEM). The FEM dominates numerical structural
analysis due to extensive research background [6,27]. Other researchers produced an analytical solution
under random conditions of axial loading, internal pressure, and in-plane shear loading to study the
effects of buckling responses on cylindrical plates [28].

The paper by Zhai et al. [29] deals with the free vibration analysis of two kinds of five-layered
composite sandwich plates with two-layered viscoelastic cores based on the first-order shear
deformation theory. Vescovini and Dozio [30] presented a unified Lévy-type solution procedure
using both layerwise and equivalent single layer theories for the buckling analysis of thin and thick
composite plates under biaxial loads. Raju et al. [31] carried out an optimization study for the
post-buckling design of orthotropic variable angle tow composite plates under axial compression.
Nguyen et al. [32] brought a unified framework on higher order shear deformation theories (HSDTs),
modeling and analysis of laminated composite plates. The major objective of their work was to unify all
higher order shear deformation theories in a unique formulation by a polynomial form and to propose
the new higher shear deformation models systematically based on a unified formulation. In addition,
the effect of thickness stretching was taken into account by considering a quasi-3D theory. It was found
that the unique formulation of a polynomial form could theoretically cover all existing HSDTs models
and was sufficient to describe the nonlinear and parabolic variation of transverse shear stress [32].
Alesadi et al. [33] employed the Isogeometric approach (IGA) and Carrera’s Unified Formulation (CUF)
for free vibration and linearized buckling analysis of laminated composite plates. The CUF presents an
effective formulation to employ any order of Taylor expansion for the analyses of two-dimensional
plate models. Higher-order theories supposed by CUF are free from Poisson locking phenomenon
and they do not require any shear correction factor. Therefore, combining IGA and CUF provides a
suitable methodology to analyze laminated plates [33]. Various works done by researchers [34–39] on
FE (Finite Element) modelling of laminated composite plates/shells.

A 3D buckling analysis of thick orthotropic rectangular plates was investigated by Srinivas and
Rao [40]. Their linear and small deformation theory of elasticity solution accounted for all the nine
elastic constants of orthotropy. For the buckling analysis of elastic plates, Reddy and Pan (Reddy &
Phan, Ref. [41] used a higher order shear deformation theory (HSDT). They compared with classical
plate theory (CPT), first order shear deformation theory (FSDT) and exact solution. Their theory
predicts buckling of the plate more accurately then CPT and FSDT. Khdeir and Librescu [42] also
used higher order plate theory to study buckling analysis of asymmetric cross-ply laminated plate
considering a variety of boundary conditions. A CPT for buckling analysis of thin skew laminates were
presented by Wang [43] based on B-spline Rayleigh-Ritz method. Fares and Zenkour [44] presented
various plate theories for buckling analysis of non-homogeneous laminated composite cross-ply plates.
The critical buckling loads of laminated skew plates subjected to in-plane compression was presented by
Hu and Tzeng [45] using ABAQUS. Chakrabarti and Sheikh [46] used Reddy’s HSDT by implementing
a new triangular element to study buckling of composite laminates. Zhen and Wanji [47] computed
critical buckling load of composite laminates and sandwich laminates. An FE buckling analyses of
laminated rhombic plates having material nonlinearity, including the Tsai–Wu failure criterion and a
nonlinear in-plane shear formulation, was carried out by Hu et al. [48]. Srinivasa et al. [49] examined
the buckling loads of skew plates using FE analysis. By considering geometry non-linearity due to
excess mechanical deformation in the structure, buckling analysis of composite laminates was studied
by Fazzolari et al. [50] using the HSDT. Grover et al. [51] used a shear deformation theory having
an inverse hyperbolic function to present a buckling analysis of laminates and sandwich laminates.
An exact refined solution procedure for the buckling analysis of thick and thin composite laminates
under biaxial loading was presented by Vescovini and Dozion [30]. Fan et al. [52] studied an analytical
approach to find buckling load of cylindrical shells under axial compression. Srinivasa et al. [53]
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presented numerical and experimental studies on buckling of skew laminates with circular cutouts
under uniaxial compressive force.

The literature review indicates that few studies on biaxial buckling analysis of laminated composite
panel with excision and concentrated mass were carried out and that significant part of the reported
studies was based on the FSDT. Due to the complex mechanical behavior of such as structures, which,
for example, exhibit complex modes of deformation, their theoretical analysis requires a slightly
deeper approach.

In the presented work, an attempt was made to analyze the bi-axial buckling characteristics of
laminated composite plates with cutouts and additional mass using a mathematical model (ISDT)
which employs a cubic variation of thickness co-ordinate in displacement field. In the present study,
an attempt was also made to incorporate shear along with bi-axial force for analyzing the buckling
behavior of laminated plates.

2. Theory and Formulation

2.1. Improved Shear Deformation Theory (ISDT)

In this deformation theory, transverse shear stress at the top and bottom of the laminate are taken
as zero. It is assumed that the variation of transverse shear strains is realistic parabolic in shape and use
of shear correction factor is hence avoided. The presented theory consists of a realistic cubic variation
of in-plane displacement fields. The following equation for displacement fields is being adopted for
the presented analysis: 

u
v
w

 =


u0

v0

w0

+ z


θx

θy

0

+ z2


ξx

ξy

0

+ z3


ζx

ζy

0

 (1)

In the equation presented above, u, v and w represent the displacements of a point along the
three directions (x, y, and z) respectively, whereas the associated midplane displacements are given by
u0, v0, and w0 respectively. θx and θy signifies the rotations of transverse normal in the x-z and y-z
planes respectively.

The ξx, ζx, ξy and ζy functions in the above-mentioned equations are determined using an
assumption of zero transverse shear strains at the top and bottom surfaces of the plate, i.e.,

γxz(x, y,±h/2) and γyz (x, y,±h/2) = 0 (2)

Since, γxz =
δu
δz + δw

δx and γyz =
δv
δz +

δw
δy , So,

γxz = θx + 2zξx + 3z2ζx +
δw
δx

. and γyz = θy + 2zξy + 3z2ζy +
δw
δy

(3)

Using Equations (2) and (3), we obtain

ξx = 0 and ξy = 0, ζx = −
4

3h2 (θx +
δw
δx

) and ζy = −
4

3h2 (θy +
δw
δy

) (4)
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When replaced, the values obtained in Equation (4) to Equation (1), we get:
u
v
w

 =


u0

v0

w0

+ z(1− 4z2/3h2)


θx

θy

0

− 4z3/3h2


∂w0/∂x
∂w0/∂y

0

 or,


u
v
w

 =


u0

v0

w0

+ z(1− 4z2/3h2)


θx

θy

0

− 4z3/3h2


ψx
∗

ψy
∗

0


(5)

The linear strains may be represented in the form of linear displacement, as follows:

εx

εy

γxy

γxz

γyz


=



∂u/∂x
∂v/∂y

∂u/∂y + ∂v/∂x
∂u/∂z + ∂w/∂x
∂v/∂z + ∂w/∂y


(6)

Using the values of displacement from Equation (5) to Equation (6), the following equation
is obtained,



εx

εy

γxy

γxz

γyz


=



∂u0/∂x
∂v0/∂y

∂u0/∂y + ∂v0/∂x
∂w0/∂x + θx

∂w0/∂y + θy


+ z(1− 4z2/3h2)



