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Abstract: The purpose of this study was to synthesize high-quality recycled α-Fe2O3 to improve
its complex permittivity properties by reducing the particles to nanosize through high energy ball
milling. Complex permittivity and permeability characterizations of the particles were performed
using open-ended coaxial and rectangular waveguide techniques and a vector network analyzer.
The attenuation characteristics of the particles were analyzed with finite element method (FEM)
simulations of the transmission coefficients and electric field distributions using microstrip model
geometry. All measurements and simulations were conducted in the 8–12 GHz range. The average
nanoparticle sizes obtained after 8, 10 and 12 h of milling were 21.5, 18, and 16.2 nm, respectively,
from an initial particle size of 1.73 µm. The real and imaginary parts of permittivity increased with
reduced particle size and reached maximum values of 12.111 and 0.467 at 8 GHz, from initial values of
7.617 and 0.175, respectively, when the particle sizes were reduced from 1.73 µm to 16.2 nm. Complex
permeability increased with reduced particle size while the enhanced absorption properties exhibited
by the nanoparticles in the simulations confirmed their ability to attenuate microwaves in the X-band
frequency range.

Keywords: recycled hematite (α-Fe2O3); ball milling technique; reduced particle size; finite element
method; attenuation; complex permittivity; X-band

1. Introduction

The rapid growth and diversity of applications of electromagnetic waves, particularly commercial
and military electronics functioning at microwave frequencies, has attracted a lot of interest in microwave
absorbing material technology for electromagnetic interference (EMI) reduction. For a microwave
absorbing material to be practical, a proper balance of electrical performance, low density, thinness,
mechanical properties and low cost is required. Various magnetic materials have been used in
microwave absorbing applications, the most common of which are ferrites due to their excellent
electrical and magnetic properties. Ferrites can be applied in various forms, such as spinels and
garnets, and are often synthesized via multi-stage chemical processes, which can be complicated and
expensive. Moreover, ferrites are heavy and the imaginary parts of their permittivity are very low at
high frequencies, making the absorption properties dependent on magnetic loss [1]. In order to reduce
the effect of these limitations, many studies have focused on new techniques such as the use of ferrites
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in conjunction with electrically conducting polymers [2] or dielectric carbon-based materials [3], or the
doping of ferrites using various types of ionic metals [4].

Recently, Nd doped strontium ferrite was synthesized [5] using hematite (α-Fe2O3) prepared
from recyclable mill scale waste. Recycled α-Fe2O3 can be produced cheaply via a simple processing
technique, has low environmental waste, is stable under ambient conditions, and has unique magnetic
and electrical properties. The imaginary permittivity part is, however, very low and an improvement
in this property, while retaining the magnetic attributes, could increase the microwave absorption
efficiency of recycled α-Fe2O3 and serve to reduce the limitations of commonly used ferrites.

The interaction between a dielectric material and high frequency electromagnetic energy can be
expressed by the relative complex permittivity equation ε* = ε′ − jε′′, where ε′ and ε′′, respectively,
represent the real and imaginary parts. The ratio of tan δ = ε′′/ε′ is the loss tangent of a material
and higher values indicate higher attenuation properties. A material’s complex permittivity can be
measured by a variety of methods such as the open-ended coaxial (OEC) probe technique, which
is based on high frequency, room temperature, broadband measurements. The application of the
OEC probe technique for the measurement of the complex permittivity of powdered and compressed
materials was reported by Refs. [6,7]. However, the measurement of the complex permittivity of
recycled α-Fe2O3 using the OEC technique has yet to be investigated.

The aim of the current study was to improve the complex permittivity properties of recycled
α-Fe2O3 by reducing the particle size, to nanosize, via high energy ball milling (HEBM) for several
hours. The resultant effects of reduced particle size on the magnetic properties of the recycled α-Fe2O3

were also investigated. The dielectric characterization of the samples was conducted using the OEC
probe technique while the magnetic properties were determined using the waveguide measurement
technique. The finite element method (FEM), using COMSOL Multiphysics, was used to numerically
calculate the transmission coefficients of the recycled α-Fe2O3 using microstrip model geometry.
The attenuation characteristics, due to material absorption by the recycled α-Fe2O3 particles, were
subsequently analyzed using calculated transmission coefficient (dB) values and FEM simulations of the
electric field distributions of the microstrip covered by the recycledα-Fe2O3 particles. All measurements
and simulations were performed in the X-band (8–12 GHz) microwave frequency range.

