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Abstract: Fluorine-doped tin oxide (FTO) thin films were deposited on glass substrates using ultrasonic
spray pyrolysis (USP) at a fixed substrate temperature of 400 ◦C and various Fluorine/Tin (F/Sn) atomic
ratios of 0, 0.1, 0.5, and 1.0. Effects of F/Sn atomic ratios on structural-morphological, compositional,
electrical, optical, and nanomechanical properties of the FTO thin films were systematically studied.
The FTO films exhibited a tetragonal structure with preferred orientations of (110), (200), and
(211), and polycrystalline morphology with spear-like or coconut shell-like particles on the surfaces.
The presence of F-doping was confirmed by XPS results with clear F1s peaks, and F-concentration
was determined to be 0.7% for F/Sn = 0.1 and 5.1% for F/Sn = 0.5. Moreover, the resistivity of
FTO films reduced remarkably from 4.1 mΩcm at F/Sn = 0 to 0.7 mΩcm at F/Sn = 1, primarily
due to the corresponding increase of carrier concentration from 2 × 1020 cm−3 to 1.2 × 1021 cm−3.
The average optical transmittance of the films prepared at F/Sn of 0–0.5 was over 90%, and it decreased
to 84.4% for the film prepared at F/Sn = 1. The hardness (H) and Young’s modulus (E) of the
FTO films increased when the F/Sn ratios increased from 0 to 0.5, reaching maximum values of
H = 12.3 ± 0.4 GPa, E = 131.7 ± 8.0 GPa at F/Sn = 0.5. Meanwhile, the H and E reduced considerably
when the F/Sn ratio further increased to 1.0, following the inverse Hall-Petch effect approximately,
suggesting that the grain boundary effect played a primary role in manipulating the nanomechanical
properties of the FTO films. Furthermore, favorable mechanical properties with large H/Ef and H3/E2

f
ratios were found for the FTO film prepared at F/Sn = 0.5, which possessed high crystallinity, large
grain size, and compact morphology.

Keywords: fluorine-doped tin oxide (FTO); nanoindentation; F/Sn atomic ratios; ultrasonic spray
pyrolysis (USP)

1. Introduction

Florine-doped tin oxide (FTO) thin films have attracted considerable attention because of their high
electronic conduction and optical transparency in the visible region for technological applications, such
as flat displays, thin-film solar cells, sensors, organic light emitting diodes, transparent heaters, and
architectural glass [1–4]. FTO has attracted great interest because of its wide energy gap (Eg = ~3.6 eV),
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low cost of production, thermal stability, chemical inertness, and high transparency [1,4–7]. However,
the electrical conductivity of FTO remains lower than the∼104 S/cm of tin-doped indium oxide (ITO) [8].
Generally, the electrical properties of SnO2 films depend on the sizes of grains [9], and doping with
Ta [10], Sb [11], or F [12–14]. Fluorine is a preferred dopant to improve the electrical conductivity of
SnO2 films and retain the crystal structure because of the similar ionic radius between F− (1.33 Å) and
O2− (1.32 Å). Fluorine atoms replace the oxygen sites in the lattice and donate free electrons to enhance
the electrical conductivity of FTO samples [7].

FTO thin films have been extensively prepared by various methods, such as atmosphere pressure
chemical vapor deposition (APCVD) [3,15,16], sputtering [4], sol-gel [7,12], and spray pyrolysis
deposition (SPD) [1,13,17–19]. Among the various techniques, spray pyrolysis deposition (SPD) is
a simple, economical, and commonly used method to prepare self-textured FTO thin films with a
simple scalable deposition and easy doping process that is achieved by manipulating the substrate
temperature, calcinations, gas pressure, and flow rate [1].

Besides the structural-morphological, electrical, and optical properties, the nanomechanical
properties of TCO films are important parameters that determine the performance of devices involving
TCO films. It is essential for designing stress-free thin-film, semi-transparent multi-layer structures
and top-emitting organic light-emitting displays that involve one or more layers of TCO films on
both rigid and flexible substrates [2]. The Young’s modulus and hardness are of the greatest interest,
because they reflect the elastic deformation and resistance to permanent deformation. Nanoindentation
is regarded as a good method to study the mechanical property of materials at the nanoscale level,
including various nanostructures [20,21] and thin films [22–32]. G. Han et al. reported the enhanced
nanomechanical properties of FTO thin films through the modification of the structure-morphology
via the post-annealing process [15]. However, to the best of our knowledge, the F-doping- dependent
nanomechanical properties of FTO films prepared by USP have not been studied yet.