∂θx/∂x
∂θy/∂y

∂θx/∂y + ∂θy/∂x
0
0


−

4z3

3h2



∂ψx
∗/∂x

∂ψy
∗/∂y

∂ψx
∗/∂y + ∂ψy

∗/∂x
0
0


−

12z2

3h2



0
0
0

θx +ψx
∗

θy +ψy
∗


(7)

or 

εx

εy

γxy

γxz

γyz


=



εx0

εy0

γxy0

φx

φy


+ z(1− 4z2/3h2)



Kx

Ky

Kxy

Kxz

Kyz


−

4z3

3h2



K∗x
K∗y
K∗xy

K∗xz

K∗yz


−

12z2

3h2



K∗∗x
K∗∗y
K∗∗xy

K∗∗xz

K∗∗yz


(8)

The strains associated with Equation (8) are related to the generalized strains by means of the
following expression:

{ε} = [H]{ε} (9)

where {ε} =
[
εxεyγxyγxzγyz

]T
and {ε} =

{
εx0,κx,κ∗x,γx0, εy0,κy,κ∗y,γy0,
κxy,κ∗xy, w0,θx,ψx, v0,θy,ψy, u0

}T

, {ε} is the function of x

and y and [H] is the function of thickness coordinate z.
Further, the strain vector {ε} can be interrelated with displacement vector {X} by means of the

following relationship.
{ε} = [B]{X} (10)

where {X} =
{
u0, v0, w0,θx,θy,ψx,ψy

}
.

For the typical lamina (kth), the constitutive relations with respect to the material axis can be
expressed as: {σ}k = [Q]k{ε}k, i.e.,

σ1

σ2

τ12

τ13

τ23


k

=


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55


k



ε1

ε2

γ12

γ13

γ23


k

(11)
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where, υ12
E1

= υ21
E2

, and


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55


k

=


E1/1− ν12ν21 ν12E2/1− ν12ν21 0 0 0
ν12E2/1− ν12ν21 E2/1− ν12ν21 0 0 0

0 0 G12 0 0
0 0 0 G13 0
0 0 0 0 G23


k

The stress-strain relationship with respect to global coordinate axis system (x, y, and z) for kth
lamina can be expressed using the applied transformation coefficients as shown below:

σx

σy

τxy

τxz

τyz


k

=



Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55


k



εx

εy

εxy

γxz

γyz


k

(12)

Integration of the stresses through the laminate thickness will help in obtaining the resultant
forces and moments acting on the laminate, which is as follows:

[M] =


Mx

My

Mxy

M∗x
M∗y
M∗xy

 =
NL∑

K=1

ZK+1∫
ZK


σx

σy

τxy

[z, z3
]
dz, [N] =


Nx

Ny

Nxy

 =
NL∑

K=1

ZK+1∫
ZK


σx

σy

τxy

dz

[Q, S, S∗, S∗∗] =
[

Qx Sx Sx
∗ Sx

∗∗

Qy Sy Sy
∗ Sy

∗∗

]
=

NL∑
K=1

ZK+1∫
ZK

[
τxz

τyz

][
1, z, z2, z3

]
dz,

or
{σ} =

[
D
]
{ε},

where
{σ} =

[
Nx, Ny, Nxy, Mx, My,Mxy, M∗x, M∗y, M∗xy,θx,θy, Sx, Sy, S∗x, S∗y, S∗∗x , S∗∗y

]T

{ε} =
[
εx0, εy0,γxy0, Kx, Ky,Kxy, K∗x, K∗y, K∗xy,φx,φy, Kxz, Kyz, K∗xz, K∗yzK∗∗xz, K∗∗yz

]T

and the size of the rigidity matrix
[
D
]

is 17 × 17.
Thus, by following the standard procedure of FEM the element matrices are assembled which

results in global stiffness matrices i.e., [K] and [M].

2.2. Finite Element Formulations

In this paper, C◦ isoparametric elements having nine nodes, with seven unknowns per node
(Figure 1) i.e., u1u2, u3,ψ1,ψ2, w1 and w2 were used for the proposed finite element model.
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The generalized displacements included in the presented theory can be expressed as follows.

u1 =
9∑

i=1
Niui; u2 =

9∑
i=1

Nivi; u3 =
9∑

i=1
Niwi; ψ1 =

9∑
i=1

Niψ1i; ψ2 =
9∑

i=1
Niψ2i; w1 =

9∑
i=1

Niw1i; w2 =
9∑

i=1
Niw2i (13)

In the equation above, the shape function of the related node is represented by Ni.
Knowing the nodal unknown vector within an element, the mid-surface strains at any point in the

plate can be expressed in the matrix form in terms of the global displacements as described below:

{ε} =
9∑

i=1

[Bi]{di} (14)

In the equation shown above, [Bi] is used to express the differential operator matrix of the
shape function.

For an element, the element stiffness matrix (say, eth), including the transverse shear effects,
flexure and membrane can be given as:

[Ke] =

1∫
−1

1∫
−1

[B]T[D][B]
∣∣∣∣J∣∣∣∣drds (15)

[Me] =

1∫
−1

1∫
−1

[N]T[ρ][N]
∣∣∣∣J∣∣∣∣drds (16)

In the above equations, [N] represents the matrix of shape function, [ρ] inertia matrix and |J|
represents the determinant of a Jacobian matrix.

For all numerical integrations, a 3 × 3 Gaussian quadrature format was used. Then, the element
matrices were grouped together to attain the global stiffness matrices [K], in accordance with the typical
procedure of the FE method as considered by Bathe [54].

The C0 FE formulation although being a 2D solutions allowed to obtain the results closer to 3D
elastic solutions. This helped to reduce the complex solutions to a simpler form.

2.3. Buckling Analysis

The buckling of laminated composite plates was carried out using the above-mentioned theory
and FE formulation to study the laminated plates with cutout and concentrated mass. The geometric
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stiffness matrix required in the buckling analysis can be derived as explained below. For this purpose,
the nonlinear strain vector/geometric strain vector may be extracted as:

{εG} =


1/2(∂w/∂x)2 + 1/2(∂u/∂x)2+1/2(∂v/∂x)2

1/2(∂w/∂y)2 + 1/2(∂u/∂y)2+1/2(∂v/∂y)2

(∂w/∂x)(∂w/∂y) + (∂u/∂x)(∂u/∂y) + (∂v/∂x)(∂v/∂y)

 or {εG} = 1/2[AG]{θ} (17)

where, {θ} = [∂w/∂x ∂w/∂y ∂u/∂x ∂u/∂y ∂v/∂x ∂v/∂y] and

[AG] =


∂w/∂x 0 ∂u/∂x 0 ∂v/∂x 0

0 ∂w/∂y 0 ∂u/∂y O ∂w/∂y
∂w/∂y ∂w/∂x ∂u/∂y ∂u/∂x ∂v/∂y ∂v/∂x


Further,

{θ} = [HG]{ε} = [HG][B]{δ} (18)

where the matrix [HG] is the function of thickness coordinate z.
The geometric stiffness matrix [KGe] of an element can be developed using Equations (15) and (18)

and it may be stated as:

[KGe] =

nu+nl∑
k=1

y
[ε]T[Si] [ε] dx dy dz =

nu+nl∑
k=1

y
[B]T[HG]

T[Si][HG][B] dx dy dz

=
1
2

x
{ε}T[G ]{ε}dx dy

(19)

where,

[G] =

nu+nl∑
k=1

∫
[HG]

T
[
Si

]
[HG]dz (20)

and
[
Si

]
is in-plane stress components of the i-th layer.