2. Materials and Methods

2.1. Synthesis of α-Fe2O3 Nanoparticles from Mill Scale

As illustrated in Figure 1, the mill scale flakes were crushed into coarse powder and purified,
using the magnetic separation methods described in Refs. [5,8], to obtain the magnetic wustite (FeO)
slurry that was then filtered and dried in a Memmert drying oven for 24 h at 30 ◦C. The dried FeO
was then oxidized in a Protherm furnace at 600 ◦C for 6 h (holding time) to produce the α-Fe2O3

powder. The recycled α-Fe2O3 powder was milled, separately for 8, 10 and 12 h, into nanoparticles,
at room temperature, using the SPEX Sample Prep 8000D high energy ball mill (SPEX SamplePrep
LLC, Metuchen, NJ, USA), operated at 1425 rpm by a 50 Hz motor at a clamp speed of 875 cycles/min
using a powder-to-ball ratio of 1:5. The steel vials containing the materials were opened for 2 min after
every 50 min of milling in order to avoid the transformation of the α-Fe2O3 to Fe3O4 reported in the
study by Ref. [9].
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Figure 1. Synthesis of recycled α-Fe2O3 nanoparticles.

2.2. Microstructural Characterization

The phase composition structure and crystallite size of the recycled α-Fe2O3 particles before and
after high energy ball milling were analyzed, using X-ray diffraction (XRD), on a fully automated
Philips X’Pert High Pro Panalytical (Model PW3040/60 MPD, Amsterdam, Netherlands) with Cu-Kα
radiation operating at a voltage of 40.0 kV, a current of 40.0 mA and a wavelength of 1.5405 Å. The
diffraction patterns were recorded in the 2θ range of 2◦ to 80◦ with a scanning speed of 2◦/min. All data
were subjected to the Rietveld analysis on PANalytic X’Pert Highscore Plus v3.0 software (PANalytical
B.V., Almelo, Netherlands). The samples were identified by comparing their diffraction peaks with
those in the Inorganic Crystal Structure Database (ICSD). The average crystallite sizes were estimated
based on the Scherrer formula:

D =
kλ

B cos θ
, (1)

where D is the crystallite size, B is the full width at half maximum (FWHM) of the diffraction peaks in
radians, k = 0.9, θ is the peak position and λ = 1.5405 Å.

The elemental composition of the recycled α-Fe2O3 particles was analyzed using energy dispersive
X-ray spectroscopy (EDX), while the size, shape and arrangement of the nanoparticles were studied
using the JEM-2100F high resolution transmission electron microscope (HRTEM, JEOL, Tokyo, Japan).
Drops of the α-Fe2O3 particles were dispersed in acetone, placed on copper HRTEM grids and dried.
The dried materials were then transferred into the high vacuum chamber of the microscope for the
viewing and analysis of the particles. The particle size distributions of the samples were obtained after
processing the images, using the ImageJ software (NIH, University of Wisconsin, Madison, WI, USA),
of 100 particles from each sample.

2.3. Measurement of Complex Permittivity

Measurements of the real and imaginary parts of the permittivity of the recycled α-Fe2O3

particles were taken at room temperature using the Agilent 85070B open ended coaxial probe
connected, via a high accuracy coaxial cable, to the Agilent N5230A PNA-L vector network analyzer
(VNA, Agilent Technologies, CA, USA) at 8 to 12 GHz. A one-port reflection-only calibration was
performed using a 3.5 inch high density shorting block and deionized water at 25 ◦C. The calibration
was verified by measuring the permittivity values for unfilled polytetrafluoroethylene (PTFE) and
comparing the results with the manufacturer’s values—good agreement confirmed the accuracy
of the permittivity characterizations. Without a binding material, the recycled α-Fe2O3 samples
were separately compressed to a thickness of 6 mm, in sample holders at 4 tons, with a mechanical
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hand-operated pressing machine, in order to remove air-filled gaps between the particles likely to affect
the results. As shown in Figure 2, the OEC probe was then firmly placed onto the flat surface of the
powdered samples for determination of complex permittivity using the equipment’s installed software.
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Figure 2. Measurement of complex permittivity using OEC technique.