In this study, we successfully employed ultrasonic spray pyrolysis (USP, a modified SPD
technique) to fabricate FTO thin films on glass substrates. Especially, the atomizer was an ultrasonic
nebulizer, which was originally used for treatment of respiratory disease (particularly asthma) using
high-frequency vibrations to turn liquid medication into a mist. The structural, morphological,
compositional, electrical, optical, and nanomechanical properties of polycrystalline FTO thin films
prepared at F/Sn atomic ratios of 0, 0.1, 0.5, and 1.0 were systematically studied. The results in this
study will provide a strategy for fabricating high-quality FTO thin films with the enhanced both
desired material and nanomechanical properties for applications.

2. Experimental Details

Florine-doped SnO2 thin films were deposited on Corning glass substrates (15 × 15 × 1 mm3) at a
substrate temperature of 400 ◦C and a mixed oxygen-argon carrier gas at a flow rate of 1.5 L/min, and
at various F/Sn atomic ratios of 0, 0.1, 0.5, and 1.0 using USP. In a typical procedure, 5.64 g SnCl2·2H2O
was dissolved in 25 mL distilled water. To improve the solubility of the solution, 2 mL of HCl was
added to the solution and stirred vigorously (~30 min) until the solution turned transparent. Then,
NH4F with appropriate weights were added to the solution to introduce different F-doping levels at
F/Sn = 0, 0.25, 0.5, and 1. The solution was then stirred at 600 rpm for approximately 30 min until the
solution turned transparent. The product solution was placed in an ultrasonic nebulizer reactor, which
can produce an aerosol with a controlled droplet size around 0.5–5 µm depending on the precursor
solution. The experimental apparatus consists of a specific homemade ultrasonic atomizer, spray gun,
and graphite hotplate (see Figure 1b inset). The ultrasonic atomizer consisted of medical equipment
with a piezoelectricity ultrasonic transducer inside, providing a frequency of 1.6 MHz ± 5%. Two gas
pipes beyond the precursor container were made for conducting oxygen and argon carrier gases
(Figure 1b inset). The deposition time was 7 min, and the film thickness was in range of 286–317 nm.
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Figure 1. (a) X-ray diffraction (XRD) patterns and (b) grain size (D) of the fluorine-doped tin oxide 
(FTO) thin films prepared at various F/Sn ratios of 0, 0.1, 0.5, and 1. The inset in (b) is a schematic of 
the ultrasonic spray pyrolysis (USP) system. 
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thickness were examined using field-emission scanning electron microscopy (SEM, JEOL JSM-6500, 
Pleasanton, CA, USA) through plane-view and cross-sectional images, respectively. The surface 
feature and roughness of FTO thin films were characterized through atomic force microscopy (AFM; 
Topometrix-Accures-II, Topometrix Corporation, Santa Clara, CA, USA). The center line average 
(Ra) was used to present surface roughness. Detailed structural information at atomic scale of a 
selected FTO film was obtained from high-resolution scanning transmission electron microscope 
(HRTEM) images (JEOL JEM-ARM200F, Tokyo, Japan) operated at 200 kV. The surface chemical 
composition and F-doping concentration of FTO thin films were characterized using X-ray 
photoelectron spectroscopy (XPS; ThermoVG 350, East Grinstead, UK) with the X-ray source (MgKα 
1253.6 eV, 300 W). The binding energies obtained in the XPS analysis were standardized using C1s at 
285.0 eV. XPS curve fitting was performed using the freeware XPSPEAK 4.1 with the Shirley 
background subtraction, and assuming a Gaussian–Lorentzian peak shape. In-plane electrical 
conductivity, carrier concentration (n) and mobility (μ) were measured at room temperature by 
using a Hall system (Bio-Rad HL5500PC, Hercules, CA, USA) with van der Pauw geometry. 