[
Si

]
=



σxx τxy 0 0 0 0
τxy σyy 0 0 0 0
0 0 σxx τxy 0 0
0 0 τxy σyy 0 0
0 0 0 0 σxx τxy

0 0 0 0 τxy σyy


Hence the final governing equation for buckling analysis may be written as:{

[K] − λ[K]G
}
{δ} = {0} (21)

where {δ} is the nodal displacement vector, λ is the critical buckling load and [K], [K]G are the linear
and geometric stiffness matrices, respectively.

3. Numerical Application and Results

3.1. Boundary Conditions

The boundary conditions mainly applied to the subsequent examples are, simply supported (SSSS)
and clamped boundary conditions (CCCC) which include:
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SSSS:

u2 = u3 = ψ2 = w2 = 0 at x = 0, a
u1 = u3 = ψ1 = w1 = 0 at y = 0, b

CCCC:

u1 = u2 = u3 = ψ1 = ψ2 = w1 = w2 = 0 at x = 0, a and at y = 0, b
Other than these, four more boundary conditions are used in different examples:
CCFF = Clamped, Clamped, Fixed, Fixed
CFCF = Clamped, Fixed, Clamped, Fixed
SSCC = Simply supported, Simply supported, Clamped, Clamped
CCSS = Clamped, Clamped, Simply supported, Simply supported.

3.2. Engineering Properties

For all further investigations, unless mentioned otherwise, the composites with following
properties were taken E1 = 25E2, E2 =1, G12 = G13 = 0.5E2, G23 = 0.2E2, ρ = 1 and ν12 = 0.25, after
Chakrabarti and Sheikh [46] as the common standard values for these materials. The non-dimensional
buckling load for composites were taken as λ = (λb2/E2h3). The value of additional mass is given by
the following equation: M

.
= M

ρha2 .

3.3. Convergence and Comparison Studies

Convergence study was done to determine the required mesh size N×N at which the dimensionless
buckling load values converged. It may be concluded from Table 1, that the values of non-dimensional
buckling load converged at N = 20. Therefore, for all subsequent analyses mesh size of 20 × 20 (full)
was taken into consideration. The numbering of edges in the plate is shown in Figure 2.

Table 1. Convergence study of nondimensional buckling load λ = (λb2/E2h3) with a/h for a simply
supported cross-ply square laminated plate (0◦/90◦/90◦/0◦)t with material properties: E1/E2 = 40,
G12 = G23 = 0.6E2, G23 = 0.5E2, ν12 = 0.25.

References Theory Thickness Ratio (a/h)

100 50 20 10

Present (8 × 8) ISDT 36.5865 35.8502 31.9649 23.3151
Present (10 × 10) ISDT 36.3277 35.6464 31.8054 23.2024
Present (16 × 16) ISDT 36.1909 35.4535 31.6393 23.0835
Present (18 × 18) ISDT 36.1925 35.4327 31.6181 23.0678
Present (20 × 20) ISDT 36.1918 35.4293 31.6024 23.0565
Present (22 × 22) ISDT 36.1919 35.4294 31.6024 23.0566
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It is clear from the literature review that based upon present theory, for the buckling analysis
of the laminated composite plates having mass variation in the form of cutout and concentrated
mass no results are available. Therefore, in order to show the efficiency of the present FE model the
obtained results were evaluated with the results published by Reddy and Phan [41], Pandit et al. [55],
Liu et al. [56], and Singh et al. [57] based upon FSDT, HSDT, GRBF (Gaussian radial basic function)
and MQRBF (Multiquadric radial basic function).

Analysis of cross-ply (0◦/90◦/90◦/0◦) and (0◦/90◦/0◦) square laminates under the effect of uni-axial
compression was carried in this example and shown in Table 2. In this example, the analysis of a full
plate was done with a/h ratio equal to 10. Table 2 shows, the utility of the present FE model in predicting
the non-dimensional buckling load close to the analytical results from the previously quoted literature.

Table 2. Validation of nondimensional buckling load λ = (λb2/E2h3) for a uni-axial buckling of simply
supported cross-ply square laminated plate: G12 = G23 = 0.6E2, G23 = 0.5E2, ν12 = 0.25 and a/h = 10.

Lamination
Scheme

Source
E1/E2

3 10 20 30 40

(0◦/90◦/0◦)

Present 5.3142 9.6982 14.6927 18.6343 21.8415
Reddy and Phan (HSDT) [41] 5.3933 9.9406 15.2980 19.6740 23.3400
Reddy and Phan (FSDT) [41] 5.3931 9.9625 15.3510 19.7560 23.4530

Singh et al. (GRBF) [57] 5.3958 9.8487 14.9411 18.9861 22.3049
Singh et al. (MQRBF) [57] 5.4108 9.8956 15.0326 19.1227 22.4881

(0◦/90◦/90◦/0◦)

Present 5.3197 9.8087 15.1025 19.4295 23.0565
Nguyen-Van et al. [23] 5.3210 9.8090 15.0640 19.3390 22.9120

Liu et al. [56] 5.4120 10.013 15.3090 19.7780 23.4120
Pandit et al. [55] 5.3290 9.8204 15.1314 19.4774 23.1214

Singh et al. (GRBF) [57] 5.3991 9.9527 15.3343 19.7490 23.4668
Singh et al. (MQRBF) [57] 5.4161 10.025 15.5252 20.0520 23.8166

In another problem, a square laminated composite plate having lamination scheme as (0◦/90◦/0◦)
was analyzed for different values of elastic modulus ratio i.e., E1/E2. The results were compared with
the results of Vesconi and Dozio [30] as shown in Table 3.

Table 3. Validation of nondimensional buckling load λ = (λb2/E2h3) for a bi-axial buckling (Nx/Ny)
of simply supported (0◦/90◦/0◦) cross-ply square laminated plate: G12 = G23 = 0.6E2, G23 = 0.5E2,
ν12 = 0.25.

Nx/Ny E1/E2 Source
a/h

10 20 50

1
10

Present 4.8441 5.4890 5.7084
Vescovini and Dozio [30] 4.9095 5.5082 5.7063

25
Present 7.9066 10.0852 10.7040

Vescovini and Dozio [30] 8.6820 10.8768 11.7320

2
10

Present 6.4611 7.3211 7.6138
Vescovini and Dozio [30] 6.5461 7.3442 7.6084

25
Present 11.1735 14.3514 15.6099

Vescovini and Dozio [30] 11.5760 14.5025 15.6426

The aspect ratios (a/h) taken into consideration for the study were 10, 20 and 50. Table 3 shows
that for both ratios of Nx/Ny the results are in good accordance with those reported by Vescovini
and Dozio [30]. Buckling load for two sides clamped laminates compared to experimental and FEM
(ANSYS) results of Baba [58] are shown in Table 4.
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Table 4. Buckling load of two side clamped (CC) laminates.

Lamination
Angle

a/h = 100 a/h = 50

Baba [58] * Baba [58] # Present Baba [58] * Baba [58] # Present

[90]8 101.00 106.33 102.72 356.00 425.52 408.75

[(0/90)2]s 319.00 366.52 368.45 1105.00 1455.50 1455.93

[(0/90)2]as 260.00 290.22 290.39 844.00 1154.50 1149.00

* Experimental; # Ansys.

3.4. Novel Results

After validating the presented FE model based upon the above-mentioned theory through
comparison studies, new problems were worked out to analyze the effect of openings and additional
mass on buckling of laminated composite plates. For the following examples of buckling analyses,
various laminated composite plates with different lamination schemes and boundary conditions were
considered. The lamination schemes adopted for the various problems are given in Table 5. The
geometrical and material parameters adopted for the present analyses were assumed as defined in the
previous section. The ply numbering scheme shown in Figure 3, is in such a way that the counting of
the lamina was done from bottom to top. In the present examples, the laminated composite plates are
considered having the additional mass (M = M

ρha2 = 0.5, 1 and 2) and square cutout (0.2a, 0.4a and 0.6a),
concentrated at the center.