2.4. Measurement of Complex Permeability

The real (µ′) and imaginary (µ′′) parts of the permeability of recycled α-Fe2O3 particles were
determined by the rectangular waveguide (RWG) technique. The powders were compressed into sample
holders (length = 22.0 mm, width = 11.0 mm, height = 6.0 mm) and inserted into a measurement system
consisting of a pair of RWGs connected to an Agilent N5230A PNA-L network analyzer. The setup
was calibrated by electronic calibration modules (N4694-60001), after which measurements were made
in the 8–12 GHz range based on the poly reflection/transmission precision measurement model.

2.5. Material Absorption Properties Based On FEM

A transmission coefficient (S21) is a transmission line parameter often associated with the
transmission of electromagnetic waves in microwave networks and can directly describe the attenuation
characteristics of a material for microwave absorption applications. In this work, the magnitudes of
the transmission coefficient (|S21|) were theoretically calculated using FEM implemented on COMSOL
Multiphysics® version 3.5. The calculations were based on the model geometry of a microstrip that
consisted of a dielectric (RT duroid 5880) substrate with a length of 6.0 cm, width of 5.0 cm and
thickness of 0.15 cm and with a signal line (width = 1.5 mm, length = 6.0 cm) etched on the surface of
the substrate along the broader side. The complex permittivity of the substrate was 2.2 − j·0.00088.
The input and output ports comprised radio frequency (RF) subminiature connectors attached to both
ends of the substrate with the inner conductor of each subminiature placed in contact with the signal
line of the microstrip. The procedures for the FEM analysis consisted of: (a) discretizing the solution
region into elements of a finite number of sub-regions, (b) deriving the central equations of a typical
element, (c) assembling the elements in the region of the solution, and (d) solving the obtained system
of equations. The measured complex permittivity values of the recycled α-Fe2O3 particles were used
as inputs for the calculations in the frequency range of 8–12 GHz (X-band). RF electromagnetic waves,
in harmonic propagation mode, were applied to the model for FEM and solved, by solving Maxwell’s
equations for a typical tetrahedral element/mesh (Figure 3), to determine the values of the transmission
coefficients of the samples. The attenuation of the material absorption was then deduced from the
calculated |S21| based on the following formula:

Transmission coefficient magnitude (dB) = 20log (|S21|) (2)
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3. Results and Discussion

3.1. Microstructural Characterization

The X-ray diffractograms of the recycled α-Fe2O3 particles before and after 8, 10 and 12 h of
ball milling are shown in Figure 4. The diffractograms were compared with the standard patterns
of the Inorganic Crystal Structure Database (ICSD) and all the Bragg peaks were identified as single
phase rhombohedral (hexagonal) crystal structures of α-Fe2O3 with an R-3c space group. There were
no other phases identified, which was consistent with similar work in which recycled α-Fe2O3 was
synthesized from mill scale [10]. This suggests that α-Fe2O3 did not transform to Fe3O4 during the ball
milling since both the unmilled and milled particles possessed identical crystal structures. It was also
observed that the maximum intensity peaks of the milled particles were, unexpectedly, located on the
(110) plane, while, for the unmilled particles, the maximum intensity peak was on the (104) plane. This
could be attributed to preferred orientation [11], magnetic ordering [12] or an increase in crystallinity
as a result of the ball milling. We also observed that as the milling time increased, the peaks broadened
and the sharpness decreased when the crystallite size decreased [13]. The ICSD reference numbers for
the α-Fe2O3 powders were 98-002-2616, 98-100-2733, 98-004-0652 and 98-009-4106 for the unmilled and
8, 10 and 12 h milled particles, respectively.Materials 2019, 12, 1696 6 of 13 
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The lattice parameters a, b and c and the average crystallite size D were calculated after performing
the Rietveld refinement of the peak profiles of the XRD analysis of the recycled α-Fe2O3 particles.
As depicted in Table 1, the lattice parameter a increased fractionally when the crystallite size decreased
and as the milling time increased. Lattice parameter expansion with reduced crystallite size in α-Fe2O3

nanoparticles was reported to indicate the surface disorder of the nanograins [14] as a result of
mechanical milling. Lattice parameter expansion has also been related to the large surface-to-volume
ratio of the nanoparticles, which contributes to the relaxation of the lattice vibration leading to the
expansion [15]. Overall, the cause of the lattice expansion of nanocrystalline oxides has been mainly
attributed to lattice defect formation due to oxygen vacancy [16]. This observation possibly implies
the presence of interfacial structural disorder and the formation of oxygen vacancies in the recycled
α-Fe2O3 nanoparticles. This is in agreement with a previous study of commercialα-Fe2O3 nanoparticles
prepared with the ball milling technique [17].