Nanomechanical properties (i.e., hardness and Young’s modulus) of the FTO thin films were 
obtained by nanoindentation tests (MTS NanoXP® system, MTS Cooperation, Nano Instruments 
Innovation Center, Oak Ridge, TN, USA). Nanoindentation measurements were made employing a 
triangular pyramid Berkovich diamond indenter with curvature radius of 50 nm. The continuous 
stiffness measurement technique was used in the nanoindentation tests [33], which was performed 
by superimposing a small oscillation on the primary loading signal and analyzing the system 
response by using a lock-in amplifier. The indenter was loaded and unloaded three times to ensure 
that the tip was properly in contact with the film surface, and that any parasitic phenomenon was 
released from the measurements. Then, the indenter was loaded for the fourth and final time at a 
strain rate of 0.05 s−1 until an indent depth of 80–88 nm was achieved and held for 5 s at the peak 
load. Finally, the indenter was withdrawn with the same strain rate until 10% of the peak load was 
reached. At least 20 indents were performed on each sample. Each indentation was separated by 50 
μm to avoid possible interferences between neighboring indents. The analytical method proposed 
by Oliver and Pharr was used to determine the hardness and Young’s modulus of the FTO thin 
films [34]. 

Figure 1. (a) X-ray diffraction (XRD) patterns and (b) grain size (D) of the fluorine-doped tin oxide
(FTO) thin films prepared at various F/Sn ratios of 0, 0.1, 0.5, and 1. The inset in (b) is a schematic of the
ultrasonic spray pyrolysis (USP) system.

The crystal structure of FTO thin films was determined through X-ray diffraction (XRD; Bruker
D2) using CuKα radiation (λ = 1.5406 Å) in 2θ-θ configuration. Surface morphology and film
thickness were examined using field-emission scanning electron microscopy (SEM, JEOL JSM-6500,
Pleasanton, CA, USA) through plane-view and cross-sectional images, respectively. The surface
feature and roughness of FTO thin films were characterized through atomic force microscopy (AFM;
Topometrix-Accures-II, Topometrix Corporation, Santa Clara, CA, USA). The center line average (Ra)
was used to present surface roughness. Detailed structural information at atomic scale of a selected
FTO film was obtained from high-resolution scanning transmission electron microscope (HRTEM)
images (JEOL JEM-ARM200F, Tokyo, Japan) operated at 200 kV. The surface chemical composition and
F-doping concentration of FTO thin films were characterized using X-ray photoelectron spectroscopy
(XPS; ThermoVG 350, East Grinstead, UK) with the X-ray source (MgKα 1253.6 eV, 300 W). The binding
energies obtained in the XPS analysis were standardized using C1s at 285.0 eV. XPS curve fitting was
performed using the freeware XPSPEAK 4.1 with the Shirley background subtraction, and assuming
a Gaussian-Lorentzian peak shape. In-plane electrical conductivity, carrier concentration (n) and
mobility (µ) were measured at room temperature by using a Hall system (Bio-Rad HL5500PC, Hercules,
CA, USA) with van der Pauw geometry.

Nanomechanical properties (i.e., hardness and Young’s modulus) of the FTO thin films were
obtained by nanoindentation tests (MTS NanoXP® system, MTS Cooperation, Nano Instruments
Innovation Center, Oak Ridge, TN, USA). Nanoindentation measurements were made employing a
triangular pyramid Berkovich diamond indenter with curvature radius of 50 nm. The continuous
stiffness measurement technique was used in the nanoindentation tests [33], which was performed by
superimposing a small oscillation on the primary loading signal and analyzing the system response
by using a lock-in amplifier. The indenter was loaded and unloaded three times to ensure that the
tip was properly in contact with the film surface, and that any parasitic phenomenon was released
from the measurements. Then, the indenter was loaded for the fourth and final time at a strain rate of
0.05 s−1 until an indent depth of 80–88 nm was achieved and held for 5 s at the peak load. Finally,
the indenter was withdrawn with the same strain rate until 10% of the peak load was reached. At least
20 indents were performed on each sample. Each indentation was separated by 50 µm to avoid possible
interferences between neighboring indents. The analytical method proposed by Oliver and Pharr was
used to determine the hardness and Young’s modulus of the FTO thin films [34].
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3. Results and Discussion