Table 5. Plate lamination schemes.

Symbol Lamination Scheme *

A (0◦/90◦/0◦)t
B (−45◦/45◦/−45◦/45◦)t
C (45◦/0◦/−45◦/0◦/−45◦/90◦/0◦/45◦/0◦/90◦/−45◦/0◦/−45◦/0◦/45◦)t

* t = total laminate.
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Figure 3. Typical front view of a four-layer laminated plate with ply numbering.

3.4.1. Laminated Composite Plates with Additional Mass

Many novel problems were solved and shown in Tables 6–8 with variation in values of aspect
ratio (a/h), nature of loading (Nx/Ny & Nxy), additional mass M (0.05, 1 and 2), lamination schemes
and boundary conditions. Further, the mode shapes of plates were also shown in Figures 4–6. In all
the preceding problems the material properties were taken as defined in the previous section and the
additional mass was concentrated at the central node.
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Table 6. (a) Non-dimensional buckling load λ = (λb2/E2h3) for a bi-axial buckling of a composite plate
having lamination scheme A and additional mass; (b) Non-dimensional buckling load λ = (λb2/E2h3)

for a bi-axial buckling of a composite plate having lamination scheme A and additional mass.

(a)

a/h Concentrated
Mass

CCCC

Nx/Ny = 0 Nx/Ny = 1 Nx/Ny = 2

Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2

100
0.50 86.43 53.85 32.08 27.75 24.34 19.47 15.24 14.58 13.15
1.00 86.21 53.81 32.09 27.75 24.34 19.47 15.24 14.58 13.15
2.00 85.77 53.72 32.09 27.75 24.34 19.47 15.24 14.58 13.15

20
0.50 53.07 27.78 16.89 18.76 15.22 11.45 10.25 9.53 8.20
1.00 52.94 27.76 16.88 18.76 15.22 11.45 10.25 9.53 8.20
2.00 52.68 27.72 16.87 18.76 15.22 11.45 10.25 9.53 8.20

5
0.50 7.76 2.78 1.59 1.62 1.36 1.04 0.82 0.79 0.71
1.00 7.76 2.78 1.59 1.62 1.36 1.04 0.82 0.79 0.71
2.00 7.76 2.78 1.59 1.62 1.36 1.04 0.82 0.79 0.71

CCSS

100
0.50 81.18 50.07 30.40 24.55 22.07 18.21 12.87 12.51 11.60
1.00 81.01 50.08 30.40 24.54 22.07 18.21 12.86 12.51 11.60
2.00 80.68 50.09 30.40 24.53 22.05 18.20 12.86 12.51 11.60

20
0.50 48.64 26.45 15.81 16.24 13.81 10.62 9.12 8.62 7.57
1.00 48.54 26.45 15.81 16.24 13.81 10.62 9.12 8.62 7.57
2.00 48.35 26.45 15.81 16.24 13.82 10.62 9.12 8.62 7.57

5
0.50 7.43 2.77 1.59 1.62 1.36 1.04 0.81 0.79 0.71
1.00 7.42 2.77 1.59 1.62 1.36 1.04 0.81 0.79 0.71
2.00 7.40 2.77 1.59 1.62 1.36 1.04 0.81 0.79 0.71

SSCC

100
0.50 30.57 23.89 16.97 13.18 12.30 10.60 8.20 7.95 7.38
1.00 30.49 23.86 16.96 13.16 12.29 10.60 8.19 7.95 7.38
2.00 30.34 23.78 16.92 13.13 12.26 10.58 8.18 7.94 7.37

20
0.50 26.17 18.50 12.35 11.29 10.14 8.29 7.02 6.69 6.00
1.00 26.11 18.47 12.34 11.27 10.13 8.28 7.01 6.68 5.99
2.00 25.98 18.42 12.33 11.25 10.12 8.27 7.00 6.67 5.99

5
0.50 7.51 2.77 1.59 1.62 1.36 1.04 0.82 0.79 0.70
1.00 7.51 2.77 1.59 1.62 1.36 1.04 0.82 0.79 0.70
2.00 7.50 2.77 1.59 1.62 1.36 1.04 0.82 0.79 0.70

(b)

a/h Concentrated
Mass

CCFF

Nx/Ny = 0 Nx/Ny = 1 Nx/Ny = 2

Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2

100
0.50 78.55 40.13 23.86 13.06 12.49 11.24 6.78 6.69 6.47
1.00 78.47 40.11 23.86 13.06 12.49 11.24 6.78 6.69 6.47
2.00 78.28 40.09 23.85 13.06 12.49 11.24 6.78 6.69 6.47

20
0.50 46.41 20.91 12.31 8.91 8.37 7.16 4.70 4.61 4.39
1.00 46.37 20.90 12.31 8.91 8.37 7.16 4.70 4.61 4.39
2.00 46.27 20.89 12.30 8.91 8.37 7.16 4.70 4.61 4.39

5
0.50 6.59 2.71 1.55 1.60 1.34 1.01 0.81 0.79 0.70
1.00 6.58 2.71 1.55 1.60 1.34 1.01 0.81 0.79 0.70
2.00 6.57 2.71 1.55 1.60 1.34 1.01 0.81 0.79 0.70

CFCF

100
0.50 6.52 2.29 1.34 2.62 1.48 1.02 1.42 1.04 0.80
1.00 6.52 2.29 1.34 2.62 1.48 1.02 1.42 1.04 0.80
2.00 6.52 2.29 1.34 2.62 1.48 1.02 1.42 1.04 0.80

20
0.50 5.71 1.99 1.17 2.31 1.30 0.89 1.26 0.91 0.70
1.00 5.71 1.99 1.17 2.31 1.30 0.89 1.26 0.91 0.70
2.00 5.71 1.99 1.17 2.31 1.30 0.89 1.26 0.91 0.70

5
0.50 3.42 1.17 0.68 1.28 0.75 0.51 0.69 0.52 0.40
1.00 3.42 1.17 0.68 1.28 0.75 0.51 0.69 0.52 0.40
2.00 3.42 1.17 0.68 1.28 0.75 0.51 0.69 0.52 0.40

SSSS

100
0.50 23.72 20.27 15.44 10.62 10.07 8.91 5.90 5.80 5.54
1.00 23.67 20.24 15.42 10.62 10.07 8.91 5.90 5.80 5.54
2.00 23.58 20.18 15.39 10.62 10.07 8.91 5.90 5.80 5.54

20
0.50 20.02 15.92 11.35 9.37 8.60 7.22 5.15 5.02 4.69
1.00 19.98 15.90 11.34 9.38 8.60 7.22 5.15 5.02 4.69
2.00 19.90 15.86 11.32 9.39 8.60 7.22 5.15 5.02 4.69

5
0.50 6.69 2.76 1.58 1.62 1.36 1.04 0.82 0.79 0.71
1.00 6.67 2.76 1.58 1.62 1.36 1.04 0.82 0.79 0.71
2.00 6.65 2.76 1.58 1.62 1.36 1.04 0.82 0.79 0.71
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Table 7. (a) Non-dimensional buckling load λ = (λb2/E2h3) for a bi-axial buckling of a composite plate
having lamination scheme B and additional mass; (b) Non-dimensional buckling load λ = (λb2/E2h3)

for a bi-axial buckling of a composite plate having lamination scheme B and additional mass.