Table 1. Lattice parameters and average crystallite size as a function of milling time.

Condition a = b (Å) c (Å) D (nm)

Unmilled 5.0290 13.7360 106.2

8 h of milling 5.0340 13.7480 12.3

10 h of milling 5.0350 13.7500 11.8

12 h of milling 5.0380 13.7390 11.1

The spectra of the EDX analysis of the recycled α-Fe2O3 particles are shown in Figure 5 and the
elemental compositions are summarized in Table 2. The results showed that the unmilled particles
were composed of 98.67% Fe and O with about a 1% impurity in the form of Mg and Mn elements.
After 8, 10 and 12 h of milling, the Fe and O content increased, respectively, to 99.79%, 99.83% and
99.85% with very low (less than 0.21%) levels of Ca and Mg impurity. Similar results, reported by
Nadhirah et al. [18], confirmed that the oxidized mill scale waste formed a high percentage of α-Fe2O3

along with a small amount of impurity compounds. The results indicated that the recycled α-Fe2O3

nanoparticles prepared using the ball milling technique were high purity.

Table 2. Quantitative analysis of recycled α-Fe2O3 particles.

Sample Element (%)

Fe O Mn Mg Ca Total

Unmilled 78.07 20.69 0.69 0.55 - 100.0

8 h of milling 58.87 40.92 - 0.11 0.10 100.0

10 h of milling 56.70 43.13 - 0.12 0.05 100.0

12 h of milling 57.22 42.63 - 0.09 0.06 100.0

Figure 6 shows the HRTEM micrographs of the microstructure of recycled α-Fe2O3 particles at
various stages of milling. We observed that before milling the particles were randomly sized, bulky,
loosely formed and not showing any distinct aggregation. However, as the milling progressed, the
particles got work hardened, leading to their refinement into very fine nanoparticles with noticeable
aggregation and agglomeration. The increase in agglomeration can be attributed to an increase in
specific surface area, associated with reduced particle size, resulting in higher adhesion forces and
more aggregation [19]. The nanoparticles appeared to be largely spherical in shape and their particle
size distribution, as displayed in Figure 7, generally indicated a refinement and reduction in size with
increased milling time. The particles of the unmilled recycled α-Fe2O3 were in the range 0.8–3.0 µm
with an average size of 1.73 µm. After 8, 10 and 12 h of ball milling, the reduced particle sizes were,
respectively, in the ranges 11.5–34.6, 11.0–28.6 and 10.3–24.5 nm. These results are in close agreement
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with the average crystallite sizes estimated by XRD measurement. The average particle sizes were
calculated to be 21.5, 18 and 16.2 nm for the 8, 10 and 12 h of milling time.Materials 2019, 12, 1696 7 of 13 
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3.2. Dielectric Characterization

The frequency variation in ε′ and ε′′ for recycled α-Fe2O3 with particle sizes of 16.2, 18, and
21.5 nm and 1.73 µm are presented in Figure 8. The results showed that the within the frequency range
the real and imaginary parts of permittivity increased significantly when the particle size was reduced,
to nanosize, through ball milling. At 8 GHz, ε′ increased from 7.617 to 12.111, while ε′′ increased
from 0.175 to 0.467 when the particle size was decreased from 1.73 µm to 16.2 nm. Therefore, the
sample with the smallest particle size had the highest complex permittivity values. This represents an
improvement in the complex permittivity of recycled α-Fe2O3 particles with reduced particle sizes.
It is also evident, Figure 9, that the loss tangent increased moderately when the particle size decreased
in the frequency range, which indicated an enhancement in the attenuation properties of the recycled
α-Fe2O3 as the particle sizes got smaller.