Figure 1a shows XRD patterns of the FTO films prepared at different F/Sn atomic ratios of 0, 0.1,
0.5, and 1.0. Clearly, the films exhibited tetragonal rutile structure of SnO2 with preferred orientations
of (110), (200), and (211). The grain sizes (D) of the films were estimated by using the Scherrer equation
D = 0.9λ/βcosθ, where λ, β, and θ are the X-ray wavelength, full width at half maximum of the FTO
(110)- oriented peak, and Bragg diffraction angle, respectively. The estimated D values of FTO thin
films increased from 29.6 nm at F/Sn = 0 to 42.7 nm at F/Sn = 0.5, and then decreased to 35.1 nm at
F/Sn = 1, as shown in Figure 1b. The increased grain size with F-doping tendency was consistent with
the result in Ref. [14], where the grain size increased from 20.5 nm for the pristine SnO2 film to 27.1 nm
for the 12 wt.% F-doped SnO2 film. Noticeably, there is a small peak at ~31.7◦ for the film prepared
at F/Sn = 0.5 that suggests the presence of Sn3O4 impurity phase in the film [35]. This is reasonable,
as the Sn3O4 impurity phase is also detected in the FTO films prepared by USP [19].

Figure 2 presents the top-view and cross-section SEM images of FTO thin films deposited at
400 ◦C and various F/Sn ratios from 0 to 1. Clearly, all the films exhibited granular polycrystalline
morphology with spear-like particles for F/Sn = 0 and coconut shell-like particles for F/Sn = 0.1, 0.5, and
1.0. Similar to the D result estimated by XRD, the particle sizes observed from SEM images appeared
to be increased for F/Sn in 0–0.5 range and decreased for F/Sn = 1.0. Noticeably, some large clusters
composed of smaller particles were found on the surface of the highest doping level film (i.e., F/Sn = 1).
It is worthy of note that a particle size (observed from SEM images) can be larger than the grain
(crystallite) size (obtained from XRD result), as it may consist of number of grains and even include
amorphous regions. As shown in the insets of Figure 2a–d, the FTO films had the thickness in range of
285.9–317.3 nm and exhibited compact-uniform structure. Like the SEM results, AFM images show
granular surface features with roughness (Ra) of 11.9–20.7 nm (Figure 2e). The film grown at F/Sn = 0.5
achieved the lowest Ra of 11.9 nm, suggesting that this doping level was one of the good conditions to
prepare FTO films.
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Figure 2. (a–d) Top-view and cross-section scanning electron microscopy (SEM) images of the FTO
thin films prepared at F/Sn atomic ratios of 0, 0.1, 0.5, and 1.0; the dotted circles marked typical grain
shapes; the film thicknesses are also written the cross-section SEM images. (e) Atomic force microscopy
(AFM) images of the FTO films with the corresponding surface roughness values (Ra).

To further understand the structural quality and grain-boundary structure of the FTO films,
HRTEM was performed on the FTO film prepared at F/Sn = 0.5, and the result is shown in Figure 3.
Clearly, the HRTEM image shows the boundary between three crystallites with sharp interfaces and
high crystallinity. The lattice fringes have d-spacing of 3.33 Å and 2.63 Å, corresponding to (110) and
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(101) crystal planes of the rutile-type SnO2 structure. This result demonstrates that the FTO films in
this study are compact and have good continuity.
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Figure 3. High-resolution scanning transmission electron microscope (HRTEM) image of the FTO film
prepared at F/Sn = 0.5. Three domain crystallites are separated by the dashed lines.

Figure 4 shows the XPS survey and F1s spectra of FTO thin films prepared at 0, 0.1, and 0.5,
in which the survey spectra were calibrated by the binding energy of C1s peak at 285.0 eV. Clearly,
the main peaks of Sn3d, Sn4d, and O1s core levels are well pronounced, and small peaks of F1s
were also observed for F/Sn = 0.1, 0.5, indicating the high purity of pristine and F-doped SnO2 thin
films. Quantitative XPS analysis found that F-doping concentration increased when F/Sn atomic
ratios increased, namely, F- concentration of 0, 0.7, and 5.1% for F/Sn of 0, 0.1, and 0.5, respectively
(Figure 4b–d). The F-content of 5.1% was comparable to that of the FTO films (~5.0%) prepared by
APCVD [3].
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The electrical properties (resistivity (ρ), carrier mobility (µ), and carrier concentration (n)) of
the FTO thin films grown at various F/Sn atomic ratios are shown in Figure 5a. The n increased
substantially from 2 × 1020 to 13 × 1020 cm−3 as F/Sn increased from 0 to 0.5, and then it decreased
slightly to 11.6 × 1020 cm−3 at F/Sn = 1.0. When F− anion substitutes an O2- anion, free electrons will
be generated for charge compensation to result in the increased n with increasing F/Sn from 0 to 0.5.
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However, there is a certain saturation limit that excess F− cannot substitute O2− anymore, and the F−

anions may be expelled to segregate on grain boundaries. This results in the slight decrease of n at
F/Sn = 1. The present behavior of n vs. F-doping is consistent with those of the FTO films prepared by
magnetron sputtering [36] and spray pyrolysis technique [14,37]. In contrast to the n variation, the µ
decreased slightly from 7.6 to 4.5 cm2/Vs when F/Sn increased from 0 to 0.5, and then it increased to
7.7 cm2/Vs at F/Sn = 1.