(a)

a/h Concentrated
Mass

CCCC

Nx/Ny = 0 Nx/Ny = 1 Nx/Ny = 2

Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2

100
0.50 85.59 56.96 37.76 43.51 36.63 28.24 28.43 26.06 22.04
1.00 85.37 56.89 37.74 43.45 36.59 28.23 28.40 26.04 22.03
2.00 84.95 56.76 37.69 43.33 36.53 28.20 28.35 26.01 22.00

20
0.50 58.81 34.48 21.93 31.12 23.59 17.12 19.77 17.15 13.74
1.00 58.68 34.45 21.92 31.08 23.58 17.12 19.75 17.14 13.73
2.00 58.43 34.40 21.90 30.99 23.54 17.10 19.72 17.12 13.72

5
0.50 8.44 2.97 1.72 2.10 1.64 1.19 1.08 1.01 0.86
1.00 8.43 2.97 1.72 2.10 1.64 1.19 1.08 1.01 0.86
2.00 8.42 2.97 1.72 2.10 1.64 1.19 1.08 1.01 0.86

CCSS

100
0.50 63.09 47.19 32.86 35.76 31.53 25.10 21.48 20.41 18.18
1.00 62.96 47.14 32.84 35.72 31.50 25.09 21.48 20.41 18.18
2.00 62.71 47.03 32.79 35.64 31.44 25.06 21.48 20.41 18.18

20
0.50 45.00 30.00 19.82 25.39 20.87 15.64 15.64 14.69 12.45
1.00 44.91 29.98 19.81 25.36 20.85 15.63 15.64 14.70 12.45
2.00 44.73 29.92 19.79 25.30 20.82 15.62 15.64 14.72 12.46

5
0.50 7.97 2.96 1.71 2.10 1.62 1.21 1.07 1.01 0.86
1.00 7.97 2.96 1.71 2.10 1.62 1.21 1.07 1.01 0.86
2.00 7.97 2.96 1.71 2.10 1.62 1.21 1.07 1.01 0.86

SSCC

100
0.50 54.41 39.17 26.76 23.98 21.79 18.10 15.29 14.65 13.24
1.00 54.27 39.12 26.74 23.96 21.77 18.09 15.28 14.64 13.23
2.00 54.00 39.01 26.70 23.90 21.73 18.06 15.26 14.62 13.22

20
0.50 42.54 27.86 18.21 19.20 16.68 13.14 12.26 11.48 9.96
1.00 42.43 27.82 18.20 19.18 16.66 13.13 12.25 11.47 9.96
2.00 42.23 27.76 18.18 19.14 16.64 13.11 12.23 11.46 9.95

5
0.50 8.08 2.96 1.71 2.10 1.64 1.19 1.08 1.01 0.86
1.00 8.08 2.96 1.71 2.10 1.64 1.19 1.08 1.01 0.86
2.00 8.08 2.96 1.71 2.10 1.64 1.19 1.08 1.01 0.86

(b)

a/h Concentrated
Mass

CCFF

Nx/Ny = 0 Nx/Ny = 1 Nx/Ny = 2

Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2

100
0.50 55.60 35.20 22.84 18.21 16.78 14.16 9.98 9.73 9.12
1.00 55.55 35.20 22.84 18.21 16.78 14.16 9.98 9.73 9.11
2.00 55.43 35.20 22.84 18.20 16.77 14.16 9.98 9.73 9.11

20
0.50 38.72 21.83 13.82 13.66 12.18 9.83 7.44 7.18 6.58
1.00 38.68 21.83 13.82 13.66 12.18 9.83 7.44 7.18 6.58
2.00 38.60 21.83 13.82 13.65 12.17 9.83 7.43 7.18 6.58

5
0.50 6.90 2.89 1.67 2.06 1.58 1.16 1.07 0.99 0.84
1.00 6.89 2.89 1.67 2.06 1.58 1.16 1.07 0.99 0.84
2.00 6.88 2.89 1.67 2.06 1.58 1.16 1.07 0.99 0.84

CFCF

100
0.50 6.11 2.30 1.39 3.24 1.69 1.14 2.09 1.32 0.96
1.00 6.11 2.30 1.39 3.24 1.69 1.14 2.09 1.32 0.96
2.00 6.11 2.30 1.39 3.24 1.69 1.14 2.09 1.32 0.96

20
0.50 5.60 2.11 1.28 2.98 1.55 1.05 1.91 1.21 0.88
1.00 5.60 2.11 1.28 2.98 1.55 1.05 1.91 1.21 0.88
2.00 5.59 2.11 1.28 2.98 1.55 1.05 1.91 1.21 0.88

5
0.50 3.46 1.42 0.86 2.00 1.05 0.70 1.08 0.80 0.58
1.00 3.46 1.42 0.86 2.00 1.05 0.70 1.08 0.80 0.58
2.00 3.46 1.42 0.86 2.00 1.05 0.70 1.08 0.80 0.58

SSSS

100
0.50 23.61 20.38 15.85 11.80 11.30 10.19 7.87 7.71 7.31
1.00 23.56 20.35 15.83 11.79 11.29 10.18 7.86 7.71 7.31
2.00 23.47 20.29 15.80 11.77 11.27 10.16 7.85 7.70 7.30

20
0.50 21.15 17.35 12.82 10.58 9.95 8.67 7.05 6.85 6.37
1.00 21.11 17.33 12.81 10.57 9.94 8.66 7.05 6.85 6.36
2.00 21.03 17.28 12.79 10.55 9.93 8.65 7.04 6.84 6.36

5
0.50 7.75 2.95 1.71 2.09 1.62 1.20 1.08 1.01 0.85
1.00 7.75 2.95 1.71 2.09 1.62 1.20 1.08 1.01 0.85
2.00 7.75 2.95 1.71 2.09 1.62 1.20 1.08 1.01 0.85
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Table 8. Non-dimensional buckling load λ = (λb2/E2h3) for a bi-axial buckling of a composite plate
having lamination scheme C and additional mass.

a/h Concentrated
Mass

CCCC

Nx/Ny = 0 Nx/Ny = 1 Nx/Ny = 2

Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2

100
0.50 81.70 64.48 45.08 42.67 39.97 32.78 28.17 27.74 24.88
1.00 81.51 64.39 45.04 42.61 39.93 32.76 28.15 27.72 24.86
2.00 81.13 64.22 44.97 42.50 39.85 32.71 28.10 27.67 24.83

20
0.50 54.53 38.47 25.50 30.29 26.00 19.75 19.72 18.56 16.56
1.00 54.42 38.43 25.48 30.25 25.98 19.74 19.71 18.55 16.54
2.00 54.22 38.36 25.45 30.17 25.93 19.72 19.67 18.53 16.49

5
0.50 4.67 4.73 2.78 3.59 3.90 2.64 1.94 2.15 2.10
1.00 4.67 4.73 2.78 3.59 3.90 2.64 1.94 2.15 2.10
2.00 4.67 4.73 2.78 3.59 3.90 2.64 1.94 2.15 2.10

CCSS

100
0.50 58.94 50.58 37.48 33.32 32.03 27.40 23.08 22.87 21.02
1.00 58.82 50.51 37.45 33.29 32.00 27.38 23.06 22.85 21.00
2.00 58.58 50.36 37.38 33.21 31.93 27.34 23.02 22.82 20.98

20
0.50 43.73 33.51 23.11 24.72 22.46 17.83 16.99 16.37 14.24
1.00 43.64 33.48 23.10 24.69 22.44 17.82 16.97 16.35 14.23
2.00 43.47 33.41 23.07 24.64 22.40 17.80 16.95 16.33 14.21