The increase in the complex permittivity can be related to the enhancement of interfacial
polarization due to the effect of interfacial lattice disorder and the oxygen ion vacancies formed during
ball milling, which increased with reduced particle size in agreement with the work of Reference [12].
Additionally, smaller particles were more compact, had less air gaps and, therefore, formed good
contact between the constituent particles leading to the observed increase in the density of the interfaces.
The resulting interfacial polarization, therefore, increased, which led to the overall increase in dielectric
permittivity. In general, both the real and imaginary parts of permittivity were found to be high,
at 8 GHz, which decreased with a further increase in frequency to 12 GHz for all the particle sizes.
This was consistent with the behavior of the dielectric properties of ferrites with frequency [20,21].
The decrease in ε′ with the increase in frequency was attributed to the electron hopping between Fe3+

and Fe2+ ions whose frequency follows the applied electric field, resulting in the increase in ε′ at low
frequency. However at high frequencies, this hopping frequency lagged behind the applied electric
field causing a decrease in ε′ due to disorderly dipolar orientation [22].

The imaginary part of permittivity represented the loss of electrical energy. At low frequencies, the
grain boundaries had high resistivity and, because of the buildup of electrons at the grain boundaries,
a higher energy acquisition was required for electron hopping leading to a higher loss of electrical
energy. Conversely, at high frequencies the grain boundaries had low resistivity and, therefore, less
electrical energy loss from electron hopping [21,23].



Materials 2019, 12, 1696 9 of 12

Materials 2019, 12, 1696 9 of 13 

 

Therefore, the sample with the smallest particle size had the highest complex permittivity values. 

This represents an improvement in the complex permittivity of recycled α-Fe2O3 particles with 

reduced particle sizes. It is also evident, Figure 9, that the loss tangent increased moderately when 

the particle size decreased in the frequency range, which indicated an enhancement in the attenuation 

properties of the recycled α-Fe2O3 as the particle sizes got smaller.  

 

Figure 8. Variation of (a) ε' and (b) ε" with frequency for different recycled α-Fe2O3 particle sizes. 

 

Figure 9. Variation in loss tangent with frequency for different recycled α-Fe2O3 particles. 

The increase in the complex permittivity can be related to the enhancement of interfacial 

polarization due to the effect of interfacial lattice disorder and the oxygen ion vacancies formed 

during ball milling, which increased with reduced particle size in agreement with the work of 

Reference [12]. Additionally, smaller particles were more compact, had less air gaps and, therefore, 

formed good contact between the constituent particles leading to the observed increase in the density 

of the interfaces. The resulting interfacial polarization, therefore, increased, which led to the overall 

increase in dielectric permittivity. In general, both the real and imaginary parts of permittivity were 

found to be high, at 8 GHz, which decreased with a further increase in frequency to 12 GHz for all 

the particle sizes. This was consistent with the behavior of the dielectric properties of ferrites with 

frequency [20,21]. The decrease in ε' with the increase in frequency was attributed to the electron 

hopping between Fe3+ and Fe2+ ions whose frequency follows the applied electric field, resulting in 

the increase in ε' at low frequency. However at high frequencies, this hopping frequency lagged 

behind the applied electric field causing a decrease in ε' due to disorderly dipolar orientation [22].  

The imaginary part of permittivity represented the loss of electrical energy. At low frequencies, 

the grain boundaries had high resistivity and, because of the buildup of electrons at the grain 

boundaries, a higher energy acquisition was required for electron hopping leading to a higher loss of 

Figure 8. Variation of (a) ε′ and (b) ε′′ with frequency for different recycled α-Fe2O3 particle sizes.

Materials 2019, 12, 1696 9 of 13 

 

Therefore, the sample with the smallest particle size had the highest complex permittivity values. 

This represents an improvement in the complex permittivity of recycled α-Fe2O3 particles with 

reduced particle sizes. It is also evident, Figure 9, that the loss tangent increased moderately when 

the particle size decreased in the frequency range, which indicated an enhancement in the attenuation 

properties of the recycled α-Fe2O3 as the particle sizes got smaller.  

 

Figure 8. Variation of (a) ε' and (b) ε" with frequency for different recycled α-Fe2O3 particle sizes. 

 

Figure 9. Variation in loss tangent with frequency for different recycled α-Fe2O3 particles. 