The mobility (µ) is described by Matthiessen’s rule [38], as follows:

1
µ
=

1
µimpurity

+
1
µgb

+
1

µphonon
+

1
µhopping

+ . . . (1)

where µimpurity, µgb, µphonon, and µhopping are factors that influence mobility from impurity scattering,
grain boundary scattering, phonon scattering, and retardation by hopping transport, respectively.
In TCO thin films, the ionized impurities and grain boundaries are found to be the main scattering
mechanisms [13,38]. The electron mean free path (L) of thin films can be estimated by the equation
L = (3π2)

1/3}e−1µn1/3, where h̄ is the reduced Planck’s constant [13,38]. The L values of the present
FTO films are in range of 0.9–1.7 nm, which is far smaller than grain size; thus, grain boundary
scattering is not the dominant scattering mechanism. A higher n usually creates more scattering
centers that lead to reduced µ, as shown in Figure 5a. Due to the aforementioned results of n and µ,
the resistivity monotonically decreased from 4.1 to 0.7 mΩcm with increasing F/Sn from 0 to 1, as 1/ρ =

nµ|e|, where e is the electron charge. This F-doping-dependent ρ is consistent with that for the FTO
films [13].

As shown in Figure 5b, the average optical transmittances in the visible range (λ = 400–760 nm)
of the 286–317 nm-thick films were 91.1, 90.4, 90.2, and 84.4% for F/Sn ratios of 0, 0.1, 0.5, and 1,
respectively. This means that the average transmittance remains above 90% for F/Sn ≤ 0.5, which
is higher than the value of 80% for the FTO prepared by APCVD [3], and comparable with that of
the relevant FTO films prepared by the sol-gel process [12]. Moreover, the transmittance of the films
prepared at the highest F-doping level (F/Sn = 1) reduces considerably to 84.4%, which could be due to
the scattering effect due to the increase of surface roughness to Ra = 20.7 nm and defect concentration.
The present F-doping-dependent transmittance is consistent with the result for the FTO films prepared
by the sol-gel process [12].
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Figure 5. (a) F/Sn ratio-dependent resistivity (ρ, black squares), carrier concentration (n, blue triangulars),
and carrier mobility (µ, red spheres) of the FTO thin films. (b) Transmission spectra of FTO thin films
as a function of F/Sn ratios. The inset in (b) presents the average optical transmittance (%) of the films
in the visible range of 400–760 nm.

Table 1. summarizes the electrical and optical properties of the FTO films in this study in
comparison with those of the relevant or optimal FTO films in the literature [3,13,17–19]. The lowest ρ
of 0.7 mΩcm for the film prepared at F/Sn = 1.0 in this study is considerably higher than those of the
FTO films with ρ in range of 1.5–6.5 mΩcm [13,18,19], but was slightly lower than the ρ values of the
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FTO films [17,18]. In additions, the transmittance at wavelength of 550 nm of the present films was
comparable or higher than that of the FTO films in Refs. [3,13,17].

Table 1. Preparation technique, percentage of F-doping, resistivity (ρ), carrier mobility (µ), concentration
(n), mean free path (L), grain size (D), and transmittance at λ = 550 nm of the optimal FTO films in this
study as compared to properties of the FTO films reported in the literature.

Sample Preparation
Technique

% F
Dopant

ρ
(mΩcm)

µ
(cm2/Vs)

n
×1020 cm−3

L
(nm)

D
(nm)

T (%)
(λ = 550 nm) Ref.