5
0.50 4.72 4.72 2.78 3.57 3.82 2.62 1.93 2.14 2.10
1.00 4.72 4.72 2.78 3.57 3.82 2.62 1.93 2.14 2.10
2.00 4.72 4.72 2.78 3.57 3.81 2.62 1.93 2.14 2.10

SSCC

100
0.50 66.86 54.06 38.13 29.94 29.01 25.12 19.16 19.15 17.95
1.00 66.71 53.98 38.09 29.90 28.98 25.11 19.15 19.14 17.94
2.00 66.39 53.81 38.03 29.84 28.92 25.07 19.12 19.11 17.92

20
0.50 44.45 35.59 23.63 22.96 21.11 17.04 14.75 14.37 12.79
1.00 44.45 35.57 23.61 22.93 21.10 17.03 14.73 14.36 12.79
2.00 44.45 35.52 23.58 22.88 21.06 17.01 14.71 14.34 12.78

5
0.50 4.66 4.73 2.77 3.59 3.89 2.61 1.94 2.15 2.10
1.00 4.66 4.73 2.77 3.59 3.89 2.61 1.94 2.15 2.10
2.00 4.66 4.73 2.77 3.59 3.89 2.61 1.94 2.15 2.10
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Figure 5. Mode shape for laminated composite plates with a/h = 20, M = 1, Nx/Ny = 2, Nxy = 2 and
CCCC boundary condition.
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Figure 6. Mode shape for laminated composite plate with lamination scheme C, a/h = 5, Nx/Ny = 1,
Nxy = 1 and M = 2.

In Table 6a,b, the non-dimensional buckling loads for composite plates having lamination scheme
A and different boundary conditions are shown. In the present problem, different values of aspect ratio
(a/h = 100, 20 and 5) and Nx/Ny (Nx/Ny = 0, 1 and 2) are taken in consideration. The values of shear
forces (Nxy) are taken as 0, 1 and 2. It is observed from the table that the non-dimensional buckling
loads are minimum for lower values of a/h and higher values of biaxial (Nx/Ny) and shear (Nxy) forces.
The buckling load on plates is proportional to h2 and buckling load should decrease with a decrease
in thickness. But the presented results are in terms of the non-dimensional buckling load parameter
(λ = Nx a2/(E2h3)) which is inversely proportional to cubed thickness. Hence, the non-dimensional
buckling load parameter increases with a decrease in thickness. It may be also observed that for
laminated plates having a/h ratio greater than 5, the CCCC boundary condition has the greater values
of non-dimensional buckling loads (this is due to the highest stiffness of CCCC boundary conditions)
whereas the lowest for CFCF boundary condition. Whereas for an a/h ratio equal to 5, any loading
condition has almost the same nondimensional buckling load for all boundary conditions except
for CFCF boundary condition. The nondimensional buckling load was also found to have the least
variation for increasing values of additional mass for a particular aspect ratio and applied loading
conditions. In Table 7a,b, and Table 9a,b, the other problems were solved for the composite plates
having lamination scheme B and C with different boundary conditions. In the present problem,
different values of aspect ratio (a/h = 100, 20 and 5) and Nx/Ny (Nx/Ny = 0, 1 and 2) were taken in
consideration. The values of shear forces (Nxy) were taken as 0, 1 and 2. In the tables, all trends of
variations for non-dimensional buckling load with respect to different loading and boundary conditions
are similar to the ones presented in Table 6a,b. It may be concluded from the tables that for any
boundary condition different than CFCF and CCFF as the number of plies are increased the values
of non-dimensional buckling load increases along with any particular value of aspect ratio, loading
condition and additional mass.
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Table 9. (a) Non-dimensional buckling load λ = (λb2/E2h3) for a bi-axial buckling of a composite
plate having lamination scheme A and central square cutout; (b) Non-dimensional buckling load
λ = (λb2/E2h3) for a bi-axial buckling of a composite plate having lamination scheme A and central
square cutout.

(a)

a/h Cutout Size

CCCC

Nx/Ny = 0 Nx/Ny = 1 Nx/Ny = 2

Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2

100
0.2a 58.93 40.28 26.28 21.88 19.74 16.27 12.27 11.85 10.89
0.4a 64.98 51.36 34.48 24.11 22.27 18.92 13.24 12.91 12.09
0.6a 125.86 86.64 51.58 22.14 21.43 19.74 11.64 11.53 11.24

20
0.2a 40.09 23.26 14.52 15.94 13.26 10.12 8.90 8.35 7.27
0.4a 43.29 28.69 17.52 15.36 13.48 10.77 8.32 7.98 7.23
0.6a 61.50 41.47 24.87 14.48 13.70 12.08 7.59 7.47 7.16

5
0.2a 6.44 2.75 1.58 1.62 1.36 1.04 0.82 0.80 0.71
0.4a 6.33 2.73 1.58 1.62 1.36 1.03 0.82 0.80 0.71
0.6a 6.32 2.85 1.65 1.64 1.39 1.06 0.83 0.82 0.73

CCSS

100
0.2a 57.76 40.11 25.82 19.57 17.91 15.02 10.66 10.37 9.67
0.4a 62.86 49.61 32.81 23.37 21.59 18.34 12.34 12.07 11.39
0.6a 103.22 58.35 35.75 17.81 17.06 15.40 9.62 9.49 9.15

20
0.2a 38.21 22.93 14.30 14.61 12.47 9.68 7.86 7.49 6.69
0.4a 40.98 26.50 16.16 15.38 13.38 10.41 8.26 8.03 7.15
0.6a 56.28 30.15 18.26 9.65 9.20 8.23 5.20 5.13 4.93

5
0.2a 6.53 2.75 1.58 1.61 1.36 1.04 0.81 0.79 0.70
0.4a 6.46 2.73 1.57 1.61 1.35 1.02 0.81 0.79 0.70
0.6a 6.33 2.76 1.59 1.61 1.35 1.02 0.81 0.80 0.70

SSCC

100
0.2a 19.44 15.97 11.83 8.09 7.72 6.92 5.01 4.92 4.68
0.4a 11.07 10.38 8.99 5.39 5.30 5.05 3.52 3.50 3.42
0.6a 6.42 6.39 6.30 4.73 4.72 4.67 3.66 3.65 3.63

20
0.2a 16.85 12.85 9.00 7.07 6.59 5.66 4.37 4.25 3.94
0.4a 9.63 8.75 7.21 4.87 4.73 4.39 3.20 3.15 3.04
0.6a 5.33 5.24 5.02 3.93 3.90 3.83 3.12 3.11 3.06

5
0.2a 6.42 2.74 1.57 1.62 1.36 1.04 0.82 0.80 0.70
0.4a 4.22 2.73 1.57 1.62 1.36 1.03 0.82 0.80 0.71
0.6a 2.11 1.94 1.60 1.61 1.39 1.06 0.83 0.81 0.73

(b)

a/h Cutout Size

CCFF

Nx/Ny = 0 Nx/Ny = 1 Nx/Ny = 2

Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2

100
0.2a 57.52 35.18 21.57 13.23 12.66 11.41 6.88 6.79 6.57
0.4a 62.79 37.52 22.06 11.62 11.06 9.93 6.09 6.00 5.79
0.6a 81.21 36.95 21.32 6.95 6.83 6.49 3.56 3.55 3.49