The increase in the complex permittivity can be related to the enhancement of interfacial 

polarization due to the effect of interfacial lattice disorder and the oxygen ion vacancies formed 

during ball milling, which increased with reduced particle size in agreement with the work of 

Reference [12]. Additionally, smaller particles were more compact, had less air gaps and, therefore, 

formed good contact between the constituent particles leading to the observed increase in the density 

of the interfaces. The resulting interfacial polarization, therefore, increased, which led to the overall 

increase in dielectric permittivity. In general, both the real and imaginary parts of permittivity were 

found to be high, at 8 GHz, which decreased with a further increase in frequency to 12 GHz for all 

the particle sizes. This was consistent with the behavior of the dielectric properties of ferrites with 

frequency [20,21]. The decrease in ε' with the increase in frequency was attributed to the electron 

hopping between Fe3+ and Fe2+ ions whose frequency follows the applied electric field, resulting in 

the increase in ε' at low frequency. However at high frequencies, this hopping frequency lagged 

behind the applied electric field causing a decrease in ε' due to disorderly dipolar orientation [22].  

The imaginary part of permittivity represented the loss of electrical energy. At low frequencies, 

the grain boundaries had high resistivity and, because of the buildup of electrons at the grain 

boundaries, a higher energy acquisition was required for electron hopping leading to a higher loss of 

Figure 9. Variation in loss tangent with frequency for different recycled α-Fe2O3 particles.

3.3. Complex Permeability

The effect of the milling treatment on the magnetic properties of the recycled α-Fe2O3 particles was
investigated using complex permeability measurements. The variations of the real (µ′) and imaginary
(µ′′) parts with frequency, due to the different particle sizes, are shown in Figure 10. It is evident in
Figure 10 that both µ′ and µ′′ increased significantly with reduced particle size within the frequency
range of measurement. Moreover, µ′ decreased with frequency and varied between 0.90 and 1.45
while µ′′ increased with frequency reaching a maximum value of 0.161 at 11.2 GHz. The increase
in permeability with reduced particle size may be attributed to the observed preferred orientation,
leading to magnetic ordering as well as surface effects [12] in the microstructure of the milled particles
and enhanced magnetization.
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3.4. Material Absorption

Figure 11 presents the variation of simulated |S21| (dB) with frequency and clearly illustrates the
effect of the reduced particle sizes on the attenuation characteristics of the recycled α-Fe2O3 particles
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as a result of absorption. The profiles indicated that the smaller the particle size, the lower the |S21|

(dB) values, which implied higher attenuation from material absorption, consistent with Figure 9.
The simulated |S21| depended on the inputs of the complex permittivity values and, therefore, the
higher ε′′ values of the smaller α-Fe2O3 particles could have resulted in the higher absorption of
electromagnetic energy resulting in lower |S21| (dB). Additionally, the |S21| (dB) of the particles decreased
with frequency throughout the measurement range due to the effects of skin-depth [24].Materials 2019, 12, 1696 11 of 13 
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FEM simulations of the x-component of the electric field (V/m) distribution at 12 GHz of the
microstrip covered with the recycled α-Fe2O3 particles can be visualized as depicted in Figure 12. It is
evident from Figure 12 that the electric fields decreased from the input port to the output port as the
particle size was reduced. The reduction in the electric field distribution, with reduced particle size,
is in agreement with the simulated |S21| (dB) since the smaller particles possess higher ε′′ leading to
higher attenuation due to more absorption of the microwaves.
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4. Conclusions

The complex permittivity of high quality α-Fe2O3 particles recycled from mill scale waste was
enhanced significantly after reducing the particles to nanosize via high energy ball milling for several
hours. The milling treatment produced an equal increase in permeability and reduction in particle
size. This positioned the recycled α-Fe2O3 nanoparticles as potential magneto–dielectric microwave
absorbing materials. Microstructural defects and disorders, which occurred in the milled particles
as the sizes reduced, facilitated the improvements in the electromagnetic properties of the recycled
α-Fe2O3 nanoparticles. The simulated absorption properties exhibited by the nanoparticles confirmed
their ability to attenuate microwaves in the X-band frequency range. The significant electromagnetic
properties of recycled α-Fe2O3 linked to the size of the nanoparticles can be employed in possible
applications requiring tunable attenuation of electromagnetic energy. Recycled α-Fe2O3 nanoparticles
with improved dielectric and magnetic properties are cheaper to produce, lighter, less environmentally
wasteful, and could reduce the limitations associated with the ferrites commonly used in microwave
absorption applications.
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