FTO USP 5.1 1.0 4.5 13 1 42.7 86.5 This study
FTO USP - 0.7 7.7 11.6 1.7 35.1 86.9 This study
FTO USP 2.5 0.6 33.5 3.1 - 35 ~68 [17]
FTO USP 1 6.5 - - - - - [19]
FTO USP 5 1.6 4.8 8.4 68 [13]
FTO SPD 7.5 1.5 21.9 1.9 2.5 25~33 - [18]
FTO APCVD ~4.8 0.53 23.8 5.0 3.8 20.1 84 [3]

All nanoindentation tests were performed at an indentation depth of approximately 30% film
thickness to avoid surface and substrate effects [39]. Figure 6 shows the typical load-displacement (P–h)
curves of FTO thin films prepared at different F/Sn ratios from 0 to 1, which provides the information
about elastic behavior and plastic deformation. From the P–h data, we employed the Oliver and Pharr
method to calculate the hardness (H) and Young’s modulus (E f ) of the thin films [34].
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Particularly, the hardness was estimated as H = Pm/Ap, where Pm and Ap are the maximal
indentation load and the projected contact area of indentation, respectively. The Ap was determined
from indenter tip calibration and is a function of contact depth (hc), namely, Ap = 24.56h2

c for a
perfectly sharp Berkovich [33]. The contact stiffness (S) is determined as S = dP/dh, i.e., the slope
of the initial portion of the unloading curve. The contact depth can be estimated from the P–h data
using hc = hm − ε(Pm/S), where ε is the indenter constant (0.75 for a Berkovich indenter tip) and hm is
the maximum indentation depth. The elastic modulus of materials is calculated using the Sneddon
relation [40] S = 2βEr

√
Ap/π, wherein β is a geometric constant (β ≈ 1 for a Berkovich indenter tip).

The reduced elastic modulus (Er) is determined as follows:

1
Er

=

(
1− v2

f

)
E f

+

(
1− v2

i

)
Ei

(2)

Here, v is the Poisson’s ratio and i and f denote parameters for the indenter and FTO thin films,
respectively. The elastic modulus (Ei) and Poisson ratio (υi) of the Berkovich indenter used in this
study were 1141 GPa and 0.07, respectively [34]. The υ f was assumed to be 0.25 by referencing the
Poisson’s ratio of thin films [29,41,42].
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Figure 7a,b shows the calculated hardness-displacement (H–h) and Young’s modulus–displacement
(E–h) curves of the films prepared at different F/Sn ratios. The H–h and E–h curves can be divided into
two stages, i.e., (1) the H or E gradually increases to reach a maximum value as h is increased and (2)
subsequently decreases to an almost constant value. The first stage is usually attributed to the transition
from purely elastic to elastic/plastic contact, and the hardness is not accurately measured by the mean
contact pressure at this stage. Instead, the mean contact pressure can represent the hardness only under
the condition of a fully developed plastic zone. After the first stage, the H and E reach the constant
values, which are regarded as intrinsic properties of the films. As shown in Figure 7a,b, the hardness
of the FTO films deposited at F/Sn = 0, 0.1, 0.5, and 1.0 was 5.6 ± 0.2, 6.9 ± 0.3, 12.3 ± 0.4, and 10.2 ± 0.3
GPa, respectively, and the Young’s modulus for the corresponding films was 95.2 ± 7.1, 115.1 ± 8.7,
131.7 ± 8.0, and 120.6 ± 7.6 GPa, respectively. The present H and E values were in a reasonable range
compared with the previous studies [15,16,43]. Indeed, the of SnO2 film (F/Sn = 0) was comparable
with the H = 6.1 ± 0.1 GPa and E = 78.5 ± 0.4 GPa of SnO2 films prepared by spray-pyrolysis [43].
Meanwhile, the H of 6.9–10.2 GPa and E of 115.1–131.7 GPa for the present FTO films were larger than
H = 5.1 GPa and E = 71.1 GPa for FTO thin films deposited by chemical vapor deposition [16], and
comparable with the H = 9.01 GPa and E = 125.24 GPa for the as-deposited FTO film prepared by
APCVD [15].
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Figure 8 presents the F/Sn ratio dependence of the H, E, and D of the FTO thin films. The H and
E results are mostly determined by the D value of FTO thin films, and follow an inverse Hall-Petch
effect. A larger D leads to the larger H and E values. For examples, when D increased from 29.6 to
42.7 nm and then decreased to 35.1 nm, the corresponding H increased from 5.6 ± 0.2 to 12.3 ± 0.4 GPa
and then decreased to 10.2 ± 0.3 GPa. It is worthy to note that the inverse Hall-Petch effect occurs in
nanoscale granular materials with grain size below a certain critical value, for example 10 nm [44],
and it is 42.7 nm for the FTO films in this study. In the inverse Hall-Petch effect, the film hardness is
dominated by grain boundary sliding [15,45,46]. Regarding this mechanism, an increase of grain size
will reduce the number of grain boundaries that in turn suppress grain boundary sliding, and lead to
the nanomechanical hardening of the films. This H, E vs. D behavior agrees well with that of FTO
thin films grown by APCVD [15]. In addition to the grain size, the internal porosity of polycrystalline
materials influences the nanomechanical properties that H and E values decrease when increasing
the level of porosity of the materials [47]. For the SnO2 film (F/Sn = 0), the surface morphology with
spear-like particles may have internal voided structure near the surface due to the shadowing effect
during the thin film growth [48,49]. This is partially attributed to the lower H and E values for the
SnO2 film compared to those of FTO films.
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The plasticity index (H/E f ) and the plastic deformation resistance (H3/E2
f ) of the FTO thin films