20
0.2a 38.18 19.14 11.41 8.72 8.10 7.02 4.58 4.49 4.26
0.4a 40.92 19.73 11.44 6.95 6.62 5.70 3.70 3.64 3.47
0.6a 47.69 18.40 10.46 3.79 3.70 3.49 1.94 1.93 1.90

5
0.2a 6.40 2.70 1.55 1.61 1.33 1.01 0.81 0.79 0.70
0.4a 6.46 2.68 1.53 1.55 1.33 1.00 0.81 0.78 0.69
0.6a 6.51 2.54 1.48 0.90 0.85 0.74 0.47 0.46 0.44

CFCF

100
0.2a 6.07 2.17 1.28 2.57 1.44 0.98 1.39 1.01 0.77
0.4a 4.77 1.82 1.08 2.27 1.25 0.85 1.22 0.89 0.67
0.6a 3.05 1.36 0.82 1.75 0.96 0.65 0.95 0.69 0.53

20
0.2a 5.24 1.86 1.09 2.23 1.24 0.84 1.21 0.88 0.67
0.4a 4.01 1.55 0.92 1.94 1.06 0.72 1.05 0.76 0.58
0.6a 2.48 1.17 0.71 1.46 0.82 0.56 0.78 0.58 0.45

5
0.2a 3.09 1.09 0.63 1.20 0.70 0.48 0.64 0.48 0.37
0.4a 2.13 0.89 0.53 0.97 0.58 0.40 0.52 0.40 0.31
0.6a 1.13 0.65 0.40 0.67 0.44 0.31 0.35 0.29 0.23

SSSS

100
0.2a 15.29 13.43 10.57 7.40 7.12 6.47 4.81 4.72 4.50
0.4a 7.64 7.31 6.58 3.97 3.92 3.78 2.67 2.65 2.61
0.6a 3.94 3.92 3.85 2.34 2.33 2.31 1.60 1.60 1.59

20
0.2a 12.92 10.76 8.03 6.30 5.95 5.22 4.10 4.00 3.73
0.4a 6.59 6.18 5.35 3.49 3.42 3.24 2.35 2.32 2.26
0.6a 3.39 3.35 3.25 2.09 2.08 2.05 1.43 1.42 1.41

5
0.2a 5.22 2.73 1.57 1.61 1.36 1.03 0.81 0.79 0.71
0.4a 3.21 2.55 1.57 1.62 1.35 1.02 0.81 0.79 0.70
0.6a 1.83 1.72 1.50 1.16 1.12 1.01 0.72 0.71 0.67
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The mode shapes for the buckled laminated composite plates are shown in Figures 4–6. Figure 4
shows mode shapes for composite plates having lamination scheme A and clamped at all edges. The
value of additional mass and a/h ratio was taken as 0.05 and 100, respectively. The different conditions
of uni-axial and bi-axial loading with or without shear were taken into consideration. Figure 4 shows
that mode shapes for bi-axial loading are different from uni-axial buckling whereas mode shapes for
different values of bi-axial loading remain the same, only the values are changed. Figure 5 shows mode
shapes for different lamination schemes keeping other conditions like a/h ratio, nature of the load, the
values of additional mass and boundary conditions are constant. It can be seen that on changing the
lamination scheme, the mode shape changes; this may be due to the fact that a different orientation of
fiber in plies affects the strength of laminate and thereby changing the mode of deformation.

Figure 6 presents the variation of mode shape for different boundary conditions. The figure
indicates that mode shapes are affected by variation in the boundary condition. The least distorted
mode shape is observed for SSSS boundary condition.

3.4.2. Laminated Composite Plates with Central Cutout

Many novel problems were solved and shown in Tables 9–11 taking different values of aspect
ratio (a/h), nature of loading (Nx/Ny & Nxy), cutout sizes (0.2a × 0.2a, 0.4a × 0.4a and 0.6a × 0.6a),
lamination schemes and boundary conditions. Further, the mode shapes were also drawn and shown
in Figures 7–9. In all the preceding problems the material properties were assumed as defined in the
previous section and a square cutout is taken at the center of the plate

Table 10. Non-dimensional buckling load λ = (λb2/E2h3) for a bi-axial buckling of a composite plate
having lamination scheme B and central square cutout.

a/h Cutout Size

CCCC

Nx/Ny = 0 Nx/Ny = 1 Nx/Ny = 2

Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2

100
0.2a 59.92 43.18 29.59 30.27 26.69 21.44 19.74 18.59 16.31
0.4a 62.70 52.24 38.94 33.16 30.81 26.40 21.19 20.52 18.93
0.6a 97.67 93.52 81.87 52.71 51.02 46.97 28.25 27.98 27.25

20
0.2a 43.47 28.14 18.38 22.90 18.64 14.02 14.56 13.19 10.99
0.4a 43.98 33.21 23.00 24.96 21.49 16.85 15.03 14.11 12.31
0.6a 56.77 48.97 33.53 34.24 30.64 24.45 18.14 17.55 16.15

5
0.2a 6.63 2.92 1.71 2.09 1.63 1.18 1.08 1.01 0.86
0.4a 6.55 2.91 1.71 2.08 1.61 1.18 1.08 1.01 0.85
0.6a 6.57 3.05 1.78 2.08 1.64 1.22 1.09 1.02 0.87

CCSS

100
0.2a 46.37 36.16 25.84 26.38 23.64 19.28 18.18 17.14 15.04
0.4a 47.18 39.91 30.18 24.63 23.13 20.12 16.12 15.65 14.52
0.6a 79.92 63.48 44.81 16.34 16.09 15.43 9.00 8.95 8.83

20
0.2a 34.12 24.20 16.40 19.42 16.43 12.67 13.19 12.04 10.10
0.4a 34.92 26.85 18.75 17.23 15.56 12.81 10.73 10.27 9.24
0.6a 50.06 34.61 22.62 9.81 9.55 8.92 5.35 5.31 5.19

5
0.2a 6.62 2.93 1.70 2.09 1.62 1.19 1.07 1.01 0.85
0.4a 6.59 2.91 1.70 2.08 1.60 1.18 1.07 1.00 0.84
0.6a 6.56 2.95 1.72 1.85 1.61 1.17 1.02 0.97 0.85

SSCC

100
0.2a 39.63 29.62 20.69 17.25 15.95 13.56 10.95 10.58 9.73
0.4a 29.06 25.61 20.38 14.74 14.18 12.89 9.71 9.54 9.10
0.6a 14.69 14.52 14.03 11.67 11.58 11.32 9.60 9.55 9.41

20
0.2a 30.94 21.57 14.52 13.95 12.46 10.14 8.85 8.42 7.51
0.4a 21.00 17.94 13.81 11.70 11.02 9.64 7.86 7.64 7.10
0.6a 9.21 9.00 8.47 7.50 7.38 7.07 6.30 6.23 6.03

5
0.2a 6.68 2.93 1.70 2.08 1.63 1.18 1.08 1.01 0.86
0.4a 4.81 2.90 1.70 2.08 1.61 1.19 1.08 1.01 0.85
0.6a 2.27 2.08 1.71 1.76 1.63 1.21 1.09 1.02 0.87
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Table 11. Non-dimensional buckling load λ = (λb2/E2h3) for a bi-axial buckling of a composite plate
having lamination scheme C and central square cutout.

a/h Cutout Size

CCCC

Nx/Ny = 0 Nx/Ny = 1 Nx/Ny = 2

Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2 Nxy = 0 Nxy = 1 Nxy = 2

100
0.2a 57.59 47.63 34.31 29.99 28.67 24.24 19.75 19.62 18.02
0.4a 57.41 52.03 40.91 30.92 30.31 27.24 20.19 20.21 19.29
0.6a 76.20 75.01 69.17 52.70 52.80 49.61 29.97 30.11 29.74

20
0.2a 40.97 30.71 20.93 22.55 20.13 15.80 14.65 14.08 12.21
0.4a 38.19 32.06 23.58 22.79 21.13 17.46 14.40 14.09 12.80
0.6a 44.23 40.66 33.37 33.77 31.74 27.26 18.03 17.82 16.84

5
0.2a 4.63 4.71 2.63 3.48 3.79 2.59 1.92 2.14 2.09
0.4a 4.60 4.68 2.56 3.39 3.85 2.70 1.88 2.14 2.07
0.6a 4.63 4.71 2.28 3.38 3.88 2.83 1.89 2.14 2.09

CCSS

100
0.2a 43.52 38.14 28.80 24.81 24.00 20.76 17.14 17.05 15.77
0.4a 42.38 39.29 31.78 22.96 22.72 20.82 15.36 15.41 14.84
0.6a 67.10 65.27 57.53 24.38 24.62 24.01 13.68 13.80 13.78

20
0.2a 33.39 26.66 18.84 19.14 17.61 14.26 13.06 12.66 11.14
0.4a 31.48 27.13 20.36 17.23 16.50 14.21 11.12 11.02 10.26
0.6a 42.82 39.54 31.35 15.03 14.95 13.98 8.20 8.25 8.13

5
0.2a 4.74 4.68 2.63 3.50 3.63 2.57 1.93 2.14 2.08
0.4a 4.68 4.67 2.56 3.41 3.62 2.61 1.88 2.14 2.03
0.6a 4.66 4.70 2.28 3.40 3.42 2.70 1.85 1.98 1.84

SSCC

100
0.2a 49.82 40.95 29.34 22.31 21.75 19.05 14.21 14.24 13.45
0.4a 40.37 37.33 29.96 20.20 20.09 18.62 13.18 13.26 12.88
0.6a 29.27 29.47 28.37 22.63 22.83 22.38 17.65 17.80 17.64

20
0.2a 37.49 28.07 19.14 17.65 16.46 13.53 11.27 11.07 10.01
0.4a 28.18 24.76 18.89 15.66 15.12 13.23 10.29 10.22 9.59
0.6a 17.87 17.62 16.16 14.81 14.73 13.82 12.20 12.23 11.81

5
0.2a 4.62 4.72 2.63 3.48 3.80 2.55 1.92 2.14 2.08
0.4a 4.60 4.53 2.56 3.39 3.64 2.64 1.88 2.14 2.07
0.6a 4.28 4.05 2.28 3.46 3.47 2.76 1.90 2.13 2.08

In Table 9a,b, the non-dimensional buckling loads for the composite plates having lamination
scheme A and different boundary conditions are shown. In the present problem, the different values of
aspect ratio (a/h = 100, 20 and 5) and Nx/Ny (Nx/Ny = 0, 1 and 2) were taken in consideration. The
values of shear forces (Nxy) were taken as 0, 1 and 2. The table shows that for lower values of aspect
ratio the non-dimensional buckling load is minimum. The values of loads are also found to be lower
for higher values of biaxial (Nx/Ny) and shear (Nxy) forces. It may be also observed, that for laminated
plates having the a/h ratio greater than 5, CCCC boundary conditions have the greater values of the
non-dimensional buckling loads whereas the lowest is for CFCF boundary conditions. Whereas for
a/h ratio equal to 5, any loading condition has almost the same nondimensional buckling load for all
the boundary conditions except for CFCF boundary condition. The non-dimensional buckling load is
found to increase along with the size of the central cutout area.

In Tables 10 and 11, other solved problems are presented for composite plates having lamination
scheme B and C with different boundary conditions. In the present problem, different values of aspect
ratio (a/h = 100, 20 and 5) and Nx/Ny (Nx/Ny = 0, 1 and 2) were taken in consideration. The values of
shear forces (Nxy) were taken as 0, 1 and 2. In the tables, all trends of variations for non-dimensional
buckling load with respect to different loading and boundary conditions were similar to the ones
presented in Table 9. The values presented in the discussed tables show that for any boundary condition
the values of non-dimensional buckling load increase along with the number of plies for any particular
value of aspect ratio, loading condition and cutout size.
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The mode shapes for the central area of buckled laminated composite plates are shown in
Figures 7–9. The plane section area with no deformations represents the cutout in the plate. As there is
no material at the cutout in the plate, it does not move in the mode shape. Figure 8 shows mode shapes
for central area of composite plates clamped at all edges and having lamination scheme A. The value of
a central square cutout and a/h ratio were taken as 0.4a and 100, respectively. The different conditions
of uni-axial and bi-axial loading with or without shear were taken into consideration. From Figure 7, it
can be seen that mode shapes for bi-axial loading are different from uni-axial buckling, whereas the
mode shapes for different values of bi-axial loading remain same, only the values are different.
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Figure 8 shows the mode shapes for different lamination schemes obtained preserving other
conditions, like a/h ratio, loading condition, cutout size and boundary conditions constant. It is visible
that changes in lamination scheme trigger changes in the mode shapes, this may be due to the fact that
the different orientation of fiber in plies affects the strength of laminate and thereby changing the mode
of deformation.

Figure 9 shows the variation of mode shape for different boundary conditions keeping other
parameters, like cutout size, aspect ratio and nature of loading, constant. The figure indicates that
mode shapes are affected by variation in the boundary conditions.

4. Conclusions

In this paper, using the presented ISDT formulation and C◦ finite element model a computer
code for Uni-axial and Bi-axial buckling analysis of laminated composite plates were developed. The
proposed FE model based on the presented theory was analyzed for the first time. Along with this
theory, the transverse shear stress continuity was also incorporated at the interface of each layer in
addition to zero transverse shear stress at the top and bottom of the plate. The performed analyses
showed that the obtained results are much improved over the other existing models (FSDT and HSDT).
Various novel problems with different geometrical properties, loading, and boundary conditions and
ply orientation were analyzed for the laminated composite plates. The following conclusions were
drawn from the presented study:

1. A relative study of the results from literature and present mathematical formulation shows that
the obtained novel formulation gives good results.

2. The dimensionless value of buckling load was found to be decreasing along with the increase in
the values of Nx/Ny and Nxy.

3. It was observed that for any value of the applied additional mass and cutout, the non-dimensional
buckling load was minimum for the minimum aspect ratio (a/h), and as the aspect ratio decreases
the variation of non-dimensional buckling load with respect to the applied boundary conditions
becomes insignificant for the laminated composite plates.

4. It can be seen that for any applied aspect ratio, the CCCC boundary condition had the highest
values of non-dimensional buckling load whereas CCFF had the lowest for laminated composite
plates having additional mass at the central node. It was also concluded that for higher lamination
plies the value for buckling loads was higher, irrespective of any boundary and loading conditions.

5. It was concluded from the presented study that mode shapes for bi-axial loading were different
from the uni-axial buckling whereas for different values of bi-axial loading the mode shape
remains the same despite the different observed values. The mode shape was also found to vary
for change in the applied boundary conditions. These conditions were the same for both the cases
i.e., for additional mass and cutout.
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6. It can be seen that on changing lamination scheme, with the remaining parameters assumed as
constant, the mode shape changed, and this may be due to the fact that the different orientation
of fiber in plies affects the strength of laminate, thereby changing the mode of deformation. The
condition was the same for additional mass and cutouts.
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