were further calculated and reported in Table 2. The H/E f ratio characterizes the resistance of the
material to elastic deformation, and a higher H/E f material is expected to have better wear resistant
property due to small accumulated strain energy [50]. Meanwhile, H3/E2

f describes the ability of a
material in resisting plastic deformation and thus characterizes its toughness and resistance to crack
propagation [29]. The H/E f values of the FTO thin films are in the range of 0.059–0.093 (Table 2).
These H/E f values are larger than those of the Bi3Se2Te films (i.e., 0.028–0.031) [29], and reasonably
smaller than the H/E > 0.1 values of some brittle materials, such as ceramic Mo-incorporation β-Ga2O3

films [51] and hard nanocomposite coatings with columnar microstructures [52]. In addition, the H3/E2
f

values increased from 0.019 to 0.107 GPa and then decreased to 0.073 GPa due to the variation of
the grain size (Table 2). The FTO thin films prepared at F/Sn = 0.5 possessed the largest values
of H/Ef = 0.093 and H3/E2

f = 0.107 GPa. This demonstrates that significant deformation resistance
or toughness can be achieved in the FTO film with high crystallinity, large grain size, and dense
morphology (i.e., F/Sn = 0.5).

Table 2. Grain size (D), hardness (H), Young’s modulus (Ef), plasticity index (H/E f ), and plastic
deformation resistance (H3/E2

f ) of the FTO thin films prepared at various F/Sn atomic ratios.

F/Sn D (nm) H (GPa) Ef (GPa) H/Ef H3/E2
f (GPa)

0 29.6 5.6 ± 0.2 95.2 ± 7.1 0.059 0.019
0.1 33.3 6.9 ± 0.3 115.1 ± 8.7 0.060 0.025
0.5 42.7 12.3 ± 0.4 131.7 ± 8.0 0.093 0.107
1 35.1 10.2 ± 0.3 120.6 ± 7.6 0.085 0.073

4. Conclusions

FTO thin films were successfully grown on glass substrates using USP. Effects of F/Sn atomic ratio
on structural, morphological, compositional, electrical, optical, and nanomechanical properties of the
films were studied. The films exhibited tetragonal rutile structure of SnO2 with dominant preferred
orientation of (110), and the grain size tended to increase as the F/Sn ratio increased. The films had
granular surface morphologies with spear-like particles for F/Sn = 0 and coconut shell-like particles for
F/Sn = 0.1, 0.5, and 1.0, and they were compact and possessed good continuity. XPS results confirmed
the presence of F-doping with concentrations of few percent (i.e., 0.7% for F/Sn = 0.1 and 5.1% for
F/Sn = 0.5). By increasing F/Sn ratios, the films achieved significant reduction in resistivity from
4.1 mΩcm at F/Sn = 0 to 0.7 mΩcm at F/Sn = 1, primarily due to an order increase of n for F/Sn = 0.5
and 1.0. The films achieved excellent optical property, with an average transmittance in the visible
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range over 90% for F/Sn of 0–0.5. Importantly, the H and E of the FTO films were remarkably enhanced
by introducing F-doping, following the inverse Hall-Petch effect. The highest H and E values were
12.3 ± 0.4 GPa and 131.7 ± 8.0 GPa for the FTO films prepared at F/Sn of 0.5 (with 5.1% F and Ra

of 11.9 nm). The FTO thin films prepared at F/Sn = 0.5 also possessed the largest plasticity index
(H/Ef = 0.093) and plastic deformation resistance (H3/E2

f = 0.107 GPa).
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